
CS292A Introduction to Differential Privacy Fall 2021

Lecture 12: NoisyGD and NoisySGD (November 12)
Lecturer: Yu-Xiang Wang Scribes: Xuandong Zhao

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They
may be distributed outside this class only with the permission of the Instructor.

12.1 Noisy Gradient Descent Mechanism

12.1.1 Algorithm

θt+1 = θt + ηt

[
n∑
i=1

∇`i(θt) +N (0, σ2Id)

]
, for t = 1, 2, . . . , T (12.1)

As shown in Equation 12.1, the NoisyGD mechanism is straightforward, which simply adds gaussian noise to
the gradient. Note that

∑n
i=1∇`i(θt) is ∇f(θt), and N (0, σ2Id) is the noise.

If we set gt =
∑n
i=1∇`i(θt) + N (0, σ2Id), the expected value of gt is E [gt|θt] = ∇f(θt) and variance is

E [‖gt − E[gt]‖θt] = dσ2.

12.1.2 Privacy analysis

Global sensitivity of NoisyGD is L, because `i is L-lipschitz. Each iteration of NoisyGD is ρ-zCDP with

ρ = L2

2σ2 . Since NoisyGD is a composition of T Gaussian mechanisms, the whole algorithm of NoisyGD is

Tρ-zCDP with ρtotal = TL2

2σ2 . And we can get that σ2

T = L2

2ρ , T = 2ρσ2

L2 .

12.2 Convergence of NoisyGD

12.2.1 Nonconvex / smooth problems

Lemma 12.1. (Descent Lemma): For the NoisyGD update: xt+1 = xt − ηtĝt in smooth/nonconvex case, the
convergence guarantee is:

1

T

T∑
t=1

E
[
‖∇f (xt)‖2

]
≤ 2 (f (x1)− f∗)

Tη
+ ηnβdσ2

12-1

12-2 Lecture 12: NoisyGD and NoisySGD (November 12)

Proof. Since f(x) is smooth and use update rule,

f(xt+1) ≤ f(xt) + 〈xt+1 − xt,∇f(xt)〉+
β‖xt+1 − xt‖2

2

= f(xt)− ηt〈ĝt,∇f(xt)〉+
β

2
η2t ‖ĝt‖2

We assume E [ĝt|xt] = ∇f(xt) and E [‖ĝt − E[ĝt]‖|xt] ≤ dσ2. If we set constant learning rate ηt = η < 1
β and

take conditional expectation on both side,

E [f(xt+1)|xt] ≤ f(xt)− ηt‖∇f(xt)‖2 +
β

2
η2t
(
‖∇f(xt)‖2 + dσ2

)
= f(xt)− η‖∇f(xt)‖2 +

η

2
‖∇f(xt)‖2 +

η2βσ2d

2

= f(xt)−
η

2
‖∇f(xt)‖2 +

η2βσ2d

2

Take full expectation on both side,

E [f(xt+1)] ≤ E[f(xt)]−
η

2
E
[
‖∇f(xt)‖2

]
+
η2βσ2d

2

Then we add up t = 1, . . . , T

E [f(x2)] ≤ E[f(x1)]− η

2
E
[
‖∇f(x1)‖2

]
+
η2β

2
σ2d

E [f(x3)] ≤ E[f(x2)]− η

2
E
[
‖∇f(x2)‖2

]
+
η2β

2
σ2d

. . .

E [f(xT)] ≤ E[f(xT−1)]− η

2
E
[
‖∇f(xT−1)‖2

]
+
η2β

2
σ2d

We finally get

E [f(xT)]− E[f(x1)] ≤ −η
2
E

[∑
t

‖∇f(xt)‖2
]

+
Tη2β

2
σ2d

E

[
1

T

∑
t

‖∇f(xt)‖2
]
≤ 2 (f(x1)− f(x?))

