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Complementary privacy technologies
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Differential Privacy for FL
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Centrally differentially private federated learning
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H. B. McMahan, et al. Learning Differentially Private Recurrent Language Models. ICLR 2018



Locally differentially private federated training
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Evfimievski, Alexandre, et al. Privacy preserving mining of association rules. Information Systems 2004
Warner, Stanley L. Randomized response: A survey technique for eliminating evasive answer bias. JASA 1965



Can we combine the best of both worlds?

Distributed Differential Privacy
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Central DP: full trust in service provider
Higher utility at reasonable privacy levels

Local DP: weaker trust assumptions
Utility often suffers

Dwork, et. al. “Our Data, Ourselves: Privacy Via Distributed Noise Generation”. 2006.
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Distributing trust for private aggregation

© Trusted “third party”
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Andrea Bittau, et al. Prochlo: Strong Privacy for Analytics in the Crowd. SOSP 2017
Ulfar Erlingsson, et al. Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity. SODA 20179



Distributing trust for private aggregation
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Distributing trust for private aggregation

© Trusted “third party” @ Trusted Execution Environments © Trust via Cryptography
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K. A. Bonawitz, et al. Practical secure aggregation for privacy-preserving machine learning CCS 2017
J. Bell, et al. Secure Single-Server Vector Aggregation with (Poly) Logarithmic Overhead CCS 2020



Secure Aggregation allows a server to obtain the sum of
high-dimensional vectors of client-held data in a way that
ensures (cryptographically) that the server learns just the
sum, and no individual data whatsoever *.

* even if some users are malicious (and collude with the server), and some drop out.


https://en.wikipedia.org/wiki/Secure_multi-party_computation

SecAgg: a closed box that performs integer modulo
sums

modulo sum

SecAgg

K. A. Bonawitz, et al. Practical secure aggregation for privacy-preserving machine learning CCS 2017
J. Bell, et al. Secure Single-Server Vector Aggregation with (Poly) Logarithmic Overhead CCS 2020



Why not just add continuous Gaussian noise?
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Challenges

e SecAgg operates on a finite group with integer modulo arithmetic
o Need clever data discretization methods that do not inflate the sensitivity
o Cannot use continuous mechanisms
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Challenges

e SecAgg operates on a finite group with integer modulo arithmetic

o Need clever data discretization methods that do not inflate the sensitivity

o Cannot use continuous mechanisms
e Communication efficiency is an important bottleneck in FL

o Do not want privacy to depend on communication cost (SecAgg'’s group size)
e Many discrete mechanisms (e.g. k-RR) are not closed under summation

o Analyzing sums of these mechanisms is difficult, especially in high dimensions
e Discrete mechanisms with finite tails* do not satisfy Rényi or concentrated DP

o Avoids catastrophic privacy failures and allows for tight privacy accounting
e Need mechanisms that can be sampled from exactly and efficiently

*For example, the multi-dimensional binomial mechanism (Agarwal, et al. cpSGD: Communication-efficient
and differentially-private distributed SGD. NeurIPS 2018.) does not achieve Rényi DP



The discrete Gaussian mechanism
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e Discrete Gaussian: discrete analog of continuous Gaussian (#
VARN' rounding Gaussian to nearest ints)
0.21 o Essentially the same privacy-accuracy trade-off as
continuous Gaussian*
o zCDP /Rényi DP for tight compositions in learning contexts
e Problem: sums of discrete Gaussians # discrete Gaussians
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*Clement Canonne, et al. The Discrete Gaussian for Differential Privacy. NeurlPS 2020



The Distributed Discrete Gaussian Mechanism
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The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation. ICML 2021




Data Quantization
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e Scaling: stretching the signal — reduces quantization error
e Random rotation: “flatten” concentrated coordinates — controls the L-inf norm
e Randomized rounding: values stochastically rounded to integers (unbiased)



Data Quantization
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Scaling: stretching the signal — reduces quantization error

Random rotation: “flatten” concentrated coordinates — controls the L-inf norm
Randomized rounding: values stochastically rounded to integers (unbiased)

We can probabilistically bound the L2 norm growth from rounding (helps reduce DP noise):

Proposition 22 (Properties of Randomized Rounding). Let 8 € [0,1), v > 0, and = € R%.
d: client vector dim

|z]|3 + $7%d + \/21og(1/B) - v - (HCCHZ + %’Y\/E)a ~: rounding granularity;

inverse scaling factor

A3 := min 0
<H$H2 + 7\/3) B: rounding bias




Local Noising & (Secure) Sums of Discrete Gaussians
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e FEach client adds local discrete Gaussian noise
e Apply SecAgg on noised client updates with modulo m = 28



Local Noising & (Secure) Sums of Discrete Gaussians
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e FEach client adds local discrete Gaussian noise

e Apply SecAgg on noised client updates with modulo m = 28

e While sums of discrete Gaussians # discrete Gaussian, we

show that they are extremely close:

