
CS291A Introduction to Differential Privacy Fall 2021

Lecture 4: Private Multiplicative Weights (Oct. 6)
Lecturer: Yu-Xiang Wang Scribes: Xi Gong

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They
may be distributed outside this class only with the permission of the Instructor.

4.1 Private multiplicative weights

In the previous lecture, we have seen that the Laplace mechanism yields normalized error of |Q| log(|Q|/δ)
nε for

query release, and normalized error of

√
|X| log( 1

δ )

nε for data release. Yet, this leaves the question of whether
it is possible for the error to depend polylogarithmically on both |Q| and |X|. This question is answered
positively by the private multiplicative weights algorithm which we will introduce in this lecture.

We first state a non-private version of the algorithm.

Algorithm: Online query release without privacy

• True data p = x
n , initialize synthetic dataset p̃i = 1

|X| , initialize accuracy parameter α.

• Adversary selects an online sequence of queries

• If |q>p̃t − q>p| ≥ α:

1. Privately release y = q>p.

2. Set the loss vector to be `t := sign(q>p̃t − q>p)× q.
3. Update p̃t+1 = Normalize(p̃te

−η`t).

4. Increment t, i.e., t = t+ 1. Break if t > N .

• Else: release q>p̃.

While this algorithm is clearly non-private, its utility analysis will provide useful insight when we extend it to
the private version. Before analysing its utility, we need to take a detour and state a classical result on the
multiplicative weights algorithm. From this result, one can conclude that even when facing fully adaptive
queries that aim to maximize the number of rounds for |q>p̃t − q>p| ≥ α, the number of times we are above
threshold grows only logarithmically in |X| (which is good!). Later we will see that this translates to a small
number of times we will need to spend from our privacy budget.

Algorithm: Multiplicative weights

1: Initialize: ∀i ∈ [N ],W1(i) = 1
2: for t = 1 to T do

3: Pick it ∼R Wt, i.e., it = i with probability xt(i) = Wt(i)∑
jWt(j)

4: Incur loss `t (it)
5: Update weights Wt+1(i) = Wt(i)e

−ε`t(i)

6: end for

4-1



4-2 Lecture 4: Private Multiplicative Weights

An important theorem on the Multiplicative Weights algorithm is the following:

Theorem 4.1. Let `2t denote the N -dimensional vector of square losses, i.e., `2t (i) = `t(i)
2, let ε =

√
log(N)
T ,

and assume `t(i) ∈ [−1, 1]. The Multiplicative Weights algorithm satisfies for any expert i? ∈ [N ] :

T∑
t=1

x>t `t ≤
T∑
t=1

`t (i?) + 2
√
T logN.

Instead of competing against a fixed best expert, we can easily generalize this theorem to be against arbitrary
distribution over the experts. This results in the following corollary.

Corollary 4.2. Under the same setting as the previous theorem, the Multiplicative weights algorithm satisfies
for arbitrary p ∈ ∆N :

T∑
t=1

x>t `t ≤
T∑
t=1

p>`t + 2
√
T logN.

Since `t := sign(q>p̃t − q>p) ∈ [−1, 1]|X| and xt := p̃t can be considered as elements of ∆X , we can apply
this corollary to the non-private MW algorithm by direct substitution. We get

T∑
t=1

(xt − p)>`t :=

T∑
t=1

(p̃t − p)>qt × sign(q>t p̃t − q>t p) (4.1)

=

T∑
t=1

|q>t p̃t − q>t p| (4.2)

≤ 2
√
T log |X|. (4.3)

On the other hand, we enter the if statement (i.e., the error is above threshold) iff |q>p̃t − q>p| ≥ α, which
implies

Tα ≤
T∑
t=1

|q>t p̃t − q>t p|.

Combine the bounds, we get Tα ≤
∑T
t=1 |q>t p̃t − q>t pt| ≤ 2

√
T log |X|. Thus T ≤ log|X|

α2 .

For this algorithm, privacy is left unprotected when the algorithm decides which queries answers are above
the threshold error, and when it updates the synthetic dataset using information of y := q>p̃. Once these
two non-private procedures are identified, we are now ready to upgrade it to a private version by applying
Above threshold to the former, and Laplace mechanism to the latter. Both of which are the building blocks
of privacy which we have seen in previous lectures.