Tη
+ βηndσ2

Lecture 12: NoisyGD and NoisySGD (November 12) 12-3

Utility bound

We can choose the learning rate η = min

{
1
nβ ,

√
2(f(x1)−f∗)√
nβdσ2T

}

E
[

min
t∈[T]

‖∇f (xt)‖2
]
≤ 1

T

T∑
t=1

E
[
‖∇f (xt)‖2

]
≤ 2 (f (x1)− f∗)

Tη
+ ηnβdσ2

≤ 2 (f (x1)− f∗)
T

max

{
nβ,

√
nβdσ2T√

2 (f (x1)− f∗)

}
+

√
2nβdσ2 (f (x1)− f∗)

T

≤ 2nβ (f (x1)− f∗)
T

+ 2

√
2nβdσ2 (f (x1)− f∗)

T

Recall that for ρ-zCDP, σ
2

T = L2

2ρ , if we substitute it in the second term.√
nβd (f (x1)− f∗)L2

2ρ
�

√
nβd (f (x1)− f∗)L2

ε2/ log 1
δ

If we substitute it in the first term, the first term becomes 2nβ(f(x1)−f∗)L2

2σ2ρ . We can make it arbitrarily small

by choosing large noise and more number of iterations to get σ2 →∞. So we can only consider the second
term for utility guarantee.

12.2.2 Convex /smooth problems

Following similar analysis as Lemma 12.1 and applying convex property we can get

E

[
f

(
1

T

T∑
t=1

xt

)
− f?

]
≤ E

[
1

T

∑
t

(f (xt)− f∗)

]
≤ ‖x1 − x

∗‖2

Tη
+ ηdσ2

Utility bound

We can choose the learning rate η = min
{

1
nβ ,

‖x1−x∗‖√
dσ2T

}
, where the first apply to GD and the second apply

to SGD. Following the same analysis in nonconvex/smooth problems,

‖x1 − x∗‖2

Tη
+ ηdσ2 ≤ nβ ‖x1 − x∗‖2

T
+

2 ‖x1 − x∗‖
√
dσ2

√
T

Substituteσ
2

T = L2

2ρ for ρ-zCDP in the second term, the final utility bound is

2 ‖x1 − x∗‖

√
dL2

ρ
� ‖x1 − x∗‖

√
dL2 log 1

δ

ε

12-4 Lecture 12: NoisyGD and NoisySGD (November 12)

Note that if we use large T , the first term can be arbitrarily small

nβ ‖x1 − x∗‖2

T
≤ ‖x1 − x∗‖

√
dL2

ρ

T ≥
nβ ‖x1 − x∗‖

√
ρ

L
√
d

= O(nε)

12.2.3 Convex / Lipschitz problems

Following similar analysis as Lemma 12.1 and applying convex and Lipschitz property (Refer to notes in
CS292F Convex Optimization Lecture 8) we can get

E

[
1

T

∑
t

(f (xt)− f∗)

]
≤ ‖x1 − x

∗‖2

Tη
+ η

(
E

[
1

T

T∑
t=1

‖∂f (xt)‖2
]

+ dσ2

)

Utility bound

By choosing learning rate optimally,

E

[
1

T

∑
t

(f (xt)− f∗)

]
≤ ‖x1 − x

∗‖
√
dσ2 + n2L2

√
T

≤ ‖x1 − x
∗‖nL√
T

+ ‖x1 − x∗‖
√
dσ2

T
,

where the first inequality follows f is nL-Lipschitz so that 1
T

∑T
t=1 ‖∂f (xt)‖2 ≤ n2L2 and the second

inequality follows
√
x2 + y2 ≤ x+ y for x, y ≥ 0.

Substituteσ
2

T = L2

2ρ for ρ-zCDP in the second term, the final utility bound is

‖x1 − x∗‖

√
dL2

ρ
= ‖x1 − x∗‖

√
d log 1

δL
2

ε2

Note that we can also use large T to make the first term be arbitrarily small

‖x1 − x∗‖nL√
T

≤ ‖x1 − x∗‖

√
dL2

ρ

T ≥ n2L2ρ

dL2
= O(n2ε2)

12.2.4 Strongly convex / Lipschitz problems

If f is λ-strongly convex and L-Lipschitz, convergence is even faster[1]. For learning rate ηt = 1
λt ,

E

[
f

(
1

T

T∑
t=1

xt

)]
− f (x∗) ≤ n2L2 + dσ2

2λT
(1 + log T)

Lecture 12: NoisyGD and NoisySGD (November 12) 12-5

For learning rate ηt = 1
λ(t+1) ,

E

[
f

(
2

T (T + 1)

