Lecture 1: Course Overview / Privacy Challenges (September 27)

Lecturer: Yu-Xiang Wang
Scribes: Dan Qiao

Note: LaTeX template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

1.1 A simple mathematic model

Consider a simple mathematical model, the dataset consists of n individuals. Each person has one secret bit of information from $\{0,1\}$, i.e. $x=[1,0,0,1,1,0,1,0, \cdots, 1] \in\{0,1\}^{n}$. The adversary can use normalized linear query, i.e. he chooses $q \in\{0,1\}^{n}$ to get $\frac{1}{n} \sum_{i=1}^{n} q_{i} x_{i}=\frac{1}{n} q^{T} x=\frac{1}{n}\langle q, x\rangle$ or an approximate value of this term. We say an algorithm is blatantly non-private if one can reconstruct 90% of the dataset (secret bit vector) using its output.

Definition 1.1. (blatant non-privacy, due to Dinur and Nissim). A mechanism $M: X^{n} \rightarrow Y$ is called blatantly non-private if for every $x \in X^{n}$, one can use $M(x)$ to compute an $x^{\prime} \in X^{n}$, such that x^{\prime} and x differ in at most $n / 10$ coordinates (with high probability over the randomness of M).

The reconstruction attack is to find a dataset that is consistent with the observations. We have k linear queries $q_{1}, q_{2}, \cdots, q_{k} \in\{0,1\}^{n}, Q=\left[q_{1}, \cdots, q_{k}\right]^{T} \in\{0,1\}^{k \times n}$. An algorithm returns answers that are α-accurate, i.e. it returns $y_{1}, y_{2}, \cdots, y_{k} \in[0,1]$, such that for any $i \in[k],\left|y_{i}-\frac{1}{n} q_{i}^{T} x\right| \leq \alpha$. The reconstruction attack chooses $x^{\prime}=\operatorname{argmin}_{\tilde{x} \in\{0,1\}^{n}} \max _{i \in[k]}\left|y_{i}-\frac{1}{n} q_{i}^{T} \tilde{x}\right|$. Because the true dataset $x \in\{0,1\}^{n}, \max _{i \in[k]}\left|y_{i}-\frac{1}{n} q_{i}^{T} x^{\prime}\right| \leq \alpha$.

1.2 All linear queries with constant error

Any algorithm that answers all 2^{n} linear queries with constant error implies blatant non-privacy.
Theorem 1.2. (reconstruction from many queries with large error). Let $x \in\{0,1\}^{n}$. If we are given, for each $q \in\{0,1\}^{n}$, a value $y_{q} \in \mathbb{R}$ such that

$$
\left|y_{q}-\frac{\langle q, x\rangle}{n}\right| \leq \alpha
$$

Then one can use the y_{q} 's to compute $x^{\prime} \in\{0,1\}^{n}$ such that x and x^{\prime} differ in at most 4α fraction of coordinates.

Proof. Show that for any \tilde{x}, such that $\left|y_{q}-\frac{q^{T} \tilde{x}}{n}\right| \leq \alpha$ for any $q \in\{0,1\}^{n},\|\tilde{x}-x\|_{1} \leq 4 \alpha$.

$$
\begin{aligned}
\frac{1}{n}\|\tilde{x}-x\|_{1} & =\frac{1}{n} \sum_{i=1}^{n}\left|\tilde{x}_{i}-x_{i}\right| \\
& =\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left(\tilde{x}_{i}-x_{i}>0\right)\left(\tilde{x}_{i}-x_{i}\right)+\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left(\tilde{x}_{i}-x_{i}<0\right)\left(x_{i}-\tilde{x}_{i}\right)
\end{aligned}
$$

Let $q \in\{0,1\}^{n}$ such that $q_{i}=1$ iff $\tilde{x}_{i}-x_{i}>0$.
Let $\tilde{q} \in\{0,1\}^{n}$ such that $\tilde{q}_{i}=1$ iff $\tilde{x}_{i}-x_{i}<0$.