Theorem 11 (Convolution of two Discrete Gaussians). Let 0,7 >
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Exponentially small with larger
variance; < 10"?if 0.2 = 0,7 = 3.
Noise is added on quantized
client values, so o?is scaled
and this is even smaller



Local Noising & (Secure) Sums of Discrete Gaussians
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e FEach client adds local discrete Gaussian noise
e Apply SecAgg on noised client updates with modulo m = 28

e While sums of discrete Gaussians # discrete Gaussian, we Main Privacy Guarantees
show that they are extremely close: with n clients:
-1
Theorem 11 (Convolution of two Discrete Gaussians). Let o,7 > 3. Let X + N7z(0,0?) o —27 2%%
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Stack Overflow Next Word Prediction

e Next word prediction for question/answer sentences on StackOverflow.com with LSTMs
e ~107 sentences grouped by the N = 342477 SO users/clients
e Fig. 1: DDGauss matches continuous Gaussian as long as the bit-width B is sufficient
e Fig. 2: DDGauss scales (1000 clients per round) and works in low-noise (utility-first) settings
n=100, d=2%, k=4
- - - ' 0.24
>
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© Q
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5 T 0.20 I =%~ Gaussian (z=0.07)
< 0.16 1 2 - Gaussian (z=0.3)
4 DDGauss (B=12) < 0.18 Gaussian (z = 0.5)
3 =@— DDGauss (B=14) E —@— DDGauss (z=0.07)
= 014l -~ DDGauss (B=16) | ‘>° —f&— DDGauss (z=0.3)
' =&~ DDGauss (B=18) 0.16 1 DDGauss (z = 0.5)
=>¢&= Gaussian =>&= No DP/Quantization
5 10 15 20 T 500 1000 1500
SO-NWP, User-level Privacy ¢ SO-NWP (n =1000), Number of Rounds
Fig. 1: Test acc with different € and B (n = 100). Fig. 2: Val acc with with n = 1000 clients, B = 18.

z: approximate noise multiplier aligned on €.

Code: https://github.com/google-research/federated/tree/master/distributed dp



https://github.com/google-research/federated/tree/master/distributed_dp

Our end-to-end solution
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(Symmetric) Skellam Distribution

Difference of two independent Poisson RVs. With mean A and variance y, Ii(2): modified Bessel function
of the first kind

Xi ~ SkAi,,u with P(Xz = k) = e_“Ik_Ai(,u)

Closed under summation: easily switch between central DP & distributed DP (central vs local noise)
Easy to sample: 'np.random.poisson’

e Skellam gets closer to Gaussian as variance increases and we scale the output appropriately

e Skellam Mechanism: for an integer-valued query f(D),

Sko_.(£(D)) = £(D) + Z where Z ~ Skg ,
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(Distributed) Skellam X ~ Skau(X) 2 e P I ()

L1 bound (after quantization)

Gaussian RDP
Al S Az . min(\/a, Ag)

e Main Rényi DP guarantee

For ¢, {5 sensitivities A1, Ay, |central variance u, and order a > 1, € Z,
al?
24
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( 4p? T2 | (higher privacy)
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(Distributed) Skellam X ~ Skau(X) 2 e P I ()

A — Gaussian RDP L1 bound (after quantization)
e Main Renyi DP guarantee N min(\/a, A2)

For /1, ¢5 sensitivities A1, Ao, |central variance 1, and ordera > 1, € Z
F L f2sen it H ’ ’ 2nd term goes to O

al? [ 2a—1)A2+6A; 3A; __ with larger variance
e(a) < o + min 12 * ou (higher privacy or
H large scaling)

e Effect of scaling (scale both noise stddev and sensitivity)

Corollary 4.1 (Scaled Skellam Mechanism). With a scaling factor s € R, the multi-dimensional
Skellam Mechanism is («, €)-RDP with

al? 2 — 1)A2  3A; 3A
e(a) < 2 | min ( 5 3 2 + 12, 1
20 4sp 2832 254

Var = 2 Var = 8 Var = 32 . Var = 128
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Stack Overflow Next Word Prediction

e Next word prediction for questions/answers sentences on StackOverflow.com with LSTMs
e ~107 sentences grouped by N = 342477 users on Stack Overflow
e Left: Test acc across various privacy levels € and bit-widths b
e Right: Validation acc across training rounds
e Skellam matches continuous Gaussian and distributed discrete Gaussian
d =2%%,n=100, T=1600, k=4 User-level Privacy e =10, k=4
' ' : : 0.175 ' ' '
*___*-u——‘ >,
0181 e ] & 0.150
9 f DDGauss (b=12) 5 DDGauss (b=12)
:5 == DDGauss (b=14) 3 0.125 =f= DDGauss (b=14)
) =§~- DDGauss (b=16) | < == DDGauss (b=16)
£ 0167 -9~ DDGauss (b=18) g 0.100 -@- DDGauss (b=18) ]
) Skellam (b=12) B Skellam (b=12)
& —A Skellam (b=14) = —g— Skellam (b=14)
& 014l - Skellam (b=16) | = G075 —A— Skellam (b=16) ]
) =@ Skellam (b=18) > == Skellam (b=18)
=¥ Gaussian 0.050 =) Gaussian ]
5 10 15 20 500 1000 1500
SO-NWP, User-level Privacy ¢ SO-NWP, Number of Rounds

Code: https://qgithub.com/gooqle-research/federated/tree/master/distributed dp



https://github.com/google-research/federated/tree/master/distributed_dp

Better communication efficiency?

