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15.1 Smooth Sensitivity

15.1.1 Concentrated DP analysis of Smoothed Sensitivity

Recall that we are adding Laplace log-normal noise when X is drawn from Laplace distribution and Y is
coming from a standard Gaussian distribution:

Z = X · eσY

in order to bound the concentrated differential privacy we need to bound the renyi divergence of two
neighboring data set.

Proposition 15.1. Let f : Xn → R and let Z ← LLN(σ) for some σ > 0. Then, for all s, t > 0, the

algorithm M(x) = f(x) + 1
s · S

t
f (x) · Z guarantees 1

2ε
2 − CDP for ε = t/σ + e3σ

2/2s.

We have:

Dα (f(x) + g(x) · z∥f (x′) + g (x′) z)

= Dα (g(x) · z∥f (x′)− f(x) + g (x′) z)

= Dα

(
z∥ f(x′)− f(x)

g(x)
+

g (x′)

g(x)
z

)
Then, it becomes the noise on the left hand side and another noise that is dilated and translated on the right
hand side.

15.1.2 Sketch of the proof for the Laplace-Log-Normal

Let’s say for all neighboring datasets:

|f(x)− f (x′)| ≤ g(x) and e−tg(x) ≤ g (x′) ≤ etg(x)

We have algorithm:

M(x) = f(x) +
g(x)

s
· Z for Z ← LLN(σ)

Then, we have

Dα (M(x)∥M (x′)) = Dα

(
Z∥f (x′)− f(x)

g(x)
· s+ g (x′)

g(x)
· Z

)
.
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f(x′)−f(x)

g(x) is bounded between −1 and 1, and
g(x′)
g(x) is bounded between e−t and et. So with these two bounds

we have reduced the problem to bounding the max of 2 concrete renyi divergence:

Dα (M(x)∥M (x′)) ⩽ max
{
Dα

(
Z∥s+ etZ

)
, Dα

(
s+ etZ∥Z

)}
the idea of bounding these two divergence is to find some intermediate distribution such that we can decompose
the renyi divergence calculation into triangular inequality, so that we can apply the dilation property and the
translation property to each one of the component in the decomposition.

We will use a lemma of group privacy for CDP when each one of these Renyi divergences satisfy a linear
upper bound:

Lemma 15.2. Let P,Q,R be probability distributions. Suppose Dα(P∥R) ≤ a · α and Dα(R∥Q) ≤ b · α for
all α ∈ (1,∞). Then, for all α ∈ (1,∞),

Dα(P∥Q) ≤ α · (
√
a+
√
b)2 ≤ 2α · (a+ b).

Decompose what we want to bound:

Dα

(
Z∥etZ + s

)
= Dα

(
Z − s∥etZ

)
We can find that the lemma is not related to the order of P and Q. We will choose Z − s to be P and etZ to
be Q. We can choose R = Z, we have to find upper bound for Dα(Z − s∥Z) and Dα (Z∥etZ), reducing the
problem to just the translation only and dilation only. The other part is similar.

To bound the two parts separately, we need these two lemma:

Lemma 15.3. Let Z ← LLN(σ) for σ > 0. Let t ∈ R and α ∈ (1,∞). Then

Dα

(
Z∥etZ

)
≤ αt2

2σ2
.

Proof. Dα (Z∥etZ) = Dα

(
XeσY ∥XeσY+t

)
≤ supx Dα

(
xeσY ∥xeσY+t

)
≤ Dα(σY ∥σY + t) ≤ αt2

2σ2 .

The first inequality is due to quasi-convexity of Renyi divergence. The second inequality is the closure to

post processing of normal distribution. The divergence satisfies the concentrated differential privacy: t2

2σ2 is
the CDP parameter of the Gaussian distribution.

Lemma 15.4. Let Z ← LLN(σ) for σ > 0. Let s ∈ R and α ∈ (1,∞). Then

Dα(Z∥Z + s) ≤ min

{
1

2
e3σ

2

s2α, e
3
2σ

2

s

}
.

The idea of proof this lemma is calculating the log density ratio and show that the ratio is bounded by e
3
2σ

2

s
with probability 1. And when α is small, any pure DP mechanism satisfies the upper bound: 1

2e
3σ2

s2.

By combining lemma15.3 and lemma 15.4, we define a as t2

2σ2 and b as 1
2e

3σ2

s2, we can get the bound in
proposition 15.1.
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15.1.3 Examples: Releasing reciprocal and Private Argmax

Let f(D) be a counting query, define g(D) = 1/f(D). The global sensitivity of g(D) is +∞ and the local

sensitivity of g(D) is
∣∣∣ 1
f(D) −

1
f(D)−1

∣∣∣ ⩽ O
(

1
|f(D)|

)
. The smooth sensitivity of g(D) is e−nβ · ∞ =∞. This is

an example where the smooth sensitivity does not exist at all.

Suppose that we have a linear regression model and we can estimate θ̂ from the data θ̂ =
(
x⊤x

)−1
x⊤ỹ. How

close is x̃⊤θ̂ to x̃⊤θ∗? This kind of standard deviation is proportional to

√
x̃ (x⊤x)

−1
x̃ .

Considering voting, model selection and top-k movie questions, for these tasks, we cannot use smooth
sensitivity.

15.1.4 Release Stable Values without adding noise

Let’s define “Dist2Instability” function:

d(x) = min{d(x, x′′)− 1}

such that x′′ satisfies that f (x′′) ̸= f(x), which means that how many steps, or data points we need to
add/remove before x can be made into x′′ such that the output of x′′ is different from f(x), where f is the
query we want to release. The global sensitivity of d(x) is 1. The mechanism will do the following:

1. d̂ = d(x) + Lap
(
1
ε

)
2. if d̂ >

log 1
δ

ε , then output f(x);

else if d̂ ≤ log 1
δ

ε , then output ”⊥”. We use the symbol ”⊥” to denote nothing.