Lecture 4: Private Multiplicative Weights 4-3

Algorithm: Private Multiplicative Weights

• True data p = x
n , initialize synthetic dataset p̃i = 1

|X| , set α̃ = α+ Lap( 2
nε0

).

• Adversary selects an online sequence of queries

• If |q>p̃t − q>p|+ Lap( 4
nε0

) ≥ α̃:

1. Privately release y = q>p+ Lap( 1
nε0

)

2. Set the loss vector to be `t := sign(q>p̃t − y)× q.
3. Update p̃t+1 = Normalize(p̃te

−η`t).

4. Increment t, i.e., t = t+ 1. Break if t > N .

5. Refresh threshold noise: α̂ = α+ Lap( 2
nε0

)

• Else: release q>p̃t.

The key idea of Private MW is analogous to the sparse vector technique. In SVT, we achieve a better
dependency on the number of queries by answering only a small number of “interesting” queries that are
above a predefined threshold. In Private MW, we will achieve the same by answering only the “interesting”
queries that the synthetic data fails to answer accurately, while answering the rest with no privacy cost (using
synthetic data). Since the multiplicative weight algorithm ensures that our synthetic dataset is able to learn
the true dataset quickly and privately, we know there is only a small number of “interesting” queries that
degrade the privacy.

The choice of unspecified parameters N and ε0 will be derived naturally by going through the privacy
and accuracy analysis. For utility analysis, we ”de-randomize” the algorithm by hiding the undesirable
events under the small δ probability, and perform analysis on events that happen with high probability in a
deterministic fashion.

Given queries of size k, the number of Laplace random variables invoked by Private MW is upper bounded
by 2N + k, due to the applications of Above threshold and Laplace mechanism. Let {Zi} be the set of all
Laplace random variables released throughout the run of the algorithm. Since we only care about upper
bounding |Zi| with large probability, we treat each Zi as a Lap( 4

nε0
) random variable, which has the largest

Laplace parameter among the entire algorithm. By union bound,

P(∀i, |Zi| ≤
4

nε0
log(

2N + k

δ
)) ≥ 1− δ.

This allows us to treat |Zi| ≤ 4
nε0

log( 3k
δ ) as a deterministic event in the rest of the analysis. All statements

below simultaneously hold with probability at least 1− δ.

Claim 1. All selected answers (i.e., |p̃>qt − p>qt|+ Zi > α̃) are accurate.

If the answer is above threshold, the algorithm returns the perturbed true answer p>qt + Zk. We get

|(p>qt + Zk)− p>qt| = |Zk| <
4

nε0
log(

3k

δ
).

Claim 2. All answers that are not selected are accurate.

If the answer is below threshold, then |p̃>qt − p>qt|+ Zi ≤ α+ Zj and we get



4-4 Lecture 4: Private Multiplicative Weights

|p̃>qt − p>qt| ≤ α+ |Zi|+ |Zj | < α+
8

nε0
log(

3k

δ
).

Claim 3. From the regret bound of MW, the number of iterations is small.

Recall that in the non-private version, we have the bound Tα ≤
∑T
t=1(p̃t − p) · q sign(p̃>t qt − p>qt) ≤

2
√
T log |X|. We want the same bound to hold in the privatized version of this algorithm (to arrive at the

conclusion of T ∈ O( log |X|
α2 )), meaning that we want a bound of the form

Θ(Tα) ≤
T∑
t=1

(p̃t − p)> · qt sign(p̃>t qt − (p>qt + Zi)) ≤ 2
√
T log |X|.

This bound will be readily available if the sign of p̃>qt − p>qt does not change under the perturbation by
the Laplace random variable Zi. A sufficient condition for invariance of sign is |p̃qt − p>qt| > |Zk|, and it
remains to choose an appropriate parameter for Zi for this inequality to hold. For an answer to be selected,
we must have |p̃q − p>qt|+ Zi > α+ Zj , meaning that |p̃>qt − p>qt| > α+ Zj − Zi. To ensure the sign is

invariant, we also require |p̃>qt − p>qt| > α + Zj − Zi
set
> |Zk|. This inequality holds if we pick ε0 so that

|Zk| < 4
nε0

log( 3k
δ )

set
= α

4 , so we set ε0 :=
16 log( 3k

δ )

nα .

