
CS291A Introduction to Differential Privacy Fall 2021

Lecture 10: Objective Perturbation (October 27)
Lecturer: Yu-Xiang Wang Scribe: Rachel Redberg

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They
may be distributed outside this class only with the permission of the Instructor.

Recap: Last Lecture

Posterior sampling mechanism
Posterior sampling (connected to Bayesian learning, i.e. starting with a prior and updating it) gives us pri-
vacy almost for free – it satisfies differentially privacy without having to make any big changes to the algorithm.

Statistical Jargons

• Data space (x1, y1), . . . , (xn, yn) ∈ X × Y = Z

◦ This data representation with features x and labels y is common in supervised learning. We
assume each data point (xi, yi) is drawn i.i.d. from some unknown distribution D supported on
the feature and label spaces. By just calling the dataspace Z we can also generalize this framework
to unsupervised learning.

• Hypothesis class H

◦ Abstract space that describes a family of classifiers (problem of learning is to find the best
hypothesis h∗ in the hypothesis class).

• Loss function ℓ(h, (x, y))

◦ Measures how well the hypothesis h matches the data (x, y), e.g. 0-1 loss measures whether how
many mistakes a classifier makes.

• Risk R(h) = E(x,y)∼D[ℓ(h, (x, y))]

◦ Typically the goal of learning is to minimize the risk, in other words find h∗ = argminh∈H R(h).
But we can’t really do this in practice because we only have finitely many data points n.

• Empirical risk R̂n(h) =
1
n

∑n
i=1 ℓ(h, (xi, yi))

◦ ”Hat” denotes it’s a statistical estimate of the risk, in this case an average over the samples.
The weaker but more practical goal of learning is to minimize the empirical risk. Performance is
measured by bounding the excess risk: R(A(Data))−R(h∗) ≤ ϵ. Excess risk is a measure of how
much more risk your algorithm is suffering compared to that of the optimal h∗.

• Realizable setting: R(h∗) = 0, can find an h∗ that classifies all data points perfectly.

• Agnostic setting doesn’t make this assumption.

10-1

10-2 Lecture 10: Objective Perturbation

Learning with Differential Privacy: Finite Hypothesis Class

When the hypothesis class is finite, the utility theorem for the exponential mechanism (EM) gives us a good

bound on the excess risk R(ĥEM)−R(h∗) of the exponential mechanism:

Excess risk ≤
√

log(|H|/β)
n

+
log(|H|/β)

nϵ
(Agnostic)

Excess risk ≤ log(|H|/β)
n

+
log(|H|/β)

nϵ
(Realizable)

Note that the utility function of the exponential function is the negative of the empirical risk. We can use the
uniform convergence theorem to connect the results bounding the empirical risk of the exponential mechanism,
R̂(ĥEM)−min

h∈H
R̂(h), with the results on the minimum risk of ERM: R(ĥERM)−R(h∗).

Some things to observe:

• The first term is the minimum excess risk that we need to incur even without privacy requirements; we
derived this bound on the statistical error of ERM in Lecture 9 with a Hoeffding-based analysis.

• The second term comes from adding noise via the exponential mechanism satisfying ϵ-DP.

• β describes the probability that the bound on utility/excess risk fails to hold, and is close to 0.

• For reasonable choices of ϵ (e.g. ϵ > 1√
n
), the second term (additional risk coming from differential

privacy) goes to 0 as n → ∞ faster than the first term (minimum excess risk coming from statistical
error) does, meaning that asymptotically, requiring differential privacy does not hurt the performance
of the model!

Learning with Differential Privacy: Continuous Hypothesis Class
(Bounded VC Dimension)

VC dimension characterizes the sample complexity of a learning problem, and is used to measure the ”size” of
a hypothesis class even when the hypothesis class is infinite – roughly speaking, VC dimension of H ≈ log |H|.

Unfortunately, no ϵ-DP learner with finite ϵ can learn even basic problems (e.g. VC dimension = 1) for
continuous hypothesis classes.

