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6.1 Recap

6.1.1 Exponential mechanism

Utility of Exponential mechanism: utility is defined as

u(x, y) = −max
q∈Q

∣∣∣ 1
n
qTx− 1

‖y‖1
qT y

∣∣∣
It satisfy with probability 1− β,

u(x, y∗)− u(x,M(x)) ≤ 2∆u

ε
log
|R|
β

Approximation error of a SmallDB: Let m = ‖x̃‖1 ≥ logQ
α2 , ∃x̃, s.t.error(x̃) ≤ α, and with probability at least

1− δ,

error(M(x)) ≤ α+
2

nε

( log |x| log |Q|
α2

+ log
1

β

)
.

6.1.2 Advanced composition

Theorem 1. The adaptive composition of k (ε, δ)-DP mechanisms satisfies (ε̃, δ̃)-DP where

ε̃ = ε
√

2k log(1/δ′)) + 2kε2, δ̃ = kδ + δ′

for any ε, δ ≥ 0, δ′ ≥ 0.

Application: Laplace mechanism, AboveThresh.

6.1.3 Privacy loss random variable

Definition:

εx,x
′

M = log
p(y)

p(y′)

where y ∼M(x).
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Lemma 2. (Tail bound to (ε, δ)-DP conversion). Let εx,x
′

Mi
be the PLRV of a mechanism. If

P (εx,x
′

Mi
> ε) ≤ δ

for all pairs of neighboring x, x′, then M satisfies (ε, δ)-DP.

6.2 Proof of advanced composition for pure DP mechanisms

Claim 3. The privacy loss random variable (PLRV) of adaptive composition is the sum of each mechanism.

Proof. Fix two neighboring datasets, consider a sequence of adaptively chosen pure-DP mechanismsM1, . . . ,Mk,
outputing y1, . . . , yk respectively.

εx,x
′

M1...Mk
= log

p(y1 . . . yk)

p′(y1 . . . yk)

= log
p(y1)p(y2|y1)p(yk|y1 . . . yk−1)

p′(p(y1)p′(y2|y1)p′(yk|y1 . . . yk−1)

=

k∑
i=1

εx,x
′

Mi(·,y1...yi−1) ≤ kε

Proof Idea of Advanced Composition:

• Observation 1: sometimes PLRV is positive, other times negative. They cancel with each other.

• Observation 2: as k gets larger, the sum of PLRV concentrates around its mean. One can calculate
their mean and bound the deviation from the mean.

• Observation 3: the adaptivity means that the PLRVwill depend on the past.

To prove advanced composition, we introduce Martingale and apply Azuma-Hoeffding’s inequality.

Definition 1. Martingale: a sequence of r.v. S1, . . . , Sn, . . . is a Martingale if for any n,

E[|Sn|] <∞,
E[Sn+1|S1, . . . , Sn] = Sn

Lemma 4. Azuma-Hoeffding’s inequality: Assume X1, . . . , Xn are Martingale differences

Sn = X1 + · · ·+Xn

then Sn can be bounded w.h.p:

P [Sn > ε] ≤ exp
(
− 2ε2∑n

i=1(bi − ai)2

)
Let the martingale differences be

Xi = εx,x
′

·|y1,...,yi−1
− E[εx,x

′

·|y1,...,yi−1
|y1, . . . , yn−1].
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and they are bounded by

−ε− E[εx,x
′

·|y1,...,yi−1
|y1, . . . , yn−1] ≤ Xi ≤ ε− E[εx,x

′

·|y1,...,yi−1
|y1, . . . , yn−1].

Fix x, x′, apply Azuma-Hoeffding’s inequality

P [

k∑
i=1

εx,x
′

Mi
− E

k∑
i=1

εx,x
′

Mi
≥ t] ≤ exp

(
− 2t2

4kε2

)
which shows that (M1, . . . ,Mk) satisfy (ε̃, δ̃)-DP with

ε̃ = E[

k∑
i=1

εx,x
′

Mi
] + ε

√
2k log(1/δ̃)

≤ 2kε2 + ε

√
2k log(1/δ̃)

Here we omit the condition (·|y1, . . . , yi−1). To prove the last inequality above, observe the expectation of
PLRV is the KL divergence:

E[εx,x
′

Mi
] =

∫
p(y) log

p(y)

q(y)
= DKL(P ||Q)

KL-divergence is always nonnegative, and satisfy Pinsker’s inequality:

Lemma 5. Pinsker’s inequality:

‖P −Q‖1 ≤
√

2DKL(P ||Q)

so it can be bounded by

DKL(P ||Q) = DKL(P ||Q) +DKL(Q||P )−DKL(Q||P )

≤
∫
p(x) log

p(x)

q(x)
dx+

∫
q(x) log

q(x)

p(x)
dx

=

∫
(p(x)− q(x))

p(x)

q(x)
dx

≤ ε‖P −Q‖1
≤ ε
√

2DKL(P ||Q)

which indicates that

DKL(P ||Q) ≤ 2ε2.

There are improved bounds of the KL-divergence and tighter version of Advanced composition:

• Bound from Dwork and Roth book DKL(P ||Q) ≤ ε(eε − 1).

• Bound from Bun and Steinke: DKL(P ||Q) ≤ ε2/2.

• Tight bound from Adam Smith (also in the proof of Bun and Steinke): DKL(P ||Q) ≤ ε e
ε−1
eε+1 =

ε tanh(ε/2).
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6.3 Gaussian mechanism

Mechanism: given f : N|x| → Rd, output f(x) +N (0, ε2Id).

