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12.1 Noisy Gradient Descent Mechanism

12.1.1 Algorithm

θt+1 = θt + ηt

[
n∑
i=1

∇`i(θt) +N (0, σ2Id)

]
, for t = 1, 2, . . . , T (12.1)

As shown in Equation 12.1, the NoisyGD mechanism is straightforward, which simply adds gaussian noise to
the gradient. Note that

∑n
i=1∇`i(θt) is ∇f(θt), and N (0, σ2Id) is the noise.

If we set gt =
∑n
i=1∇`i(θt) + N (0, σ2Id), the expected value of gt is E [gt|θt] = ∇f(θt) and variance is

E [‖gt − E[gt]‖θt ] = dσ2.

12.1.2 Privacy analysis

Global sensitivity of NoisyGD is L, because `i is L-lipschitz. Each iteration of NoisyGD is ρ-zCDP with

ρ = L2

2σ2 . Since NoisyGD is a composition of T Gaussian mechanisms, the whole algorithm of NoisyGD is

Tρ-zCDP with ρtotal = TL2

2σ2 . And we can get that σ2

T = L2

2ρ , T = 2ρσ2

L2 .

12.2 Convergence of NoisyGD

12.2.1 Nonconvex / smooth problems

Lemma 12.1. (Descent Lemma): For the NoisyGD update: xt+1 = xt − ηtĝt in smooth/nonconvex case, the
convergence guarantee is:

1

T

T∑
t=1

E
[
‖∇f (xt)‖2

]
≤ 2 (f (x1)− f∗)

Tη
+ ηnβdσ2

12-1



12-2 Lecture 12: NoisyGD and NoisySGD (November 12)

Proof. Since f(x) is smooth and use update rule,

f(xt+1) ≤ f(xt) + 〈xt+1 − xt,∇f(xt)〉+
β‖xt+1 − xt‖2

2

= f(xt)− ηt〈ĝt,∇f(xt)〉+
β

2
η2t ‖ĝt‖2

We assume E [ĝt|xt] = ∇f(xt) and E [‖ĝt − E[ĝt]‖|xt] ≤ dσ2. If we set constant learning rate ηt = η < 1
β and

take conditional expectation on both side,

E [f(xt+1)|xt] ≤ f(xt)− ηt‖∇f(xt)‖2 +
β

2
η2t
(
‖∇f(xt)‖2 + dσ2

)
= f(xt)− η‖∇f(xt)‖2 +

η

2
‖∇f(xt)‖2 +

η2βσ2d

2

= f(xt)−
η

2
‖∇f(xt)‖2 +

η2βσ2d

2

Take full expectation on both side,

E [f(xt+1)] ≤ E[f(xt)]−
η

2
E
[
‖∇f(xt)‖2

]
+
η2βσ2d

2

Then we add up t = 1, . . . , T

E [f(x2)] ≤ E[f(x1)]− η

2
E
[
‖∇f(x1)‖2

]
+
η2β

2
σ2d

E [f(x3)] ≤ E[f(x2)]− η

2
E
[
‖∇f(x2)‖2

]
+
η2β

2
σ2d

. . .

E [f(xT )] ≤ E[f(xT−1)]− η

2
E
[
‖∇f(xT−1)‖2

]
+
η2β

2
σ2d

We finally get

E [f(xT )]− E[f(x1)] ≤ −η
2
E

[∑
t

‖∇f(xt)‖2
]

+
Tη2β

2
σ2d

E

[
1

T

∑
t

‖∇f(xt)‖2
]
≤ 2 (f(x1)− f(x?))

Tη
+ βηndσ2
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Utility bound

We can choose the learning rate η = min

{
1
nβ ,

√
2(f(x1)−f∗)√
nβdσ2T

}

E
[

min
t∈[T ]

‖∇f (xt)‖2
]
≤ 1

T

T∑
t=1

E
[
‖∇f (xt)‖2

]
≤ 2 (f (x1)− f∗)

Tη
+ ηnβdσ2

≤ 2 (f (x1)− f∗)
T

max

{
nβ,

√
nβdσ2T√

2 (f (x1)− f∗)

}
+

√
2nβdσ2 (f (x1)− f∗)

T

≤ 2nβ (f (x1)− f∗)
T

+ 2

√
2nβdσ2 (f (x1)− f∗)

T

Recall that for ρ-zCDP, σ
2

T = L2

2ρ , if we substitute it in the second term.√
nβd (f (x1)− f∗)L2

2ρ
�

√
nβd (f (x1)− f∗)L2

ε2/ log 1
δ

If we substitute it in the first term, the first term becomes 2nβ(f(x1)−f∗)L2

2σ2ρ . We can make it arbitrarily small

by choosing large noise and more number of iterations to get σ2 →∞. So we can only consider the second
term for utility guarantee.

12.2.2 Convex /smooth problems

Following similar analysis as Lemma 12.1 and applying convex property we can get

E

[
f

(
1

T

T∑
t=1

xt

)
− f?