The problem of learning a threshold function has VC dimension 1. Below, we’ll sketch a ”packing lower
bound” argument showing that no ϵ-DP algorithm A with finite ϵ can learn the VC class – i.e., there is no
DP algorithm A whose performance (measured by excess risk) is any better than trivial.

Problem Set Up

• Data space X = [0, 1] is a line segment on R.

• Label space Y = {0, 1} is binary.

• The hypothesis class H is the family of threshold functions h ∈ [0, 1] given by h ∈ H : h(x) = 1(x ≥ h).

Problem Goal Show for any finite ϵ < ∞, there’s no ϵ-DP algorithm A such that for all datasets Z,
E[R(A(Z))−R(h∗)] < 0.45. (This is in the realizable setting, so R(h∗) = 0.)

Lecture 10: Objective Perturbation 10-3

Proof Idea Define distributions D1, D2, . . . , Dk with disjoint support such that A is ”successful” on
D2, . . . , Dk and then show this implies that A ”fails” on D1.

Define ”success” as: for Zi ∼ Di, E[R̂(A(Zi))] < 0.45. (Note the expectation is over the coin flips of A.)

Proof Steps Consider datasets of size n.

• Divide X = [0, 1] into k small bins each with width η = e−ϵn. Therefore k = eϵn so that kη = 1.

• Define each distribution Di with support in bin i. In particular, if the midpoint of bin i is hi, then each
Di is a uniform distribution over [hi − 1

3η, hi − 1
3η] where data points in [hi − 1

3η, hi] are classified as
”-” (y = 0) and data points in [hi, hi +

1
3η] are classified as ”+” (y = 1).

• Consider Zi ∼ Dn
i , i.e. Zi is n datapoints sampled i.i.d. from Di. For algorithm A to be ”successful”

on Di, we want E[R̂(A(Zi))] ≤ 0.45.

• Since each Zi is sampled from a uniform distribution Di, we expect on average that ≈ 1
2 of its datapoints

are in [hi − 1
3η, hi] and classified as ”-”, and the other half are in [hi, hi +

1
3η]. Therefore if algorithm A

outputs a threshold function outside of either of these regions (meaning all points will be classified as
”-” or all points will be classified as ”+”), on average about half of the points will be misclassified.

• Assume A ”succeeds” on D2, . . . , Dk. Then E[R̂(A(Zi))] ≤ 0.45.
This means Pr

[
A(Zi) ∈

[
hi − 1

3η, hi +
1
3η
]]

> 0.9 for i = 2, . . . , k, because otherwise with probability
> 0.1, the threshold function outputted by A would misclassify half of the data points on average and
the expected error would be greater than 0.9× 0.5 = 0.45.

• If we can show Pr
[
A(Z1) /∈ [hi − 1

3η, hi +
1
3η]
]
> 0.9, then we can think of it as with probability at

least 0.9, the threshold function learned by A will on average classify half of the data points incorrectly.
So we’d then have E[R̂(A(Zi))] > 0.9× 0.5 = 0.45 and we would be done.

• We can do show the above by

(1) observing that {x ∈ X : x /∈ [h1 − 1
3η, h1 +

1
3η]} ⊃

k⋃
i=2

[
hi − 1

3η, hi +
1
3η
]

(2) observing that for i ∈ {2, 3, . . . , k}, Z1 and Zi are disjoint and therefore differ by n data points.
We can then apply group privacy.

(3) our assumption that A ”succeeds” on D2, . . . , Dk and our choice of k = eϵn.

Then

Pr

[
A(Z1) /∈

[
h1 −

1

3
η, h1 +

1

3
η
]]

≥
k∑

i=2

Pr

[
A(Z1) ∈

[
hi −

1

3
η, hi +

1

3
η
]]

(1)

≥
k∑

i=2

e−ϵnPr

[
A(Zi) ∈

[
hi −

1

3
η, hi +

1

3
η
]]

(2)

≥ e−ϵn × 0.9 = ke−ϵn × 0.9 = 0.9, (3)

meaning E[R̂(A(Z1))] > 0.45.

Convex Optimization Basics

Why do we care about convexity? Convex functions define a familiy of computationally efficient optimization
problems with a unique minimizer and a way to tie local information (gradient at optimal solution is 0) to
global information (what is the argmin).

