CS291A Introduction to Differential Privacy
 Fall 2021

 Lecture 1: Course Overview / Privacy Challenges (September 27)

 Lecturer: Yu-Xiang Wang
 Scribes: Dan Qiao

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

1.1 A simple mathematic model

Consider a simple mathematical model, the dataset consists of n individuals. Each person has one secret bit of information from $\{0, 1\}$, i.e. $x = [1, 0, 0, 1, 1, 0, 1, 0, \cdots, 1] \in \{0, 1\}^n$. The adversary can use normalized linear query, i.e. he chooses $q \in \{0, 1\}^n$ to get $\frac{1}{n} \sum_{i=1}^n q_i x_i = \frac{1}{n} q^T x = \frac{1}{n} \langle q, x \rangle$ or an approximate value of this term. We say an algorithm is blatantly non-private if one can reconstruct 90% of the dataset (secret bit vector) using its output.

Definition 1.1. (blatant non-privacy, due to Dinur and Nissim). A mechanism $M : X^n \to Y$ is called blatantly non-private if for every $x \in X^n$, one can use M(x) to compute an $x' \in X^n$, such that x' and xdiffer in at most n/10 coordinates (with high probability over the randomness of M).

The reconstruction attack is to find a dataset that is consistent with the observations. We have k linear queries $q_1, q_2, \dots, q_k \in \{0, 1\}^n, Q = [q_1, \dots, q_k]^T \in \{0, 1\}^{k \times n}$. An algorithm returns answers that are α -accurate, i.e. it returns $y_1, y_2, \dots, y_k \in [0, 1]$, such that for any $i \in [k], |y_i - \frac{1}{n}q_i^T x| \leq \alpha$. The reconstruction attack chooses $x' = argmin_{\tilde{x} \in \{0,1\}^n} max_{i \in [k]} |y_i - \frac{1}{n}q_i^T \tilde{x}|$. Because the true dataset $x \in \{0,1\}^n, max_{i \in [k]} |y_i - \frac{1}{n}q_i^T x'| \leq \alpha$.

1.2 All linear queries with constant error

Any algorithm that answers all 2^n linear queries with constant error implies blatant non-privacy.

Theorem 1.2. (reconstruction from many queries with large error). Let $x \in \{0,1\}^n$. If we are given, for each $q \in \{0,1\}^n$, a value $y_q \in \mathbb{R}$ such that

$$|y_q - \frac{\langle q, x \rangle}{n}| \le \alpha.$$

Then one can use the y_q 's to compute $x' \in \{0,1\}^n$ such that x and x' differ in at most 4α fraction of coordinates.

Proof. Show that for any \tilde{x} , such that $|y_q - \frac{q^T \tilde{x}}{n}| \leq \alpha$ for any $q \in \{0, 1\}^n$, $||\tilde{x} - x||_1 \leq 4\alpha$.

$$\frac{1}{n} \|\tilde{x} - x\|_{1} = \frac{1}{n} \sum_{i=1}^{n} |\tilde{x}_{i} - x_{i}|$$
$$= \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(\tilde{x}_{i} - x_{i} > 0)(\tilde{x}_{i} - x_{i}) + \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(\tilde{x}_{i} - x_{i} < 0)(x_{i} - \tilde{x}_{i}).$$

Let $q \in \{0,1\}^n$ such that $q_i = 1$ iff $\tilde{x}_i - x_i > 0$. Let $\tilde{q} \in \{0,1\}^n$ such that $\tilde{q}_i = 1$ iff $\tilde{x}_i - x_i < 0$.

$$\begin{aligned} \frac{1}{n} \|\tilde{x} - x\|_{1} &= \frac{1}{n} |q^{T} (\tilde{x} - x)| + \frac{1}{n} |\tilde{q}^{T} (\tilde{x} - x)| \\ &\leq |\frac{q^{T} \tilde{x}}{n} - y_{q}| + |\frac{q^{T} x}{n} - y_{q}| + |\frac{\tilde{q}^{T} x}{n} - y_{\tilde{q}}| + |\frac{\tilde{q}^{T} \tilde{x}}{n} - y_{\tilde{q}}| \\ &\leq 4\alpha \end{aligned}$$

The first equation is because of the definition of q and \tilde{q} . The second inequality is because of triangular inequality. The third inequality is because each of the four terms is upper bounded by α .

1.3 O(n) linear queries with $O(\frac{1}{\sqrt{n}})$ error

Theorem 1.3. (reconstruction from few queries with small error). There exists c > 0 and $q_1, \dots, q_n \in \{0,1\}^n$ such that any mechanism that answers the normalized inner-product queries specified by q_1, q_2, \dots, q_n to within error at most c/\sqrt{n} is blatantly non-private.

Proof. Recall that the attack is $x' = argmin_{\tilde{x} \in \{0,1\}^n} max_{i \in [k]} |y_i - \frac{1}{n} q_i^T \tilde{x}|$ and $||y - \frac{1}{n} Qx'||_{\infty} \leq \frac{c}{\sqrt{n}}$, so $\frac{1}{n} ||Qx' - Qx||_{\infty} \leq \frac{2c}{\sqrt{n}}$.

The choice of q_1, \dots, q_n is i.i.d. at random, q_i satisfies that $q_{ij} \sim Ber(0.5)$, i.e. $q_{ij} = 1$ with probability 0.5, $q_{ij} = 0$ with probability 0.5.

