CS292A Introduction to Differential Privacy Fall 2021 Lecture 12: NoisyGD and NoisySGD (November 12) Lecturer: Yu-Xiang Wang Scribes: Xuandong Zhao

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

12.1 Noisy Gradient Descent Mechanism

12.1.1 Algorithm

$$\theta_{t+1} = \theta_t + \eta_t \left[\sum_{i=1}^n \nabla \ell_i(\theta_t) + \mathcal{N}(0, \sigma^2 \mathbf{I}_d) \right], \text{ for } t = 1, 2, \dots, T$$
(12.1)

As shown in Equation 12.1, the NoisyGD mechanism is straightforward, which simply adds gaussian noise to the gradient. Note that $\sum_{i=1}^{n} \nabla \ell_i(\theta_t)$ is $\nabla f(\theta_t)$, and $\mathcal{N}(0, \sigma^2 \mathbf{I}_d)$ is the noise.

If we set $g_t = \sum_{i=1}^n \nabla \ell_i(\theta_t) + \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$, the expected value of g_t is $\mathbb{E}[g_t|\theta_t] = \nabla f(\theta_t)$ and variance is $\mathbb{E}[\|g_t - \mathbb{E}[g_t]\|_{\theta_t}] = d\sigma^2$.

12.1.2 Privacy analysis

Global sensitivity of NoisyGD is L, because ℓ_i is L-lipschitz. Each iteration of NoisyGD is ρ -zCDP with $\rho = \frac{L^2}{2\sigma^2}$. Since NoisyGD is a composition of T Gaussian mechanisms, the whole algorithm of NoisyGD is $T\rho$ -zCDP with $\rho_{\text{total}} = \frac{TL^2}{2\sigma^2}$. And we can get that $\frac{\sigma^2}{T} = \frac{L^2}{2\rho}$, $T = \frac{2\rho\sigma^2}{L^2}$.

12.2 Convergence of NoisyGD

12.2.1 Nonconvex / smooth problems

Lemma 12.1. (Descent Lemma): For the NoisyGD update: $x_{t+1} = x_t - \eta_t \hat{g}_t$ in smooth/nonconvex case, the convergence guarantee is:

$$\frac{1}{T}\sum_{t=1}^{T}\mathbb{E}\left[\left\|\nabla f\left(x_{t}\right)\right\|^{2}\right] \leq \frac{2\left(f\left(x_{1}\right)-f^{*}\right)}{T\eta} + \eta n\beta d\sigma^{2}$$

Proof. Since f(x) is smooth and use update rule,

$$f(x_{t+1}) \le f(x_t) + \langle x_{t+1} - x_t, \nabla f(x_t) \rangle + \frac{\beta \|x_{t+1} - x_t\|^2}{2} \\ = f(x_t) - \eta_t \langle \hat{g}_t, \nabla f(x_t) \rangle + \frac{\beta}{2} \eta_t^2 \|\hat{g}_t\|^2$$

We assume $\mathbb{E}[\hat{g}_t|x_t] = \nabla f(x_t)$ and $\mathbb{E}[\|\hat{g}_t - \mathbb{E}[\hat{g}_t]\||x_t] \le d\sigma^2$. If we set constant learning rate $\eta_t = \eta < \frac{1}{\beta}$ and take conditional expectation on both side,

$$\mathbb{E}\left[f(x_{t+1})|x_t\right] \le f(x_t) - \eta_t \|\nabla f(x_t)\|^2 + \frac{\beta}{2}\eta_t^2 \left(\|\nabla f(x_t)\|^2 + d\sigma^2\right) \\ = f(x_t) - \eta \|\nabla f(x_t)\|^2 + \frac{\eta}{2}\|\nabla f(x_t)\|^2 + \frac{\eta^2 \beta \sigma^2 d}{2} \\ = f(x_t) - \frac{\eta}{2}\|\nabla f(x_t)\|^2 + \frac{\eta^2 \beta \sigma^2 d}{2}$$

Take full expectation on both side,

$$\mathbb{E}\left[f(x_{t+1})\right] \le \mathbb{E}\left[f(x_t)\right] - \frac{\eta}{2}\mathbb{E}\left[\|\nabla f(x_t)\|^2\right] + \frac{\eta^2\beta\sigma^2d}{2}$$