10-4 Lecture 10: Objective Perturbation

Definition A function f is convex iff for all x, y, 0 ≤ α ≤ 1, we have f(αx+ (1−α)y) ≤ αf(x) + (1−α)f(y).

If f ′ exists, we can use an alternative definition of convexity based on first-order conditions:

A function f is convex iff for all x, y, we have f(y) ≥ f(x) + ⟨∇f(x), y − x⟩.

Strongly convex A function f is strongly convex iff for all x, y, we have

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ λ

2
||y − x||22.

First-order optimality condition states that at the minimizer x∗ of f and nowhere else, the gradient of f is 0:

x∗ ∈ argmin
x

f(x) iff ∇f(x∗) = 0.

Lipschitz constant of a function f is L-Lipschitz if for all x, y, f(x)− f(y) ≤ L||x− y||2.

Smoothness constant of a function f is β-smooth if for all x, y, f(y) ≤ f(x) + ⟨y − x,∇f(x)⟩+ β
2 ||y − x||22.

Note the connection between the definitions for β-smoothness and λ-strongly convex – β-smoothness says
there is a quadratic upper bound on f and λ-strongly convex says there is a quadratic lower bound on f .

Output Perturbation

Idea: if we calculate the global sensitivity of the minimizer, we can achieve (ϵ, δ)-DP just by applying the
standard Laplace or Gaussian mechanisms to add noise to the output.

However, we need to add regularization λ
2 ||θ||

2
2 or else the sensitivity could be unbounded and won’t satisfy

ϵ-DP for any finite ϵ!

Output Perturbation :
Sample b ∼ N (0, σ2Id).

Output θ̂P := argmin
θ

(
L(θ) + λ

2 ||θ||
2
2

)
+ b.

Objective Perturbation

Outputs the minimizer of a perturbed objective function by adding linear noise to the objective.

Objective Perturbation (ObjPert):
Sample b ∼ N (0, σ2Id).

Output θ̂P := argmin
θ

(
L(θ) + λ

2 ||θ||
2
2 + bT θ

)
.

In essence: output perturbation minimizes then perturbs, objective perturbation perturbs then minimizes.

Lecture 10: Objective Perturbation 10-5

Privacy Analysis of Output Perturbation without regularization

Let’s first näıvely try to analyze an un-regularized version of output perturbation, given by:

Output Perturbation (without regularization):
Sample b ∼ N (0, σ2Id).

Output θ̂P := argmin
θ

L(θ) + b.

We want to calculate the global L2-sensitivity max
x,x′

||θ̂P (x)− θ̂P (x′)||2 of the above.

Let x, x′ differ by one individual’s datapoint according to the add/remove definition of DP. We’ll assume
w.l.o.g. that x′ contains an additional datapoint, and write

L(θ) =

n∑
i=1

ℓi(θ) when the dataset is x,

L(θ) =

n∑
i=1

ℓi(θ) + ℓ(θ) when the dataset is x′.

Define

θ∗ = argmin
θ

n∑
i=1

ℓi(θ),

θ̃∗ = argmin
θ

n∑
i=1

ℓi(θ) + ℓ(θ).

Therefore θ∗ is the minimizer when the dataset is x, and θ̃∗ is the minimizer when the dataset is x′.

First-order optimality conditions then tell us that

n∑
i=1

∇ℓi(θ
∗) = 0,

n∑
i=1

∇ℓi(θ̃
∗) +∇ℓ(θ̃∗) = 0.

We can then do a Taylor expansion around θ∗. By Taylor’s theorem, we know there exists v ∈ [θ∗, θ̃∗] (on the
line segment between θ∗ and θ̃∗) such that

n∑
i=1

∇ℓi(θ̃
∗) =

n∑
i=1

∇ℓi(θ
∗)︸ ︷︷ ︸

=0

+

n∑
i=1

∇2ℓi(v) · (θ̃∗ − θ∗).