$$
\begin{aligned}
\frac{1}{n}\|\tilde{x}-x\|_{1} & =\frac{1}{n}\left|q^{T}(\tilde{x}-x)\right|+\frac{1}{n}\left|\tilde{q}^{T}(\tilde{x}-x)\right| \\
& \leq\left|\frac{q^{T} \tilde{x}}{n}-y_{q}\right|+\left|\frac{q^{T} x}{n}-y_{q}\right|+\left|\frac{\tilde{q}^{T} x}{n}-y_{\tilde{q}}\right|+\left|\frac{\tilde{q}^{T} \tilde{x}}{n}-y_{\tilde{q}}\right| \\
& \leq 4 \alpha
\end{aligned}
$$

The first equation is because of the definition of q and \tilde{q}. The second inequality is because of triangular inequality. The third inequality is because each of the four terms is upper bounded by α.

1.3 $\mathrm{O}(\mathbf{n})$ linear queries with $O\left(\frac{1}{\sqrt{n}}\right)$ error

Theorem 1.3. (reconstruction from few queries with small error). There exists $c>0$ and $q_{1}, \cdots, q_{n} \in$ $\{0,1\}^{n}$ such that any mechanism that answers the normalized inner-product queries specified by $q_{1}, q_{2}, \cdots, q_{n}$ to within error at most c / \sqrt{n} is blatantly non-private.

Proof. Recall that the attack is $x^{\prime}=\operatorname{argmin}_{\tilde{x} \in\{0,1\}^{n}} \max _{i \in[k]}\left|y_{i}-\frac{1}{n} q_{i}^{T} \tilde{x}\right|$ and $\left\|y-\frac{1}{n} Q x^{\prime}\right\|_{\infty} \leq \frac{c}{\sqrt{n}}$, so $\frac{1}{n}\left\|Q x^{\prime}-Q x\right\|_{\infty} \leq \frac{2 c}{\sqrt{n}}$.
The choice of q_{1}, \cdots, q_{n} is i.i.d. at random, q_{i} satisfies that $q_{i j} \sim \operatorname{Ber}(0.5)$, i.e. $q_{i j}=1$ with probability 0.5 , $q_{i j}=0$ with probability 0.5 .
It suffices to show that for any \tilde{x} such that $\|\tilde{x}-x\|_{1} \geq 0.1 n$, with high probability \tilde{x} doesn't satisfy $\frac{1}{n}\|Q \tilde{x}-Q x\|_{\infty} \leq \frac{2 c}{\sqrt{n}}$. As long as there exists a single query out of $i \in[n]$ such that $\frac{1}{n}\left|q_{i}^{T}(\tilde{x}-x)\right|>\frac{2 c}{\sqrt{n}}$, then \tilde{x} can not possibly be x^{\prime}.
Let $z=\tilde{x}-x$, then $z_{i} \in\{-1,0,1\} \cdot q^{T} z=\sum_{j=1}^{n} q_{j} z_{j}=0.5 \#\left(z_{i}=1\right)-0.5 \#\left(z_{i}=-1\right)+\sum_{t=1}^{\#\left(z_{i}=1\right)+\#\left(z_{i}=-1\right)} f_{t}$, where f_{t} 's are i.i.d and $f_{t}=0.5$ with probability $0.5, f_{t}=-0.5$ with probability 0.5 .
As n goes to infinity, $\#\left(z_{i}=1\right)+\#\left(z_{i}=-1\right)$ also goes to infinity, because of C.L.T. (lemma 1.4), the difference between $P\left[\frac{1}{\sqrt{\#\left(z_{i}=1\right)+\#\left(z_{i}=-1\right)}} \sum_{t=1}^{\#\left(z_{i}=1\right)+\#\left(z_{i}=-1\right)} f_{t} \leq x\right]$ and $\phi(4 x)$ will converge to 0 uniformly, which means the difference between $P\left[\frac{1}{\sqrt{n}} q^{T} z \leq x\right]$ and $P\left[N\left(\frac{0.5 \#\left(z_{i}=1\right)-0.5 \#\left(z_{i}=-1\right)}{\sqrt{n}}, \frac{\#\left(z_{i}=1\right)+\#\left(z_{i}=-1\right)}{4 n}\right) \leq x\right]$ will converge to 0 uniformly. So for n large enough,

$$
P\left[\frac{1}{\sqrt{n}}\left|q^{T} z\right| \leq 2 c\right] \leq P\left[\left|N\left(\frac{0.5 \#\left(z_{i}=1\right)-0.5 \#\left(z_{i}=-1\right)}{\sqrt{n}}, \frac{\#\left(z_{i}=1\right)+\#\left(z_{i}=-1\right)}{4 n}\right)\right| \leq 2 c\right]+\frac{1}{8}
$$

