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client
devices

server

engineer

deployment

federated 
training

development

… the deployed 
model?... the

network?

… the
device? ... the released 

models and 
metrics?

… the server?

Focused collection

Only-in-aggregate
release

Minimize data exposure

Anonymous / 
ephemeral
collection

Data minimization principles for FL



Complementary privacy technologies 
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Differential Privacy for FL 
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(ε, δ)-Differential Privacy: The distribution of the 
output M(D) (a trained model) on database (training 
dataset) D is nearly the same as M(D′) for all 
adjacent databases D and D′

∀S:    Pr[M(D)∊S] ≤ exp(ε) ∙ Pr[M(D′)∊S] + δ

Differential 
Privacy
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Clip updates to limit 
a user’s contribution 
(bounds sensitivity)

Server adds noise 
proportional to 
sensitivity when 

combining updates

Centrally differentially private federated learning 

H. B. McMahan, et al.  Learning Differentially Private Recurrent Language Models. ICLR 2018



Locally differentially private federated training
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Evfimievski, Alexandre, et al. Privacy preserving mining of association rules. Information Systems 2004
Warner, Stanley L. Randomized response: A survey technique for eliminating evasive answer bias. JASA 1965



Central DP: full trust in service provider 
Higher utility at reasonable privacy levels

Alice

Bob

CarolAlice

Bob

Carol

Dwork, et. al. “Our Data, Ourselves: Privacy Via Distributed Noise Generation”. 2006.

Distributed Differential Privacy

Local DP: weaker trust assumptions
Utility often suffers

Can we combine the best of both worlds? 



client
devices

server

engineer

Distributed DP

Some DP guarantees
Very few (~10s) people have 
access to the server Stronger Central DP Guarantee

More people (~1000s) have access to the model 
iterates 
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deployed 
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Trusted “third party”
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Distributing trust for private aggregation

shuffling
third-party

Andrea Bittau, et al. Prochlo: Strong Privacy for Analytics in the Crowd. SOSP 2017
Úlfar Erlingsson, et al. Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity. SODA 2019



Trusted “third party” Trusted Execution Environments

∑

+

+∑

1 2
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Andrea Bittau, et al. Prochlo: Strong Privacy for Analytics in the Crowd. SOSP 2017
Úlfar Erlingsson, et al. Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity. SODA 2019



Trusted “third party” Trusted Execution Environments
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Trust via Cryptography1 2 3

∑
shuffling

third-party trusted 
hardware

SecAgg

K. A. Bonawitz, et al. Practical secure aggregation for privacy-preserving machine learning CCS 2017
J. Bell, et al. Secure Single-Server Vector Aggregation with (Poly) Logarithmic Overhead CCS 2020

Distributing trust for private aggregation



Secure Aggregation allows a server to obtain the sum of 
high-dimensional vectors of client-held data in a way that 
ensures (cryptographically) that the server learns just the 
sum, and no individual data whatsoever *.

* even if some users are malicious (and collude with the server), and some drop out.

https://en.wikipedia.org/wiki/Secure_multi-party_computation


SecAgg: a closed box that performs integer modulo 
sums
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modulo sum

SecAgg

K. A. Bonawitz, et al. Practical secure aggregation for privacy-preserving machine learning CCS 2017
J. Bell, et al. Secure Single-Server Vector Aggregation with (Poly) Logarithmic Overhead CCS 2020
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Why not just add continuous Gaussian noise? 
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Challenges 

● SecAgg operates on a finite group with integer modulo arithmetic
○ Need clever data discretization methods  that do not inflate the sensitivity 
○ Cannot use continuous mechanisms

● Communication efficiency is an important bottleneck in FL
○ Do not want privacy to depend on communication cost (SecAgg’s group size)

● Many discrete mechanisms (e.g. k-RR) are not closed under summation
○ Analyzing sums of these mechanisms is difficult, especially in high dimensions

● Discrete mechanisms with finite tails* do not satisfy Rényi or concentrated DP
○ Avoids catastrophic privacy failures and allows for tight privacy accounting

● Need mechanisms that can be sampled from exactly and efficiently 

*For example, the multi-dimensional binomial mechanism (Agarwal, et al. cpSGD: Communication-efficient 
and differentially-private distributed SGD. NeurIPS 2018.) does not achieve Rényi DP 



