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13.1 Inefficient Global Sensitivity Approach

13.1.1 Median Query

Assume each data point in a dataset of size N (N is odd) is drawn from a bounded universe {0, ..., U}
without losing of generality. Then, let dataset x contains ceil(N/2) of zeros and floor(N/2) of Us and its
median is 0, i.e, {0, ...0,U ,...U}. Using the replace-one neighbouring dataset definition, there exists a x′

neighbouring dataset such that it contains floor(N/2) of zeros and ceil(N/2) of Us. The x′’s median is U ,
and hence |median(x)−median(x′)| = U .

13.1.2 Linear Regression

In linear regression, the goal is to solve argminθ ||Xθ − Y ||2 + λ||θ||2 and θ∗ = (XTX)−1XTY where
D = (X,Y ) are the dataset. However, using add-one neighbouring dataset definition, the neighbouring

dataset with new data point (x, y) is D′ = ((X,x), (Y, y). The θ̂∗ = (XTX + xTx)−1(XTY + xy). The global
sensitivity becomes unbounded, and the global sensitivity approach does not exploit the well conditioned
dataset. If we know xTx > αnI, then ||θ̂∗ − θ∗||2 ≤ L

λ(xT x)
which yields better convergence bound.

13.2 Local Sensitivity

Local Sensitivity is definied as LSq(x) = max{q(x) − q(x′)|d(x, x′) ≤ 1} and it measures the stability
of a query at a particular dataset. The local sensitivity for median query in a sorted dataset D becomes
max{Dn+1

2
−Dn−1

2
, Dn+3

2
−Dn+1

2
}; and the local sensitivity for linear regression becomes 2L

λmin(xT x)
. However,

the magnitude of the noise may reveal sensitive information about the dataset itself. Recently, Gadotti
et al. [1] presents a noise-exploitation attacks and from the noise, one can infer private information about
individuals in the dataset.

13.3 Data-Dependent Differential Privacy

“Data-dependent DP mechanism” aims at more stably calibrating noise to local sensitivity (at least for query
releases), and there are many different approaches:
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• Smooth sensitivity

• Propose-test-release

• Privately bounding the local-sensitivity

• Stability-based query release (Distance2Stability)

13.3.1 Smooth Sensitivity

Since we can not add noise based on local sensitivity, it is ideal to construct smooth upper bound of local
sensitivity, and the noise should satisfies stability under “translation” and “scaling” are admissible

Definition 13.3.1 (Smooth Sensitivity). For β ¿ 0, the β smooth sensitivity of f is
S∗
f,β = maxy∈Dn(LSf (y) · e−βd(x,y)).

Smooth sensitivity satisfies a smoothing property and it is the optimal bound satisfying this property. The
two property that one should satisfy to smooth out the local sensitivity: (i) ∀x ∈ Dn : S(x) ≥ LSf (x); (ii)
∀x, y ∈ Dn, d(x, y) = 1 : S(x) < eβS(y)

Lemma 13.1. Sf,β is a β-smooth upper bound on LSf . In addition, Sf,β(x)≤S(x) for all x ∈ Dn for every
β-smooth upper bound S on LSf .

Notation. For a subset S of d, we write S +∆ for the set {z+∆|z ∈ S}, and eλ ·S for the set {eλ · z|z ∈ S}.
We also write a± b for the interval [a− b, a+ b].

Definition 13.3.2 (Admissible Noise Distribution). A probability distribution h on Rd is (α, β)-admissible
if, for α = α(ϵ, δ), β = β(ϵ, δ), the following two conditions hold for all ||∆|| ≤ α and |λ| ≤ β, and for all
subsets SRd:
Sliding Property: PrZ h(Z ∈ S) ≤ e

ϵ
2 · PrZ h(Z ∈ S +∆) + δ

2 .

Dilation Property: PrZ h(Z ∈ S) ≤ e
ϵ
2 · PrZ h(Z ∈ eλ · S) + δ

2 .

Then, A(x) = f(x) + S(x)
α · Z satisfies (ϵ, δ)-DP.

13.3.2 Privacy Analysis

Similar to group privacy, we know that P (A(x) ∈ S) ≤ eϵP (A(x′) ∈ S) + δ′, and ∆ = α(f(x)−f(x′))
S(x) ,

|∆|1 ≤ αLS(x)
S(x) ≤]α

P (A(x) ∈ S) = P (f(x) + S(x)
α ) · Z ∈ S)

= P (Z ∈ α(S−f(x))
S(x) )

≤ e
ϵ
2P (Z ∈ α(S−f(x′))

S(x) ) + δ
2

= e
ϵ
2P (Z ∈ S(x′)

S(x)
α(S−f(x′)

S(x′) ) + δ/2

≤ e
ϵ
2 (e

ϵ
2P (Z ∈ α(S−f(x′)

S(x′) ) + δ/2) + δ/2

= eϵP (f(x′) ∈ S) + (e
ϵ
2 + 1) δ2
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13.3.3 Example Noises

Lemma 13.2. For any γ > 1, the distribution with density h(z) ∝ 1
1+|z|γ is ( ϵ

2γ+1 ,
ϵ

2γ+1 )-admissible (with

δ = 0). Moreover, the d-dimensional product of independent copies of h is ( ϵ
2γ+1 ,

ϵ
2γ+1 )-admissible.

Lemma 13.3. For ϵ, δ ∈ (0,1), the d-dimensional Laplace distribution, h(z) = 1
2d

· e||z||1 , is (α, β)-admissible
with α = ϵ

2 , and β = ϵ
2ρ δ

2
||Z||1 , where Z h. In practice, it suffices to use α = ϵ

2 and β = ϵ
4(d+ln(2/δ)) . For

d = 1, it suffices to use β = ϵ
2ln(2/δ) .

Lemma 13.4. Guassian Distribution: For ϵ, δ ∈ (0,1), the d-dimensional Laplace distribution, h(z) =
1

(2π)d/2
· e−0.5||z||22 , is (α, β)-admissible for Euclidean metrics with α = ϵ

5ρδ/2(Z1)
and β = ϵ

2ρδ/2(||Z||22)
, where

Z = (Z1, ..., Zd) h. In particular, it suffices to take α = ϵ

5
√

2ln(2/δ)
and β = ϵ

4(d+ln(2/δ)) .

An easier way to solve this optimization is:

S∗
f,ϵ(x) = maxk=1,...,n2

−kϵ(maxy:d(x,y)=kLSf (y))
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