To achieve centralized error of O ( %) each client must transmit ) (d log (%)) = (d)its.

n<e



Better communication efficiency?

To achieve centralized error of () (nzigz) each client must transmit ) (d log (nzgz )) =Q (d)its.

d

In the worst-case, each client cannot transmit less than the entire gradient!
)

Count 21 €G
T Sketch |17 Aenc’l(')

e  But, gradients may be near-sparse! Is their sum?
2 & G Zz,- modm | € G
To ] Count |} A () 2 :
Sketch enc,2 AN

e  We can leverage this structure to compress each z; ! . , ) Adec()
Tpp—> Count i Aenc,n(') 5 66

Sketch

——/

e  We will use a count-mean sketch: efficient and linear dimensionality reduction

Count-mean
Decode

IS

Stich, Sebastian U., Jean-Baptiste Cordonnier, and Martin Jaggi. "Sparsified SGD with memory." arXiv preprint arXiv:1809.07599 (2018).

Barnes, Leighton Pate, et al. "rTop-k: A statistical estimation approach to distributed SGD." IEEE Journal on Selected Areas in Information Theory 1.3 (2020): 897-907.
Rothchild, Daniel, et al. "Fetchsgd: Communication-efficient federated learning with sketching." International Conference on Machine Learning. PMLR, 2020.
Haddadpour, Farzin, et al. "Fedsketch: Communication-efficient and private federated learning via sketching." arXiv preprint arXiv:2008.04975 (2020).
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Challenges & Opportunities



Open technical challenges in privacy

e Privacy is multifaceted
o Need to better understand privacy, communication, computation, accuracy, sparsity tradeoffs
o Tensions between privacy, robustness, and fairness are very interesting and remain
underexplored — personalization may play an important role in easing the tensions
o  Cryptographic techniques will play a critical role in strengthening privacy
e Differential privacy provides an incredibly useful tool
o But it often comes at a “hit” in accuracy
o If we have to pay, we'd usually rather pay with more computation (not privacy or accuracy)
o How to choose epsilon remains (and perhaps will always be) an open question
o How to make sense of large-ish epsilons?
o Model auditing techniques for measuring privacy loss (memorization) are complimentary
e Privacy budgeting and management systems are not available
o Can scientists apply complex and repeated learning tasks on the same or similar datasets?
o How do we efficiently track and quantify the privacy loss of a complex system?
e Public data is largely underutilized
o Public data will play a key role in improving privacy-accuracy tradeoffs
o How do we optimally combine public and private datasets during training?



Improving efficiency and effectiveness o

Make trained models

Personalize for each

client
devices

training

model

. Blo et il P Support ML V\{Of‘kﬂOWS like
devices or less resources . debugging and e
per device? yperparameter searches

device?
server

federated ﬁ i\\

development, @
R 4 i

Reduce wall-clock training

time?

smaller?

engineer

model @

deployment

Solve more types of ML
problems (RL, unsupervised
and semi-supervised, active

learning, ...)?




Ensuring fairness and addressing sources of bias -
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Robustness to attacks and failures
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Advances and Open Problems in Federated Learning
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Abstract

Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or
whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service
provider), while keeping the training data decentralized. FL embodies the principles of focused data
collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting
from traditional, centralized machine learning and data science approaches. Motivated by the explosive
growth in FL research, this paper discusses recent advances and presents an extensive collection of open
problems and challenges.

Advances and Open Problems in FL
59 authors from 25 top institutions

arxiv.ora/abs/1912.04977

Foundations and Trends in Machine Learning
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A Field Guide to Federated Optimization
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Abstract

Federated learning and analytics are a distributed approach for collaboratively learning
models (or statistics) from decentralized data, motivated by and designed for privacy protection.
The distributed learning process can be formulated as solving federated optimization problems,
which emphasize communication efficiency, data heterogeneity, compatibility with privacy and
system requirements, and other constraints that are not primary considerations in other problem
settings. This paper provides recommendations and guidelines on formulating, designing,
evaluating and analyzing federated optimization algorithms through concrete examples and
practical implementation, with a focus on conducting effective simulations to infer real-world
performance. The goal of this work is not to survey the current literature, but to inspire
researchers and practitioners to design federated learning algorithms that can be used in various
practical applications.

A Field Guide to Federated Optimization
53 authors from 14 top institutions

arxiv.ora/abs/2107.06917

Tensorflow Federated Implementation

SALIM EL ROUA = 9:56 AM

and 82



https://arxiv.org/abs/2107.06917

Thank you for your time!

Twitter: @KairouzPeter