The discrete Gaussian mechanism

*Clement Canonne, et al. The Discrete Gaussian for Differential Privacy. NeurIPS 2020

● Discrete Gaussian: discrete analog of continuous Gaussian (≠ 
rounding Gaussian to nearest ints)

○ Essentially the same privacy-accuracy trade-off as 
continuous Gaussian*

○ zCDP / Rényi DP for tight compositions in learning contexts
● Problem: sums of discrete Gaussians ≠ discrete Gaussians



The Distributed Discrete Gaussian Mechanism

L2 Clip Add Discrete 
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Modulo 
ClippingDiscretize
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Clients Server

SecAgg

The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation. ICML 2021



Data Quantization

● Scaling: stretching the signal → reduces quantization error 
● Random rotation: “flatten” concentrated coordinates → controls the L-inf norm
● Randomized rounding: values stochastically rounded to integers (unbiased)
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Data Quantization

● Scaling: stretching the signal → reduces quantization error 
● Random rotation: “flatten” concentrated coordinates → controls the L-inf norm
● Randomized rounding: values stochastically rounded to integers (unbiased)
● We can probabilistically bound the L2 norm growth from rounding (helps reduce DP noise):

Random 
Rotation

Randomized 
RoundingScale

L2 Clip Add Discrete 
GaussianDiscretize Modulo 

Clipping

...
... ∑ Back to Reals

Clients Server

SecAgg

: client vector dim
: rounding granularity;
  inverse scaling factor
: rounding bias



● Each client adds local discrete Gaussian noise
● Apply SecAgg on noised client updates with modulo m = 2B 

Local Noising & (Secure) Sums of Discrete Gaussians
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● Each client adds local discrete Gaussian noise
● Apply SecAgg on noised client updates with modulo m = 2B 
● While sums of discrete Gaussians ≠ discrete Gaussian, we 

show that they are extremely close:

Local Noising & (Secure) Sums of Discrete Gaussians

L2 Clip Add Discrete 
GaussianDiscretize Modulo 

Clipping

...
... ∑ Back to Reals

Clients Server

SecAgg

● Exponentially small with larger 
variance; ≤ 10-12 if σ1

2 = σ2
2 = 3.

● Noise is added on quantized 
client values, so σ2 is scaled 
and this is even smaller



Main Privacy Guarantees 
with n clients:

● Each client adds local discrete Gaussian noise
● Apply SecAgg on noised client updates with modulo m = 2B 
● While sums of discrete Gaussians ≠ discrete Gaussian, we 

show that they are extremely close:

Local Noising & (Secure) Sums of Discrete Gaussians

L2 Clip Add Discrete 
GaussianDiscretize Modulo 

Clipping

...
... ∑ Back to Reals

Clients Server

SecAgg

● Weak dependence on d 
(number of model params);

● 1st term same as central 
Gaussian/DGaussian



Stack Overflow Next Word Prediction

● Next word prediction for question/answer sentences on StackOverflow.com with LSTMs
● ~109 sentences grouped by the N = 342477 SO users/clients 
● Fig. 1: DDGauss matches continuous Gaussian as long as the bit-width B is sufficient
● Fig. 2: DDGauss scales (1000 clients per round) and works in low-noise (utility-first) settings

Fig. 1: Test acc with different ε and B (n = 100). Fig. 2: Val acc with with n = 1000 clients, B = 18. 
z: approximate noise multiplier aligned on ε.

Code

Code: https://github.com/google-research/federated/tree/master/distributed_dp 

https://github.com/google-research/federated/tree/master/distributed_dp
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Server

UnflattenL2 Clip

SecAgg
(mod m)

Random 
unitary 
matrix

E.g. 4.23 → 42.3 → {42 w.p 0.7, 43 w.p. 0.3}

Flattening helps bound L∞-norm
- Reduce error from quantization
- Less modular wrapping from SecAgg

Our end-to-end  solution



● Difference of two independent Poisson RVs. With mean Δ and variance μ,    

● Closed under summation: easily switch between central DP & distributed DP (central vs local noise)
● Easy to sample: `np.random.poisson`
● Skellam gets closer to Gaussian as variance increases and we scale the output appropriately 