]
≤ E

[
1

T

∑
t

(f (xt)− f∗)

]
≤ ‖x1 − x

∗‖2

Tη
+ ηdσ2

Utility bound

We can choose the learning rate η = min
{

1
nβ ,

‖x1−x∗‖√
dσ2T

}
, where the first apply to GD and the second apply

to SGD. Following the same analysis in nonconvex/smooth problems,

‖x1 − x∗‖2

Tη
+ ηdσ2 ≤ nβ ‖x1 − x∗‖2

T
+

2 ‖x1 − x∗‖
√
dσ2

√
T

Substituteσ
2

T = L2

2ρ for ρ-zCDP in the second term, the final utility bound is

2 ‖x1 − x∗‖

√
dL2

ρ
� ‖x1 − x∗‖

√
dL2 log 1

δ

ε
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Note that if we use large T , the first term can be arbitrarily small

nβ ‖x1 − x∗‖2

T
≤ ‖x1 − x∗‖

√
dL2

ρ

T ≥
nβ ‖x1 − x∗‖

√
ρ

L
√
d

= O(nε)

12.2.3 Convex / Lipschitz problems

Following similar analysis as Lemma 12.1 and applying convex and Lipschitz property (Refer to notes in
CS292F Convex Optimization Lecture 8) we can get

E

[
1

T

∑
t

(f (xt)− f∗)

]
≤ ‖x1 − x

∗‖2

Tη
+ η

(
E

[
1

T

T∑
t=1

‖∂f (xt)‖2
]

+ dσ2

)

Utility bound

By choosing learning rate optimally,

E

[
1

T

∑
t

(f (xt)− f∗)

]
≤ ‖x1 − x

∗‖
√
dσ2 + n2L2

√
T

≤ ‖x1 − x
∗‖nL√
T

+ ‖x1 − x∗‖
√
dσ2

T
,

where the first inequality follows f is nL-Lipschitz so that 1
T

∑T
t=1 ‖∂f (xt)‖2 ≤ n2L2 and the second

inequality follows
√
x2 + y2 ≤ x+ y for x, y ≥ 0.

Substituteσ
2

T = L2

2ρ for ρ-zCDP in the second term, the final utility bound is

‖x1 − x∗‖

√
dL2

ρ
= ‖x1 − x∗‖

√
d log 1

δL
2

ε2

Note that we can also use large T to make the first term be arbitrarily small

‖x1 − x∗‖nL√
T

≤ ‖x1 − x∗‖

√
dL2

ρ

T ≥ n2L2ρ

dL2
= O(n2ε2)

12.2.4 Strongly convex / Lipschitz problems

If f is λ-strongly convex and L-Lipschitz, convergence is even faster[1]. For learning rate ηt = 1
λt ,

E

[
f

(
1

T

T∑
t=1

xt

)]
− f (x∗) ≤ n2L2 + dσ2

2λT
(1 + log T )
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For learning rate ηt = 1
λ(t+1) ,

E

[
f

(
2

T (T + 1)

T∑
t=1

txt

)]
− f (x∗) ≤

4
(
n2L2 + dσ2

)
λ(T + 1)

= c

(
n2L2

λT
+
dσ2

λT

)

Utility bound

Following the same utility analysis, we substituteσ
2

T = L2

2ρ for ρ-zCDP in the second term.

dσ2

λT
=
dL2

λρ
�
dL2 log 1

δ

λε2

Note that we can also use large T to make the first term be arbitrarily small

n2L2

λT
≤ dL2

λρ

T ≥ n2ρ

λ
� O(

n2ε2

λ
)

12.2.5 Summary

The advantage of NoisyGD:

• It is more generally applicable

• Results in stronger guarantees

• Do not require exact optimal solution

Function Utility Bound

Lipschitz+convex

√
dL‖θ∗‖

√
log( 1

δ )
nε

Lipschitz+Strongly convex dL2 log(1/δ)
nλε2

Lipschitz+Smooth+Nonconvex

√
nβdL2(f(θ1)−f∗) log(1/δ)

nε

Function Computational Complexity # of call

Lipschitz+convex T ≥ n2ρ
‖x1−x?‖d = O(n2ε2) O(n3ε2)

Smooth+convex T ≥ 2nβ
√
ρ‖x1−x?‖√
dL

= O(nε) O(n2ε)

Lipschitz+Strongly convex T ≥ n2ρ
d = O(n2ε2) O(n3ε2)
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12.3 Noisy Stochastic Gradient Descent Mechanism

12.3.1 Privacy Amplification by Sampling

Lemma 12.2. (Subsampling Lemma): IfM obeys (ε, δ)-DP, thenM◦Subsample obeys (ε′, δ′)-DP with

δ′ = γδ, ε′ = log (1 + γ(eε − 1)) = O(γε)

There are two types of sampling schemes for privacy amplification, one is Poisson Sampling and another is
Sampling without Replacement.

Poisson Sampling: include datapoint i in the minibatch by sampling from a Bernoulli Distribution with
probability γ (E[batch size] = γ · n). Poisson Sampling works well for add/remove.

Random subset: choose a subset with size equal to m from {1, . . . , n}, so that γi = m
n . Random subset works

well for replace-one.

12.3.2 Algorithm

ĝt =
1

γ

( ∑
i∈Batch

∇`i(θt) +N (0, σ2Id)

)
(12.2)

θt+1 = θt + ηtĝt, for t = 1, 2, . . . , T (12.3)

The privacy analysis is just simply adds up RDP. NoisySGD satisfy ρ-tCDP with ρ = γ2L2T
2σ2 . In the ”nice”

regimes of the conversion ρ � ε2 log 1
δ .

12.3.3 Utility analysis

The estimate of the gradient is

1

γ

( ∑
i∈Batch

∇`i(θt) +N (0, σ2Id)

)

It has same bounds as before, but noise gets larger: dσ2 → dσ2

γ2 . Then we have:

E
[
‖ĝ − E[ĝ]‖2

]
=
dσ2

γ2
+
nL2

γ

For the convex/smooth case 2ηβ‖x1−x?‖2
T +

√
d‖x1−x?‖2σ2

T , if we substitute it in the second term

√
‖x1 − x?‖2

T

(
dσ2

γ2
+
nL2

γ

)
≤ ‖x1 − x?‖

(√
dσ2

Tγ2
+

√
nL2

γT

)

= ‖x1 − x?‖

√
dL2

ρ
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