Then we add up $t = 1, \ldots, T$

$$\mathbb{E}\left[f(x_2)\right] \le \mathbb{E}[f(x_1)] - \frac{\eta}{2} \mathbb{E}\left[\|\nabla f(x_1)\|^2\right] + \frac{\eta^2 \beta}{2} \sigma^2 d$$
$$\mathbb{E}\left[f(x_3)\right] \le \mathbb{E}[f(x_2)] - \frac{\eta}{2} \mathbb{E}\left[\|\nabla f(x_2)\|^2\right] + \frac{\eta^2 \beta}{2} \sigma^2 d$$
$$\dots$$
$$\mathbb{E}\left[f(x_T)\right] \le \mathbb{E}[f(x_{T-1})] - \frac{\eta}{2} \mathbb{E}\left[\|\nabla f(x_{T-1})\|^2\right] + \frac{\eta^2 \beta}{2} \sigma^2 d$$

We finally get

$$\mathbb{E}\left[f(x_T)\right] - \mathbb{E}\left[f(x_1)\right] \le -\frac{\eta}{2} \mathbb{E}\left[\sum_t \|\nabla f(x_t)\|^2\right] + \frac{T\eta^2 \beta}{2} \sigma^2 d$$
$$\mathbb{E}\left[\frac{1}{T}\sum_t \|\nabla f(x_t)\|^2\right] \le \frac{2\left(f(x_1) - f(x^\star)\right)}{T\eta} + \beta\eta n d\sigma^2$$

Utility bound

We can choose the learning rate $\eta = \min\left\{\frac{1}{n\beta}, \frac{\sqrt{2(f(x_1) - f^*)}}{\sqrt{n\beta d\sigma^2 T}}\right\}$

$$\mathbb{E}\left[\min_{t\in[T]}\left\|\nabla f\left(x_{t}\right)\right\|^{2}\right] \leq \frac{1}{T}\sum_{t=1}^{T}\mathbb{E}\left[\left\|\nabla f\left(x_{t}\right)\right\|^{2}\right]$$
$$\leq \frac{2\left(f\left(x_{1}\right) - f^{*}\right)}{T\eta} + \eta n\beta d\sigma^{2}$$
$$\leq \frac{2\left(f\left(x_{1}\right) - f^{*}\right)}{T}\max\left\{n\beta, \frac{\sqrt{n\beta d\sigma^{2}T}}{\sqrt{2\left(f\left(x_{1}\right) - f^{*}\right)}}\right\} + \sqrt{\frac{2n\beta d\sigma^{2}\left(f\left(x_{1}\right) - f^{*}\right)}{T}}$$
$$\leq \frac{2n\beta\left(f\left(x_{1}\right) - f^{*}\right)}{T} + 2\sqrt{\frac{2n\beta d\sigma^{2}\left(f\left(x_{1}\right) - f^{*}\right)}{T}}$$

Recall that for ρ -zCDP, $\frac{\sigma^2}{T} = \frac{L^2}{2\rho}$, if we substitute it in the second term.

$$\sqrt{\frac{n\beta d\left(f\left(x_{1}\right)-f^{*}\right)L^{2}}{2\rho}} \asymp \sqrt{\frac{n\beta d\left(f\left(x_{1}\right)-f^{*}\right)L^{2}}{\epsilon^{2}/\log\frac{1}{\delta}}}$$

If we substitute it in the first term, the first term becomes $\frac{2n\beta(f(x_1)-f^*)L^2}{2\sigma^2\rho}$. We can make it arbitrarily small by choosing large noise and more number of iterations to get $\sigma^2 \to \infty$. So we can only consider the second term for utility guarantee.

12.2.2 Convex /smooth problems

Following similar analysis as Lemma 12.1 and applying convex property we can get

$$\mathbb{E}\left[f\left(\frac{1}{T}\sum_{t=1}^{T}x_{t}\right)-f^{\star}\right] \leq \mathbb{E}\left[\frac{1}{T}\sum_{t}\left(f\left(x_{t}\right)-f^{\star}\right)\right] \leq \frac{\left\|x_{1}-x^{\star}\right\|^{2}}{T\eta}+\eta d\sigma^{2}$$

Utility bound

We can choose the learning rate $\eta = \min\left\{\frac{1}{n\beta}, \frac{\|x_1 - x^*\|}{\sqrt{d\sigma^2 T}}\right\}$, where the first apply to GD and the second apply to SGD. Following the same analysis in nonconvex/smooth problems,

$$\frac{\|x_1 - x^*\|^2}{T\eta} + \eta d\sigma^2 \le \frac{n\beta \|x_1 - x^*\|^2}{T} + \frac{2\|x_1 - x^*\|\sqrt{d\sigma^2}}{\sqrt{T}}$$

