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Utilizing data while 
protecting the privacy of 

members.

Mission
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Models and Deployments of Differential Privacy

Global differential 
privacy model

Users

Local differential 
privacy model

Data 
Center

Data 
Application

s
(Dashboard, 
Data APIs, 

ML models)

• Traditional data protection techniques 
are not sufficient to defend data 
privacy

• Differential Privacy ensures data 
learnings are similar with/without a 
single member’s data

Deployments:
- Microsoft
- Google 
- Apple

Deployments:
- 2020 Census
- Microsoft Open Data DP Project 
- Google’s Mobility Reports
- FB’s release of publicly shared URLs
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Initial Discussions

• What teams are interested in releasing aggregates?
• What are the general problems and what solutions would 

be the most applicable?
• What additional constraints are there?
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Key Takeaways

• Existing infrastructure for computing aggregates quickly.
• Want tunable privacy as well as tunable run time.
• Lots of data analytics can be reduced to histograms.
• Labels of the histograms are not always known.
• Typically, only want top-k results
• Want consistent results, see PriPeARL [Kenthapadi,Tran’18].
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Existing Systems for Data Analytics

Top-𝑘′
solver
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Sensitivity of the Query
Query: Top-10 countries with certain skill set?
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Sensitivity of the Query
Query: Top-10 countries with certain skill set?
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User can 
impact only one 

count!

Laplace Mechanism 
[DMNS06]: Add Noise to 

each count for DP
+ 𝐿𝑎𝑝(1/𝜖)

Aggregate Data
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Sensitivity of the Query
Query: Top-10 countries with certain skill set?
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Sensitivity of the Query
Query: Top-10 skills in the Bay Area? 
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Sensitivity of the Query
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User can 
impact many 

counts!

Query: Top-10 skills in the Bay Area? 

Exponential Mechanism [MT07]: 
Sample element 𝑖 with 

probability proportional to 
exp(𝜖 ⋅ 𝑐𝑜𝑢𝑛𝑡!). 

Repeat 10-times
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Sensitivity of the Query

Releasing only elements in top-𝑘
(not their counts) ensures 

𝑘𝜖-DP

Query: Top-10 skills in the Bay Area? 

Exponential Mechanism [MT07]: 
Sample element 𝑖 with 

probability proportional to 
exp(𝜖 ⋅ 𝑐𝑜𝑢𝑛𝑡!). 

Repeat 10-times
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Known Algorithms for Private Data Analytics

ℓ𝟎-Restricted Sensitivity ℓ𝟎-Unrestricted Sensitivity

Algorithm: Laplace Mechanism 
[DMNS‘06]

Algorithm: Exponential 
Mechanism [MT’07]
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Implementing Exp Mech

• Folklore result: Exp Mech = Adding 𝐺𝑢𝑚𝑏𝑒𝑙 *
+

to each count 
and reporting the arg noisy max.

• [DR’19] Can simulate repeated Exponential Mechanisms in 

one-shot this way to get ≈ 𝜖 𝑘 log *
,
, 𝛿 -DP.

• Improves on work from [Dwork, Su, Zhang ’15] and [Garg, Su, 
Zhang ‘21] that adds 𝐿𝑎𝑝𝑙𝑎𝑐𝑒 *

+
to each count and reports 

the 𝑘 largest noisy count elements in one-shot, but with no 
order. See blog post: 

https://differentialprivacy.org/
one-shot-top-k/

https://differentialprivacy.org/one-shot-top-k/
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Known Algorithms for Private Data Analytics

ℓ𝟎-Restricted Sensitivity ℓ𝟎-Unrestricted Sensitivity

Algorithm: Laplace Mechanism 
[DMNS‘06]

Algorithm: Exponential 
Mechanism 

[MT‘07]
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Known Algorithms for Private Data Analytics

ℓ𝟎-Restricted Sensitivity ℓ𝟎-Unrestricted Sensitivity

Algorithm: Known Laplace 
[DMNS‘06]

Algorithm: Known Gumbel
[MT‘07]
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Solving Top-𝑘 subject to DP

• One of the most fundamental problems in exploratory data analytics
• Lots of work in DP on solving top-𝑘

• Local Model of DP (Heavy Hitters)
• Bassily and Smith STOC’15
• Fanti, Pihur, Erlingsson PoPETS’16  
• Bassily, Nissim, Stemmer, Thakurta NIPS’17.

• Global Model of DP
• Bhaskar, Laxman, Smith, Thakurta KDD’10
• Li, Qardaji, Su, Cao VLDB’12
• Zeng, Naughton, Cai VLDB’12
• Lee and Clifton, KDD’14
• Chaudhuri, Hsu, Song  NIPS’14
• Zhu, Kairouz, Sun, McMahan, Li ’19

All require knowing 
structure about the 

data domain 
or need the count of 

every element
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Unknown Domain Setting

• Typically, the domain is unknown or very large and we 
restrict how many elements to consider

• Lots of prior work for Frequent Itemsets, but requires 
knowing structure of the data domain universe.
• Can prune the number of things we need to query.