It suffices to show that for any \tilde{x} such that $\|\tilde{x} - x\|_1 \ge 0.1n$, with high probability \tilde{x} doesn't satisfy $\frac{1}{n} \|Q\tilde{x} - Qx\|_{\infty} \le \frac{2c}{\sqrt{n}}$. As long as there exists a single query out of $i \in [n]$ such that $\frac{1}{n} |q_i^T(\tilde{x} - x)| > \frac{2c}{\sqrt{n}}$, then \tilde{x} can not possibly be x'.

Let $z = \tilde{x} - x$, then $z_i \in \{-1, 0, 1\}$. $q^T z = \sum_{j=1}^n q_j z_j = 0.5 \# (z_i = 1) - 0.5 \# (z_i = -1) + \sum_{t=1}^{\# (z_i = 1) + \# (z_i = -1)} f_t$, where f_t 's are i.i.d and $f_t = 0.5$ with probability 0.5, $f_t = -0.5$ with probability 0.5.

As n goes to infinity, $\#(z_i = 1) + \#(z_i = -1)$ also goes to infinity, because of C.L.T. (lemma 1.4), the difference between $P[\frac{1}{\sqrt{\#(z_i=1)+\#(z_i=-1)}}\sum_{t=1}^{\#(z_i=1)+\#(z_i=-1)}f_t \le x]$ and $\phi(4x)$ will converge to 0 uniformly, which means the difference between $P[\frac{1}{\sqrt{n}}q^Tz \le x]$ and $P[N(\frac{0.5\#(z_i=1)-0.5\#(z_i=-1)}{\sqrt{n}}, \frac{\#(z_i=1)+\#(z_i=-1)}{4n}) \le x]$ will converge to 0 uniformly. So for n large enough,

$$P[\frac{1}{\sqrt{n}}|q^{T}z| \leq 2c] \leq P[|N(\frac{0.5\#(z_{i}=1)-0.5\#(z_{i}=-1)}{\sqrt{n}},\frac{\#(z_{i}=1)+\#(z_{i}=-1)}{4n})| \leq 2c] + \frac{1}{8} \sum_{i=1}^{n} \frac{1}{2} \sum_{i$$

Assume this normal distribution to be $N(\mu, \sigma^2)$, then the density function is smaller than $\frac{1}{\sqrt{2\pi\sigma}}$ at any point, which means the density function of this normal distribution is smaller than $\sqrt{\frac{20}{\pi}}$ at any point (here $\sigma^2 = \frac{1}{n} Var[q^T z] \ge \frac{1}{40}$). So

$$P[\frac{1}{n}|q^T z| \le \frac{2c}{\sqrt{n}}] = P[\frac{1}{\sqrt{n}}|q^T z| \le 2c]$$
$$\le \sqrt{\frac{20}{\pi}} \times 4c + \frac{1}{8}.$$

We can choose c sufficiently small such that $P[\frac{1}{n}|q^T z| \leq \frac{2c}{\sqrt{n}}] \leq 0.25$ for n large enough.

In this way,

$$\begin{split} P(\tilde{x} \text{ is selected}) &\leq P(max_i | \frac{1}{n} q_i^T \tilde{x} - y_i | \leq \frac{c}{\sqrt{n}}) \\ &\leq P(max_i | \frac{1}{n} q_i^T (\tilde{x} - x) | \leq \frac{2c}{\sqrt{n}}) \\ &\leq 0.25^n \\ &= 2^{-2n}. \end{split}$$

The third inequality holds because $q_i{\rm 's}$ are independent. So

$$P(any \ \tilde{x} \ is \ selected \ such \ that \ \|\tilde{x} - x\|_1 > 0.1n) \le |\{\tilde{x} : \|\tilde{x} - x\|_1 > 0.1n\}| \times P(\tilde{x} \ is \ selected)$$
$$\le 2^n \times 2^{-2n}$$
$$= 2^{-n}$$

The first inequality is because of union bound. The second inequality is because there are at most 2^n possible \tilde{x} 's.

This means with high probability, the attack will output x' such that $||x' - x||_1 \le 0.1n$.

Lemma 1.4. (Lindeberg-Lévy C.L.T., Berry-Esseen C.L.T.) Suppose $\{X_1, \ldots, X_n\}$ is a sequence of *i.i.d.* random variables with $\mathbb{E}[X_i] = \mu$ and $\operatorname{Var}[X_i] = \sigma^2 < \infty$. Then as n approaches infinity, the random variables $\sqrt{n}(\bar{X}_n - \mu)$ converge in distribution to a normal $\mathcal{N}(0, \sigma^2): \sqrt{n}(\bar{X}_n - \mu) \xrightarrow{d} \mathcal{N}(0, \sigma^2)$. In addition, the convergence is uniform in z in the sense that

 $\lim_{n \to \infty} \sup_{z \in \mathbb{R}} \left| \mathbb{P} \left[\sqrt{n} (\bar{X}_n - \mu) \le z \right] - \Phi \left(\frac{z}{\sigma} \right) \right| = 0 .$

1.4 Conclusion

Any algorithm that answers too many questions too accurately will result in a blatant reconstruction of the dataset.

The attacks are not computationally efficient, but efficient attacks exist, via a linear programming relaxation.

$$x' = \operatorname{argmin}_{\tilde{x} \in [0,1]^n} \operatorname{max}_{i \in [k]} | y_i - \frac{1}{n} q_i^T \tilde{x} |.$$