Substitute $\frac{\sigma^2}{T} = \frac{L^2}{2\rho}$ for ρ -zCDP in the second term, the final utility bound is

$$2 \|x_1 - x^*\| \sqrt{\frac{dL^2}{\rho}} \asymp \|x_1 - x^*\| \frac{\sqrt{dL^2 \log \frac{1}{\delta}}}{\epsilon}$$

Note that if we use large T, the first term can be arbitrarily small

$$\frac{n\beta \|x_1 - x^*\|^2}{T} \le \|x_1 - x^*\| \sqrt{\frac{dL^2}{\rho}}$$
$$T \ge \frac{n\beta \|x_1 - x^*\| \sqrt{\rho}}{L\sqrt{d}} = \mathcal{O}(n\epsilon)$$

12.2.3 Convex / Lipschitz problems

Following similar analysis as Lemma 12.1 and applying convex and Lipschitz property (Refer to notes in CS292F Convex Optimization Lecture 8) we can get

$$\mathbb{E}\left[\frac{1}{T}\sum_{t}\left(f\left(x_{t}\right)-f^{*}\right)\right] \leq \frac{\left\|x_{1}-x^{*}\right\|^{2}}{T\eta} + \eta\left(\mathbb{E}\left[\frac{1}{T}\sum_{t=1}^{T}\left\|\partial f\left(x_{t}\right)\right\|^{2}\right] + d\sigma^{2}\right)$$

Utility bound

By choosing learning rate optimally,

$$\mathbb{E}\left[\frac{1}{T}\sum_{t} \left(f\left(x_{t}\right) - f^{*}\right)\right] \leq \frac{\|x_{1} - x^{*}\| \sqrt{d\sigma^{2} + n^{2}L^{2}}}{\sqrt{T}}$$
$$\leq \frac{\|x_{1} - x^{*}\| nL}{\sqrt{T}} + \|x_{1} - x^{*}\| \sqrt{\frac{d\sigma^{2}}{T}},$$

where the first inequality follows f is nL-Lipschitz so that $\frac{1}{T}\sum_{t=1}^{T} \|\partial f(x_t)\|^2 \leq n^2 L^2$ and the second inequality follows $\sqrt{x^2 + y^2} \leq x + y$ for $x, y \geq 0$.

Substitute $\frac{\sigma^2}{T} = \frac{L^2}{2\rho}$ for ρ -zCDP in the second term, the final utility bound is

$$||x_1 - x^*|| \sqrt{\frac{dL^2}{\rho}} = ||x_1 - x^*|| \sqrt{\frac{d\log\frac{1}{\delta}L^2}{\epsilon^2}}$$

Note that we can also use large T to make the first term be arbitrarily small

$$\frac{\|x_1 - x^*\| nL}{\sqrt{T}} \le \|x_1 - x^*\| \sqrt{\frac{dL^2}{\rho}}$$
$$T \ge \frac{n^2 L^2 \rho}{dL^2} = \mathcal{O}(n^2 \epsilon^2)$$

12.2.4 Strongly convex / Lipschitz problems

If f is λ -strongly convex and L-Lipschitz, convergence is even faster[1]. For learning rate $\eta_t = \frac{1}{\lambda t}$,

$$\mathbb{E}\left[f\left(\frac{1}{T}\sum_{t=1}^{T}x_{t}\right)\right] - f\left(x^{*}\right) \leq \frac{n^{2}L^{2} + d\sigma^{2}}{2\lambda T}(1 + \log T)$$

For learning rate $\eta_t = \frac{1}{\lambda(t+1)}$,

$$\mathbb{E}\left[f\left(\frac{2}{T(T+1)}\sum_{t=1}^{T}tx_{t}\right)\right] - f\left(x^{*}\right) \leq \frac{4\left(n^{2}L^{2} + d\sigma^{2}\right)}{\lambda(T+1)}$$
$$= c\left(\frac{n^{2}L^{2}}{\lambda T} + \frac{d\sigma^{2}}{\lambda T}\right)$$

Utility bound

Following the same utility analysis, we substitute $\frac{\sigma^2}{T} = \frac{L^2}{2\rho}$ for ρ -zCDP in the second term.

$$\frac{d\sigma^2}{\lambda T} = \frac{dL^2}{\lambda \rho} \asymp \frac{dL^2 \log \frac{1}{\delta}}{\lambda \epsilon^2}$$

Note that we can also use large T to make the first term be arbitrarily small

$$\frac{n^2 L^2}{\lambda T} \leq \frac{dL^2}{\lambda \rho}$$
$$T \geq \frac{n^2 \rho}{\lambda} \asymp \mathcal{O}(\frac{n^2 \epsilon^2}{\lambda})$$

12.2.5 Summary

The advantage of NoisyGD:

- It is more generally applicable
- Results in stronger guarantees
- Do not require exact optimal solution

Function	Utility Bound
Lipschitz+convex Lipschitz+Strongly convex Lipschitz+Smooth+Nonconvex	$\frac{\frac{\sqrt{d}L\ \theta^*\ \sqrt{\log\left(\frac{1}{\delta}\right)}}{n\epsilon}}{\frac{dL^2\log(1/\delta)}{n\lambda\epsilon^2}}{\sqrt{n\beta dL^2(f(\theta_1) - f^*)\log(1/\delta)}}}$

Function	Computational Complexity	# of call
Lipschitz+convex	$T \ge \frac{n^2 \rho}{\ x_1 - x^\star\ _d} = \mathcal{O}(n^2 \epsilon^2)$	$\mathcal{O}(n^3\epsilon^2)$
Smooth+convex	$T \ge \frac{2\ddot{n}\beta\sqrt{\rho}\ x_1 - x^*\ }{\sqrt{dL}} = \mathcal{O}(n\epsilon)$	$\mathcal{O}(n^2\epsilon)$
Lipschitz+Strongly convex	$T \ge \frac{n^2 \rho}{d} = \mathcal{O}(n^2 \epsilon^2)$	$\mathcal{O}(n^3\epsilon^2)$

12.3 Noisy Stochastic Gradient Descent Mechanism

12.3.1 Privacy Amplification by Sampling

Lemma 12.2. (Subsampling Lemma): If \mathcal{M} obeys (ϵ, δ) -DP, then \mathcal{M} -Subsample obeys (ϵ', δ') -DP with

$$\delta' = \gamma \delta, \epsilon' = \log\left(1 + \gamma(e^{\epsilon} - 1)\right) = \mathcal{O}(\gamma \epsilon)$$

There are two types of sampling schemes for privacy amplification, one is Poisson Sampling and another is Sampling without Replacement.

Poisson Sampling: include datapoint *i* in the minibatch by sampling from a Bernoulli Distribution with probability γ ($\mathbb{E}[\text{batch size}] = \gamma \cdot n$). Poisson Sampling works well for add/remove.

Random subset: choose a subset with size equal to m from $\{1, \ldots, n\}$, so that $\gamma_i = \frac{m}{n}$. Random subset works well for replace-one.

12.3.2 Algorithm

$$\hat{g}_t = \frac{1}{\gamma} \left(\sum_{i \in \text{Batch}} \nabla \ell_i(\theta_t) + \mathcal{N}(0, \sigma^2 \mathbf{I}_d) \right)$$
(12.2)

$$\theta_{t+1} = \theta_t + \eta_t \hat{g}_t, \text{ for } t = 1, 2, \dots, T$$
 (12.3)

The privacy analysis is just simply adds up RDP. NoisySGD satisfy ρ -tCDP with $\rho = \frac{\gamma^2 L^2 T}{2\sigma^2}$. In the "nice" regimes of the conversion $\rho \simeq \epsilon^2 \log \frac{1}{\delta}$.

12.3.3 Utility analysis

The estimate of the gradient is

$$\frac{1}{\gamma} \left(\sum_{i \in \text{Batch}} \nabla \ell_i(\theta_t) + \mathcal{N}(0, \sigma^2 \mathbf{I}_d) \right)$$

It has same bounds as before, but noise gets larger: $d\sigma^2 \rightarrow \frac{d\sigma^2}{\gamma^2}$. Then we have:

$$\mathbb{E}\left[\|\hat{g} - \mathbb{E}[\hat{g}]\|^2\right] = \frac{d\sigma^2}{\gamma^2} + \frac{nL^2}{\gamma}$$

For the convex/smooth case $\frac{2\eta\beta\|x_1-x^\star\|^2}{T} + \sqrt{\frac{d\|x_1-x^\star\|^2\sigma^2}{T}}$, if we substitute it in the second term

$$\begin{split} \sqrt{\frac{\|x_1 - x^\star\|^2}{T} \left(\frac{d\sigma^2}{\gamma^2} + \frac{nL^2}{\gamma}\right)} &\leq \|x_1 - x^\star\| \left(\sqrt{\frac{d\sigma^2}{T\gamma^2}} + \sqrt{\frac{nL^2}{\gamma T}}\right) \\ &= \|x_1 - x^\star\| \sqrt{\frac{dL^2}{\rho}} \end{split}$$

References

[1] SIMON LACOSTE-JULIEN, MARK SCHMIDT, FRANCIS BACH "A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method" arXiv preprint arXiv:1212.2002 (2012).