With this choice of ε0, it is guaranteed that |p̃>qt − p>qt| > α
2 , so we adjust the lower bound and obtain

T (
α

2
) ≤

T∑
t=1

(p̃− p) · qt sign(p̃>qt − (p>qt + Zi)) ≤ 2
√
T log |X|,

meaning that T ≤ 16 log |X|
α2 . This completes the proof of claim 3.

Claim 1. and claim 2. together shows that the errors of query answers are uniformly small. In particular, one
can easily check that under the specified choice of ε0 in claim 3., for all q ∈ Q we have

|p̃>qt − p>qt| < 1.25α.

Since we visit the synthetic dataset by at most 16 log |X|
α2 times, we set N = 16 log |X|

α2 .

In regards to privacy, we apply Above threshold and Laplace mechanism for each round we update our
synthetic dataset, which happens for at most N rounds. With the choice of ε0 and N specified above, by
basic composition theorem the privacy budget needs to be at least

εtotal = 2ε0N =
512 log(3k

δ ) log(|X|)
nα3

.

To sum up, we have proven the following theorem.



Lecture 4: Private Multiplicative Weights 4-5

Theorem 4.3. With probability at least 1− δ, the Private MW algorithm calibrated to achieve ε−DP is able
to answer any online sequence of |Q| linear queries and a max error bounded by

1.25α ≤ 1.25
(
512
( log( 3|Q|

δ ) log(|X|)
nε

) 1
3 )

In comparison to two error bounds obtained through Laplace mechanism, Private MW has weaker dependence
on n but stronger dependence on either |X| or |Q|.

4.2 Exponential mechanism

Laplace mechanism serves little purpose when 1) the output space are discrete set or objects 2) instead of
accuracy, we want to maximize the value of a predefined utility function. Consider the following examle.
Suppose there n consumers each interested in purchasing one copy of an item, and the seller has an unlimited
supply of items. Each consumer is willing to purchase the item at his/her maximum price pi ∈ N. Furthermore,
all of the consumers are only to willing to pay an integer price for the item.

As the seller, we want a price p ∈ N that maximizes the total revenue
∑
pi≤p p. The optimal price p cannot

be released directly, so one can think of applying Laplace mechanism to preserve privacy. However, two
challenges arises: 1) the price provided by Laplace mechanism are numerical values, not integers 2) even
if we ignore the integer price constraint, the perturbed price may plummet the total revenue, making the
mechanism of little value.

The exponential algorithm serves to deal with these two challenges. First we formally define utility function
and its sensitivity. A utility function is a mapping u : N|X | ×R → R. We define its sensitivity to be

∆u ≡ max
r∈R

max
x,y:‖x−y‖1≤1

|u(x, r)− u(y, r)|.

The exponential algorithm is defined to output each r ∈ R with probability proportional to exp(εu(r, x))/∆u).



4-6 Lecture 4: Private Multiplicative Weights

Theorem 4.4. The exponential mechanism preserves (ε, 0) differential privacy.

Proof.

Pr [ME(x, u,R) = r]

Pr [ME(y, u,R) = r]
=

 exp( εu(x,r)
2∆u )∑

r′∈R exp

(
εu(x,r′)

2∆u

)


 exp( εu(y,r)
2∆u )∑

r′∈R exp

(
εu(y,r′)

2∆u

)


=

exp
(
εu(x,r)

2∆u

)
exp

(
εu(y,r)

2∆u

)
 ·


∑
r′∈R exp

(
εu(y,r′)

2∆u

)
∑
r′∈R exp

(
εu(x,r′)

2∆u

)


= exp

(
ε (u (x, r′)− u (y, r′))

2∆u

)

·


∑
r′∈R exp

(
εu(y,r′)

2∆u

)
∑
r′∈R exp

(
εu(x,r′)

2∆u

)


≤ exp
(ε

2

)
· exp

(ε
2

)
·


∑
r′∈R exp

(
εu(x,r′)

2∆u

)
∑
r′∈R exp

(
εu(x,r′)

2∆u

)


= exp(ε).

The utility analysis will be discussed in the next lecture.


	Private multiplicative weights
	Exponential mechanism