T∑
t=1

txt

)]
− f (x∗) ≤

4
(
n2L2 + dσ2

)
λ(T + 1)

= c

(
n2L2

λT
+
dσ2

λT

)

Utility bound

Following the same utility analysis, we substituteσ
2

T = L2

2ρ for ρ-zCDP in the second term.

dσ2

λT
=
dL2

λρ
�
dL2 log 1

δ

λε2

Note that we can also use large T to make the first term be arbitrarily small

n2L2

λT
≤ dL2

λρ

T ≥ n2ρ

λ
� O(

n2ε2

λ
)

12.2.5 Summary

The advantage of NoisyGD:

• It is more generally applicable

• Results in stronger guarantees

• Do not require exact optimal solution

Function Utility Bound

Lipschitz+convex

√
dL‖θ∗‖

√
log(1

δ)
nε

Lipschitz+Strongly convex dL2 log(1/δ)
nλε2

Lipschitz+Smooth+Nonconvex

√
nβdL2(f(θ1)−f∗) log(1/δ)

nε

Function Computational Complexity # of call

Lipschitz+convex T ≥ n2ρ
‖x1−x?‖d = O(n2ε2) O(n3ε2)

Smooth+convex T ≥ 2nβ
√
ρ‖x1−x?‖√
dL

= O(nε) O(n2ε)

Lipschitz+Strongly convex T ≥ n2ρ
d = O(n2ε2) O(n3ε2)

12-6 Lecture 12: NoisyGD and NoisySGD (November 12)

12.3 Noisy Stochastic Gradient Descent Mechanism

12.3.1 Privacy Amplification by Sampling

Lemma 12.2. (Subsampling Lemma): IfM obeys (ε, δ)-DP, thenM◦Subsample obeys (ε′, δ′)-DP with

δ′ = γδ, ε′ = log (1 + γ(eε − 1)) = O(γε)

There are two types of sampling schemes for privacy amplification, one is Poisson Sampling and another is
Sampling without Replacement.

Poisson Sampling: include datapoint i in the minibatch by sampling from a Bernoulli Distribution with
probability γ (E[batch size] = γ · n). Poisson Sampling works well for add/remove.

Random subset: choose a subset with size equal to m from {1, . . . , n}, so that γi = m
n . Random subset works

well for replace-one.

12.3.2 Algorithm

ĝt =
1

γ

(∑
i∈Batch

∇`i(θt) +N (0, σ2Id)

)
(12.2)

θt+1 = θt + ηtĝt, for t = 1, 2, . . . , T (12.3)

The privacy analysis is just simply adds up RDP. NoisySGD satisfy ρ-tCDP with ρ = γ2L2T
2σ2 . In the ”nice”

regimes of the conversion ρ � ε2 log 1
δ .

12.3.3 Utility analysis

The estimate of the gradient is

1

γ

(∑
i∈Batch

∇`i(θt) +N (0, σ2Id)

)

It has same bounds as before, but noise gets larger: dσ2 → dσ2

γ2 . Then we have:

E
[
‖ĝ − E[ĝ]‖2

]
=
dσ2

γ2
+
nL2

γ

For the convex/smooth case 2ηβ‖x1−x?‖2
T +

√
d‖x1−x?‖2σ2

T , if we substitute it in the second term

√
‖x1 − x?‖2

T

(
dσ2

γ2
+
nL2

γ

)
≤ ‖x1 − x?‖

(√
dσ2

Tγ2
+

√
nL2

γT

)

= ‖x1 − x?‖

√
dL2

ρ

Lecture 12: NoisyGD and NoisySGD (November 12) 12-7

References

[1] Simon Lacoste-Julien, Mark Schmidt, Francis Bach ”A simpler approach to obtaining
an O(1/t) convergence rate for the projected stochastic subgradient method” arXiv preprint
arXiv:1212.2002 (2012).

	Noisy Gradient Descent Mechanism
	Algorithm
	Privacy analysis

	Convergence of NoisyGD
	Nonconvex / smooth problems
	Convex /smooth problems
	Convex / Lipschitz problems
	Strongly convex / Lipschitz problems
	Summary

	Noisy Stochastic Gradient Descent Mechanism
	Privacy Amplification by Sampling
	Algorithm
	Utility analysis