Then, we will show the privacy analysis of “Dist2Instability” by discussing two cases:

• Case A: d(x) = 0⇒ ∀x′ that is a neighbor of x, such that f(x)′ ̸= f(x), then d (x′) = 0:

d(x) = 0⇒ ∃x′′ such that d (x, x′′) ⩽ 1 and f(x)′′ ̸= f(x). If d(x, x′) ≤ 1, then d(x′) = min{d(x′, x′′)−
1} = 0.

On data set x and x′, we are both adding Laplace noise to 0:

x : 0 + Lap
(
1
ε

)
x′ : 0 + Lap

(
1
ε

)
These two outputs should be identical unless Lap

(
1
ε

)
>

Lap( 1
ε )

ϵ , which happens with probability less
than δ. So in the Case A, “Dist2Instability” satisfies (0, δ) - DP.

• Case B: d(x) ̸= 0, then f(x) = f(x′), ∀x′ such that d(x′, x) = 1. We need to discuss two cases:

1. output is ⊥. When d̂ >
Lap( 1

ε )
ϵ , it is a post-processing of d̂ = d(x) + Lap

(
1
ε

)
2. output is f(x). When d̂ <

Lap( 1
ε )

ϵ , it is also a post-processing of d̂ = d(x) + Lap
(
1
ε

)
Then in Case B, “Dist2Instability” satisfies ϵ - DP.

Considering case A and B together, “Dist2Instability” satisfies (ϵ, δ) - DP.
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15.2 Propose-Test-Release

Firstly, we propose a bound β on local-sensitivity and test the validity of this bound:

d̂ = d (x, {x′ : LSq (x
′) > β}) + Lap(1/ε).

Then, we release the result: if d̂ >
log 1

δ

ε , return q(x) + Lap
(

β
ε

)
; else return ”⊥”.

Proposition 15.5. (propose-test-release [33]). For every query q : Xn → R and ε, δ, β ≥ 0, the above
algorithm is (2ε, δ)-differentially private.

15.2.1 The privacy analysis of PTR

We will show the privacy analysis of PTR by discussing two cases:

• Case 1: When the local sensitivity of dataset x is greater than β:

LSq(x) > β ⇒ d (x, {x′′ : LSq (x
′) > β)) = 0

d̂(x) = 0 + Lap

(
1

ε

)
P
(
d̂(x) >

Lap 1
δ

ε

)
≤ δ

Let’s define d̂(x) >
Lap 1

δ

ε as event E. And the output space S is R ∪ {⊥}, we have:

P(M(x) ∈ S) = P
(
M(x) ∈ S ∩ EC

)
+ P(M(x) ∈ S ∩ E)

⩽ P(M(x) = ” ⊥ ”) + δ

⩽ eϵP
(
M(x) ∈ S ∩ EC

)
+ δ

⩽ eϵP (M(x) ∈ S) + δ

Then, it satisfies (ϵ, δ)-DP.

• Case 2: When the local sensitivity of dataset x is less or equal than β:

LS(x) ⩽ β

|q(x)− q (x′)| ⩽ β

The Laplace mechanism outputs M(x) ∈ R ∪ {⊥}. This is the adaptive composition of d̂, which is a
post-processing of q-DP mechanism; and q(x) + Lap

(
1
ε

)
and q(x′) + Lap

(
1
ε

)
are ϵ-indistinguishable.

Then, it satisfies (2ϵ, 0)-DP.

Considering case 1 and case 2 together, PTR satisfies (2ϵ, δ)-DP.

15.2.2 Releasing local sensitivity privately

How do we know what bound to propose? Let’s say we want to estimate the number of triangles in a graph
under Edge Differential Privacy. The global sensitivity is n− 2. The local sensitivity is bounded by the max
degree of G. The local sensitivity has itself a global sensitivity that is 1: ∆LSq

= 1.

If we can provide a high probability upper bound of the local sensitivity, then we can add noise and it satisfies
(2ε, δ)-DP.



Lecture 15: Propose-Test-Release 15-5

Lemma 15.6. Let ∆̃f (D) satisfies ε-DP and

P
[
∆f (D) ≥ ∆̃f (D)

]
≤ δ

Then f(D) + Lap
(
∆̃f (D)/ϵ

)
satisfies (2ε, δ)-DP.

Proof. Let’s say (y, ∆̃) is the output of the algorithm, where ∆̃ is ϵ-DP and y = f(x)+Lap
(

∆̃
ϵ

)
. Let’s define

E as
{
E | ∆̃f > ∆f

}
:

P
[
(y, ∆̃) ∈ S1 × S2 | x

]
= Px

[
(y, ∆̃) ∈ S1 × S2 ∩ E

]
+ Px

[
(y, ∆̃) ∈ S1 × S2 ∩ EC

]
⩽

∫
∆̃∈S2∩E

[
y ∈ S1 | ∆̃

]
d∆̃ · Px

[
∆̃ ∈ S2 ∩ E

]
+ δ

⩽
∫
∆̃∈S2∩E

eεPx′

[
y ∈ S1 | ∆̃

]
d∆̃ · eεPx′

[
∆̃ ∈ S2 ∩ E

]
+ δ

⩽ e2εPx′

[
(y, ∆̃) ∈ S1 × (S2 ∩ E)

]
+ δ

⩽ e2εPx′

[
(y, ∆̃) ∈ S1 × S2

]
+ δ

Then, it satisfies (2ε, δ)-DP.
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