Assume this normal distribution to be $N\left(\mu, \sigma^{2}\right)$, then the density function is smaller than $\frac{1}{\sqrt{2 \pi} \sigma}$ at any point, which means the density function of this normal distribution is smaller than $\sqrt{\frac{20}{\pi}}$ at any point (here $\sigma^{2}=\frac{1}{n} \operatorname{Var}\left[q^{T} z\right] \geq \frac{1}{40}$). So

$$
\begin{aligned}
P\left[\frac{1}{n}\left|q^{T} z\right| \leq \frac{2 c}{\sqrt{n}}\right] & =P\left[\frac{1}{\sqrt{n}}\left|q^{T} z\right| \leq 2 c\right] \\
& \leq \sqrt{\frac{20}{\pi}} \times 4 c+\frac{1}{8}
\end{aligned}
$$

We can choose c sufficiently small such that $P\left[\frac{1}{n}\left|q^{T} z\right| \leq \frac{2 c}{\sqrt{n}}\right] \leq 0.25$ for n large enough.

In this way,

$$
\begin{aligned}
P(\tilde{x} \text { is selected }) & \leq P\left(\max _{i}\left|\frac{1}{n} q_{i}^{T} \tilde{x}-y_{i}\right| \leq \frac{c}{\sqrt{n}}\right) \\
& \leq P\left(\max _{i}\left|\frac{1}{n} q_{i}^{T}(\tilde{x}-x)\right| \leq \frac{2 c}{\sqrt{n}}\right) \\
& \leq 0.25^{n} \\
& =2^{-2 n}
\end{aligned}
$$

The third inequality holds because q_{i} 's are independent. So

$$
\begin{aligned}
P\left(\text { any } \tilde{x} \text { is selected such that }\|\tilde{x}-x\|_{1}>0.1 n\right) & \leq\left|\left\{\tilde{x}:\|\tilde{x}-x\|_{1}>0.1 n\right\}\right| \times P(\tilde{x} \text { is selected }) \\
& \leq 2^{n} \times 2^{-2 n} \\
& =2^{-n}
\end{aligned}
$$

The first inequality is because of union bound. The second inequality is because there are at most 2^{n} possible \tilde{x} 's.
This means with high probability, the attack will output x^{\prime} such that $\left\|x^{\prime}-x\right\|_{1} \leq 0.1 n$.
Lemma 1.4. (Lindeberg-Lévy C.L.T., Berry-Esseen C.L.T.) Suppose $\left\{X_{1}, \ldots, X_{n}\right\}$ is a sequence of i.i.d. random variables with $\mathbb{E}\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left[X_{i}\right]=\sigma^{2}<\infty$. Then as n approaches infinity, the random variables $\sqrt{n}\left(\bar{X}_{n}-\mu\right)$ converge in distribution to a normal $\mathcal{N}\left(0, \sigma^{2}\right): \sqrt{n}\left(\bar{X}_{n}-\mu\right) \xrightarrow{d} \mathcal{N}\left(0, \sigma^{2}\right)$.
In addition, the convergence is uniform in z in the sense that
$\lim _{n \rightarrow \infty} \sup _{z \in \mathbb{R}}\left|\mathbb{P}\left[\sqrt{n}\left(\bar{X}_{n}-\mu\right) \leq z\right]-\Phi\left(\frac{z}{\sigma}\right)\right|=0$.

1.4 Conclusion

Any algorithm that answers too many questions too accurately will result in a blatant reconstruction of the dataset.
The attacks are not computationally efficient, but efficient attacks exist, via a linear programming relaxation.

$$
x^{\prime}=\operatorname{argmin}_{\tilde{x} \in[0,1]^{n}} \max _{i \in[k]}\left|y_{i}-\frac{1}{n} q_{i}^{T} \tilde{x}\right| .
$$