Then setting vector b :=
n∑

i=1

∇ℓi(θ̃
∗), matrix A :=

n∑
i=1

∇2ℓi(v), we have the equation A · (θ̃∗ − θ∗) = b and can

solve for (θ̃∗ − θ∗) = A−1b. But we haven’t made any assumptions about the loss function and so A could
very well be nearly singular or not invertible at all – meaning that the difference between θ∗ and θ̃∗ could be
arbitrarily large, and the global sensitivity is unbounded!

10-6 Lecture 10: Objective Perturbation

Let’s try making some additional assumptions (i.e. adding regularization so we know the objective function
is λ-strongly convex) so that we can bound the global sensitivity.

Privacy Analysis of Output Perturbation (this time, with bounded sensitivity!)

We’ll now consider the regularized objective function:

J(θ) =

n∑
i=1

ℓi(θ) +
λ

2
||θ||22

= L(θ) +
λ

2
||θ||22.

Note that J(θ) is now λ-strongly convex due to the regularization. We will also assume that ℓ(θ) is L-Lipschitz.

The minimizers when the dataset is x and when the dataset is x′ are given by

f(x) = θ∗λ = argmin
θ

n∑
i=1

ℓi(θ) +
λ

2
||θ||22.

f(x′) = θ̃∗λ = argmin
θ

n∑
i=1

ℓi(θ) + ℓ(θ) +
λ

2
||θ||22.

Now that we have added regularization, the function we are minimizing is λ-strongly convex. So applying the
definition of strong convexity, we get

L
(
θ̃∗λ
)
+

λ

2

∣∣∣∣θ̃∗λ∣∣∣∣22 ≥ L
(
θ∗λ
)
+

λ

2

∣∣∣∣θ∗λ∣∣∣∣22 + ⟨∇J(θ∗λ)︸ ︷︷ ︸
=0⃗

, θ̃∗λ − θ∗λ⟩+
λ

2

∣∣∣∣θ̃∗λ − θ∗λ
∣∣∣∣2
2

when the dataset is x. When the dataset is x′, we have:

L
(
θ∗λ
)
+ ℓ
(
θ∗λ
)
+

λ

2

∣∣∣∣θ∗λ∣∣∣∣22 ≥ L
(
θ̃∗λ
)
+ ℓ(θ̃∗λ) +

λ

2

∣∣∣∣θ̃∗λ∣∣∣∣22 + ⟨∇J(θ̃∗λ) +∇ℓ(θ̃∗λ)︸ ︷︷ ︸
=0⃗

, θ̃∗λ − θ∗λ⟩+
λ

2

∣∣∣∣θ̃∗λ − θ∗λ
∣∣∣∣2
2

After adding up each side of these two inequalities above, cancelling out terms, and applying Lipschitz-
smoothness:

λ||θ∗λ − θ̃∗λ||22 ≤ ℓ(θ∗λ)− ℓ(θ̃∗λ) ≤ L||θ∗λ − θ̃∗λ||22.

So

||θ∗λ − θ̃∗λ||22 ≤ L

λ
.

Since this applies to all neighboring datasets, the above bound gives us the global sensitivity ∆2 of output
perturbation. Now we can apply the Gaussian mechanism by calibrating noise to ∆2 and adding it to the
optimal solution θ∗λ.

Utility Analysis of Output Perturbation

To measure how well we can minimize the loss function under output perturbation, we will define the utility
as L(θ̂P)− L(θ∗), where θ̂P is the differentially private output and θ∗ the true minimizer.

The two main sources of error are

Lecture 10: Objective Perturbation 10-7

1. Regularization – adding the λ
2 ||θ||

2
2 term means that θ∗λ (minimizer of the regularized objective) differs

from θ∗ (the minimizer without regularization).

2. Noise added due to DP.

We can decompose the expression for utility as follows:

L(θ̂P)− L(θ∗) = L(θ̂P)− L(θ∗λ) + L(θ∗λ)− L(θ∗),

where θ̂P = θ∗λ +N (0, σ2Id).

We’ve assumed that ℓ(θ) is β-smooth, so L(θ) + λ
2 ||θ||

2
2 =

n∑
i=1

ℓi(θ) +
λ
2 ||θ||

2
2 is nβ + λ-smooth and we can

state the following:

L(θ̂P) +
λ

2
||θ̂P ||22 ≤ L(θ∗λ) +

λ

2
||θ∗λ||22 +

nβ + λ

2
||θ̂P − θ∗||22.