● Skellam Mechanism: for an integer-valued query f(D), 

(Symmetric) Skellam Distribution



● Main Rényi DP guarantee

(Distributed) Skellam
Gaussian RDP

2nd term goes to 0 
with larger variance
(higher privacy)

L1 bound (after quantization)



● Main Rényi DP guarantee

● Effect of scaling (scale both noise stddev and sensitivity)

(Distributed) Skellam
Gaussian RDP

2nd term goes to 0 
with larger variance
(higher privacy or 
large scaling)

L1 bound (after quantization)



● Next word prediction for questions/answers sentences on StackOverflow.com with LSTMs
● ~109 sentences grouped by N = 342477 users on Stack Overflow
● Left: Test acc across various privacy levels ε and bit-widths b
● Right: Validation acc across training rounds
● Skellam matches continuous Gaussian and distributed discrete Gaussian

Stack Overflow Next Word Prediction
Code

Code: https://github.com/google-research/federated/tree/master/distributed_dp

https://github.com/google-research/federated/tree/master/distributed_dp


Better communication efficiency? 

To achieve centralized error of                                each client must transmit                                                      bits.



Better communication efficiency? 

To achieve centralized error of                                each client must transmit                                                      bits.

In the worst-case, each client cannot transmit less than the entire gradient!

● But, gradients may be near-sparse! Is their sum?

● We can leverage this structure to compress each       !  

● We will use a count-mean sketch: efficient and linear dimensionality reduction 

Count
Sketch

Count
Sketch

Count
Sketch

Count-mean
Decode

Stich, Sebastian U., Jean-Baptiste Cordonnier, and Martin Jaggi. "Sparsified SGD with memory." arXiv preprint arXiv:1809.07599 (2018).
Barnes, Leighton Pate, et al. "rTop-k: A statistical estimation approach to distributed SGD." IEEE Journal on Selected Areas in Information Theory 1.3 (2020): 897-907.
Rothchild, Daniel, et al. "Fetchsgd: Communication-efficient federated learning with sketching." International Conference on Machine Learning. PMLR, 2020.
Haddadpour, Farzin, et al. "Fedsketch: Communication-efficient and private federated learning via sketching." arXiv preprint arXiv:2008.04975 (2020).



Federated EMNIST-62 @ 100 Clients
Stack Overflow Next Word Prediction 

@ 100 Clients
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Challenges & Opportunities



● Privacy is multifaceted 
○ Need to better understand privacy, communication, computation, accuracy, sparsity tradeoffs
○ Tensions between privacy, robustness, and fairness are very interesting and remain 

underexplored – personalization may play an important role in easing the tensions
○ Cryptographic techniques will play a critical role in strengthening privacy

● Differential privacy provides an incredibly useful tool
○ But it often comes at a “hit” in accuracy 
○ If we have to pay, we'd usually rather pay with more computation (not privacy or accuracy) 
○ How to choose epsilon remains (and perhaps will always be) an open question
○ How to make sense of large-ish epsilons? 
○ Model auditing techniques for measuring privacy loss (memorization) are complimentary

● Privacy budgeting and management systems are not available
○ Can scientists apply complex and repeated learning tasks on the same or similar datasets?
○ How do we efficiently track and quantify the privacy loss of a complex system?

● Public data is largely underutilized
○ Public data will play a key role in improving privacy-accuracy tradeoffs
○ How do we optimally combine public and private datasets during training?  

Open technical challenges in privacy



Improving efficiency and effectiveness
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Ensuring fairness and addressing sources of bias
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Bias in device availability?

Inference population 
different than training 

population?

Bias in training data 
(amount, distribution)?

Bias in which devices 
successfully send updates?



Robustness to attacks and failures
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Inference-time evasion 
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Advances and Open Problems in FL

59 authors from 25 top institutions

arxiv.org/abs/1912.04977
Foundations and Trends in Machine Learning

https://www.nowpublishers.com/article/Details/MAL-083


A Field Guide to Federated Optimization

53 authors from 14 top institutions

arxiv.org/abs/2107.06917
Tensorflow Federated Implementation

https://arxiv.org/abs/2107.06917


Thank you for your time! 

Twitter: @KairouzPeter