• Related work requiring full histogram: 
• [Korolova, Kenthapadi, Mishra, Ntoulas ’09] 
• [Wilson, Zhang, Lam, Desfontaines, Simmons-Marengo, Gipson’20]
• DP Set Union [Gopi, Gulhane, Kulkarni, Shen, Shokouhi, Yekhanin ‘20]
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new elements can 
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May return fewer 
than 𝑘 results

Second Attempt – Include a Threshold
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Algorithms for Private Data Analytics

DP 
Algorithms ℓ𝟎-Restricted Sensitivity ℓ𝟎-Unrestricted Sensitivity

Known
Domain

Known Laplace
[DMNS’06]

Known Gumbel
[MT’07]
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Algorithms for Private Data Analytics

DP 
Algorithms ℓ𝟎-Restricted Sensitivity ℓ𝟎-Unrestricted Sensitivity

Known
Domain

Known Laplace
[DMNS’06]

Known Gumbel
[MT’07]

Unknown
Domain

Unknown Laplace
[Durfee, R’19]

Unknown Gumbel
[Durfee, R’19]

More Onboarding
More Results
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What is the Overall Privacy Loss?

• Assume that the 𝑘 in each top-𝑘 query is the same, at most 
𝐿 queries are allowed, and only using Unknown Gumbel.
• Advanced Composition [Dwork, Rothblum, Vadhan ‘10]: 

≈ 𝜖 𝐿𝑘 log "
#
, 𝐿 + 1 𝛿 -DP

• Algorithm can give fewer results than what is asked.
• Is it possible to only pay for what you get?
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Pay-what-you-get Composition [DR’19]

• Assume there is a global budget (𝜖/ , 𝛿/) with 𝜖-parameter 
in each Unknown Gumbel

0 𝑘𝐿

Top-𝑘 Top-𝑘 Top-𝑘 Top-𝑘 Top-𝑘 Top-𝑘

0 𝑘𝐿Total realized 
budget Wasted budgetUnknown Gumbel can be 

analyzed with repeated 
Exponential Mechanisms
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Bounded Range Mechanisms [DR’19]
• Can we improve general DP composition when we restrict 

to using Exp Mech only?
• Don’t rely on black box DP composition.

• Defn: A mechanism 𝑀:𝑋 → 𝑌 is 𝜖-Bounded Range (BR) if for 
any neighbors 𝑥, 𝑥2 ∈ 𝑋 and outcomes 𝑦, 𝑦′ ∈ 𝑌, we have:

34 5 6 78
34 5 6$ 78

≤ 𝑒+ 34 5 6 78$

34 5 6$ 78$

𝜖 −DP Privacy Loss

−𝜖 +𝜖0

𝜖 −BR Privacy Loss

−𝜖 +𝜖0

𝜖
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Bounded Range Mechanisms [DR’19]
• Can we improve general DP composition when we restrict 

to using Exp Mech only?
• Don’t rely on black box DP composition.

• Defn: A mechanism 𝑀:𝑋 → 𝑌 is 𝜖-Bounded Range (BR) if for 
any neighbors 𝑥, 𝑥2 ∈ 𝑋 and outcomes 𝑦, 𝑦′ ∈ 𝑌, we have:

34 5 6 78
34 5 6$ 78

≤ 𝑒+ 34 5 6 78$

34 5 6$ 78$

• Note that 𝜖-BR ⟹ 𝜖-DP and 𝜖-DP ⟹ 2𝜖-BR.
• Lemma [DR’19]: Exp Mech satisfies 𝜖-BR and composing 𝑘∗

of them gives:

≈ 𝜖 :∗

𝟐
log *

,
, 𝛿 -DP

[Cesar, R ‘21] 
𝜖-BR ⟹ 𝜖!/8-zCDP
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Optimal Comp of Exp Mech [Dong,Durfee,R ICML’20]
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Audience Engagement API
• API Product to provide insights on LinkedIn engagement content and 

audience data
• Provides information about member data to external marketing partners
• Built on top of Pinot for fast, real-time data analytics
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Understanding the Task

• Advertiser can interact adaptively with the API
• Differencing attacks are a concern
• Want to provide both real-time analytics and privacy
• Queries are general top-k queries



Audience Engagement API
• For more information, see https://arxiv.org/abs/2002.05839

https://arxiv.org/abs/2002.05839


Labor Market Insights
• Tracking labor market trends is incredibly important especially during this 

pandemic.
• Leverage LinkedIn's Economic Graph to show these trends across different 

regions:
• What employers are hiring the most?
• What jobs are most in demand?
• What are the top skills from these most in demand jobs?

• Global Skilling Event: https://news.microsoft.com/skills/

https://news.microsoft.com/skills/


Labor Market Insights

graph.linkedin.com/insights/labor-market

March 2020 May 2020

https://graph.linkedin.com/insights/labor-market


Labor Market Insights
• For more information, see https://arxiv.org/abs/2010.13981

https://arxiv.org/abs/2010.13981


Career Explorer
• https://linkedin.github.io/career-explorer/#explore
• Helps members discover new occupations based on the skills they have
• Helps members understand how the acquisition of new skills can lead to 

new opportunities.

https://linkedin.github.io/career-explorer/
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Continual Observation

DP 
Algorithms ℓ𝟎-Restricted Sensitivity ℓ𝟎-Unrestricted Sensitivity

Known
Domain

Binary Mechanism 
[Chan, Shi, Song ‘11 and 

Dwork, Naor, Pitassi, Rothblum, Yekhanin ’10]

Sparse Gumbel
[Cardoso, R ’21]

Unknown
Domain

Unknown Base
[Cardoso, R ‘21] Meta Algo



Concluding Remarks
• View privacy as a spectrum, not binary
• Can easily incorporate more privacy into systems that already are DP.
• How to rationalize large privacy loss (e.g. Census)?

• There needs to be more open source attacks.
• Open Research Questions

• How large is the gap between optimal adaptive vs non-adaptive 
composition for exponential mechanisms?

• What about hardness results for some of these bounds?
• How much can ordering impact the overall privacy loss?

• See [Cesar, R’21]



Thank you!