Note that θ̂P − θ̂∗ = N (0, σ2Id) (the noise). Since we add i.i.d. Gaussian noise to each coordinate, we can
get a high-probability bound by applying a sub-Gaussian tail bound to each coordinate and then taking a
union bound over the d coordinates.

In particular, for k ∈ {1, . . . , d}, (θ̂P − θ∗λ)i = N (0, σ2) ≤ σ
√
2 log(d/ρ) with probability 1 − ρ

d . A union

bound tells us that Pr
[⋃d

i=1(θ̂
P − θ∗)i > t

]
≤
∑d

i=1 Pr
[
(θ̂P − θ∗)i > t

]
. So with probability 1− ρ, we have

that ||θ̂P − θ∗λ||2 ≤ σ
√
d
√
2 log(d/ρ), and so

||θ̂P − θ∗λ||22 ≤ 2dσ2 log(d/ρ).

Then rearranging terms and applying the above bound, we get

L(θ̂P)− L(θ∗λ) ≤
λ

2
||θ∗λ||22 −

λ

2
||θ̂P ||22 +

nβ + λ

2
· 2dσ2 log(d/ρ).

Then by our choice of σ = ∆2

ϵ

√
2 log(1.25/δ) = L

λϵ

√
2 log(1.25/δ), we have

L(θ̂P)− L(θ∗λ) ≤
λ

2
||θ∗λ||22 −

λ

2
||θ̂P ||22 + 2(nβ + λ) · d L2

λ2ϵ2
log(1.25/δ) log(d/ρ).

Now we can choose λ optimally depending on whether or not λ ≤ nβ. Typically nβ > λ except for very
smooth (almost linear) loss functions.

We could also relax the β-smoothness assumption to a Lipschitz assumption, with slightly weaker utility
guarantees.

Privacy Analysis of Objective Perturbation

ObjPert satisfies (ϵ, δ)-DP for δ > 0 with

ϵ ≈ d log

(
1 +

β

λ

)
+

L2

2σ2
+O

(
L

σ

√
2 log

(
1

δ

))
.

L is a constant such that ||∇ℓ(·)||2 ≤ L everywhere, β is a bound on the maximum eigenvalue of the Hessian
such that ∇2ℓ(·) ≺ βId, σ is the scale of the noise added, λ is the level of regularization, and d is the dimension
of the data points.

10-8 Lecture 10: Objective Perturbation

The above bound can be obtained by calculating the privacy loss random variable using a bijection between
the noise vector b and the output θ̂P . We can do a ”change-of-variables” defined by the Jacobian matrix of
the mapping between b and θ̂P to directly calculate the probability density function of θ̂P , then tidy things
up with some algebra and an application of the matrix determinant lemma for rank-1 updates.

We use D±z to mean the dataset obtained by adding or removing z. For completeness, here is the formal
proof of the privacy analysis:

Lemma 10.1 (”Change-of-variables” for density functions). Let g : Rd → Rd be a bijective and differentiable
function, and let X,Y be continuous random variables in Rd related by the transformation Y = g(X). Then
the probability density of Y is

fY (y) = fX(g−1(y))

∣∣∣∣det [∂g−1(y)

∂y

]∣∣∣∣ ,
with

[
∂g−1(y)

∂y

]
denoting the d× d Jacobian matrix of the mapping X = g−1(Y).

First-order conditions tell us that

b(θ̂P ;D) = −
(
∇L̂(θ̂P ;D) +∇r(θ̂P) + λθ̂P

)
. (10.1)

Then taking the gradient of the noise vector, we have

∇b(θ̂P ;D) = −
(
∇2L̂(θ̂P ;D) +∇2r(θ̂P) + λId

)
. (10.2)

Let b ∼ N (0, σ2Id), and denote ν(·) as the probability density function of the normal distribution: i.e., the

density at b is ν(b;σ) ∝ e−
||b||22
2σ2 . Then since the objective function J(θ;D) is strictly convex in θ (implying

that the mapping between θ̂P and b is bijective and monotonic), by Lemma 10.1 we can write

log
Pr
(
A(D) = θ̂P

)
Pr
(
A(D±z) = θ̂P

) = log

∣∣∣det(∇b(θ̂P ;D)
)∣∣∣∣∣∣det(∇b(θ̂P ;D±z)
)∣∣∣ ν(b(θ̂P ;D);σ)

ν(b(θ̂P ;D±z);σ)

= log

∣∣∣det(∇b(θ̂P ;D)
)∣∣∣∣∣∣det(∇b(θ̂P ;D±z)
)∣∣∣ + log

e−
1

2σ2 ||b(θ̂P ;D)||22

e−
1

2σ2 ||b(θ̂P ;D±z)||22

= log

∣∣∣det(∇b(θ̂P ;D)
)∣∣∣∣∣∣det(∇b(θ̂P ;D±z)
)∣∣∣︸ ︷︷ ︸

(∗)

+
1

2σ2

(
||b(θ̂P ;D±z)||22 − ||b(θ̂P ;D)||22

)
︸ ︷︷ ︸

(∗∗)

.

Dealing first with the term (*), we observe that ∇b(θ̂P ;D±z) = ∇b(θ̂P ;D)∓∇2ℓ(θ̂P ; z). The notation ”∓”

means to subtract if z /∈ D, and add if z ∈ D. Using the eigendecomposition ∇2ℓ(θ̂P ; z) =
∑d

k=1 λkuku
T
k and

recursively applying the matrix determinant lemma, we have

Lecture 10: Objective Perturbation 10-9

∣∣∣det(∇b(θ̂P ;D±z)
)∣∣∣ = ∣∣∣det(∇b(θ̂P ;D)∓∇2ℓ(θ̂P ; z)

)∣∣∣
=
∣∣∣det(∇b(θ̂P ;D)∓

d∑
k=1

λkuku
T
k

)∣∣∣
=
∣∣∣det(∇b(θ̂P ;D)∓

d−1∑
k=1

λkuku
T
k ∓ λdudu

T
d

)∣∣∣
=
∣∣∣det(∇b(θ̂P ;D)∓

d−1∑
k=1

λkuku
T
k

)∣∣∣(1∓ λdu
T
d

(
∇b(θ̂P ;D)∓

d−1∑
k=1

λkuku
T
k

)−1
ud

)
= . . .

=
∣∣∣det(∇b(θ̂P ;D)

)∣∣ d∏
j=1

(
1∓ µj

)
,

where µj = λju
T
j

(
∇b(θ̂P ;D)∓

∑j−1
k=1 λkuku

T
k

)−1

uj . Therefore,

(∗) = log

∣∣∣det(∇b(θ̂P ;D)
)∣∣∣∣∣∣det(∇b(θ̂P ;D±z)
)∣∣∣

= log

∣∣∣det(∇b(θ̂P ;D)
)∣∣∣∣∣∣det(∇b(θ̂P ;D)

)∣∣ d∏
j=1

(
1∓ µj

)
= log

1
d∏

j=1

(
1∓ µj

)
= − log

d∏
j=1

(
1∓ µj

)
.

We’ll handle the second term (**) next. We have that

(∗∗) = 1

2σ2

(
||b(θ̂P ;D±z)||22 − ||b(θ̂P ;D)||22

)
=

1

2σ2

[
∓∇ℓ(θ̂P ; z)

][
2b(θ̂P ;D)∓∇ℓ(θ̂P ; z)

]
= ± 1

σ2

[
∇J(θ̂P ;D)T∇ℓ(θ̂P ; z)

]
+

1

2σ2
||∇ℓ(θ̂P ; z)||22.

10-10 Lecture 10: Objective Perturbation

The rest of the proof follows by adding (*) and (**) and using the following bounds for each term (for GLMs):

• log(1 + f ′′(·)µ(·)) ≤ log(1 + β
λ).

• ||∇ℓ(·)||2 ≤ L.

• ∇ℓ(·)T b(·) ≤ σL
√
2 log(2/δ).