Advantages:

• Gaussian noise is more concentrated than Laplace noise.

• L2 sensitivities are often lower than L1 sensitivities.

6.3.1 PLRV of the Gaussian mechanism

Privacy Loss Random Variable of the Gaussian mechanism is Gaussian:

εx,x
′

M ∼ N (η, 2η)

where η = D2/2σ2, D = ‖f(x)− f(x′)‖.

Proof.

log
exp(−‖f(x)−y‖2

2σ2 )

exp(−‖f
′(x)−y‖2

2σ2 )
=
−‖f(x)− y‖2 + ‖f(x′)− y‖2

2σ2

=
1

2σ2
(‖f(x)− f(x′)‖2 + 2(f(x′)− f(x))T (f(x)− y)) ∼ N (η, 2η).

6.3.2 Privacy analysis

Recall Lemma 2, using the tail bound of Gaussian mechanism, one can prove Gaussian mechanism is DP:

Lemma 6. Gaussian tail bound: let X ∼ N (µ, σ2), we have

P (X − µ ≥ u) ≤ exp(−u2/(2σ2))

Combining the above two lemmas, one can find that the Gaussian mechanism with variance σ2 for a query
with L2-sensitivity ∆ satisfies (ε, δ)-DP with

ε =
∆2

2σ2
+

∆2

σ

√
2 log(1/δ)

For 0 < ε, δ ≤ 1, the mechanism observe (ε, δ)-DP if we choose

σ =
∆

ε

√
2 log(1.25/δ).
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6.4 Concentrated Differential Privacy

6.4.1 Centration inequalities

Markov’s inequality: For any non-negative r.v. X : P (X ≥ t) ≤ E[X]
t .

Chebychev’s inequality: For any r.v. with variable σ2, P (|X − E[X]| ≥ tσ) ≤ 1
t2 .

(proof: taking (X − E[X])2 as the r.v. and apply Markov’s inequality.)

Generalizing Chebychev inequality: P (|X − E[X]| ≥ t) ≤ E[|X−E[X]|k]
tk

.

Chebychev’s method: Define µ = E[X]. For any t > 0, we have that

P ((X − µ) ≥ u) = P (exp(t(X − µ)) ≥ exp(tu)) ≤ E[exp(t(X − µ))]

exp(tu)

which leads to Chebychev’s bound:

P ((X − µ) ≥ u) ≤ inf
0≤t≤b

exp(−t(u+ µ))E[exp(tX)].

6.4.2 Subgaussian random variables

We say a random variable with mean µ is σ-subgaussian if

E[exp(t(X − µ))] ≤ exp(σ2t2/2)

for all t ∈ R. We say that X is subgaussian if there exists constants σ. Gaussian random variables and
bounded random variables are subgaussian. The tail of subgaussian random variables can be bounded by

P (X − µ > u) ≤ exp(−u2/(2σ2))

The proof uses Chernoff’s method and set t = u
σ2 .

Claim 7. Average of n independent σ-subgaussian RVs is σ√
n

subgaussian.

Proof. Define µ̂ = 1
n

∑n
i=1Xi. Obvoulsy , E[µ̂] = 1

n

∑n
i=1 µ = µ

E[exp(t(µ̂− µ))] = E[exp(t/n

n∑
i=1

(Xi − µ))]

=

n∏
i=1

E[exp(t(Xi − µ)/n)]

≤ exp(t2σ2/(2n))

This implies that
P (|µ̂− µ| > kσ/

√
n) ≤ 2 exp(−k2/2).

To handle mechanisms that are Gaussian-mechanism-like, one can prove that for any neighboring datasets,
the PLRV is σ-subgaussian. Then the sum of k PLRVs is σ

√
k-subgaussian, which proves the composition.
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6.4.3 Renyi Differential Privacy

The Moment Generating function of PLRV is

Ex∼P [exp(t log
p(x)

q(x)
)] = Ex∼P [(

p(x)

q(x)
)t]

=

∫
p(x)(

p(x)

q(x)
)tdx

=

∫
q(x)((

p(x)

q(x)
)t+1)dx

= Ex∼Q((
p(x)

q(x)
)t+1)

Definition 2. Renyi divergence: for α ∈ (0, 1) ∪ (1,∞),

Dα(P ||Q) =
1

α− 1
ln

∫
pαq1−αdu

Special cases:

• α = 1: KL divergence.

• α =∞: D∞(P ||Q) =∈ (ess supP
p
q ).

• α = 2: χ2 divergence.

• α = 1/2: Hellinger distance.

We say that a mechanism satisfies (α, ε)-Renyi DP, if

Dα(M(x)||M(x′)) ≤ ε.

We say a mechanism satisfies ρ-zCDP, if

Dα(M(x)||M(x′)) ≤ ρα,∀α > 1.

If a mechanism is ρ-zCDP, it’s PLRV is O(ρ) subgaussian.

Properties:

• Adaptive composition: ifM1 is (α, ε1)-Renyi DP,M2 is (α, ε2)-Renyi DP, then (M1,M2) is (α, ε1 +ε2)-
Renyi DP.

• Conversion to approximate DP: (α, ε1)-Renyi DP implies (ε(α) + log(1/δ)
α−1 , δ) −DP . ρ-zCDP implies

(ρ+ 2
√
ρ log(1/δ), δ)-DP.

• Other properties: Postprocessing, risk multiplier, group privacy (see Mironov, 2017).

zCDP provides tighter composition:

1. pure-DP mechanism: ε = k
2 ε

2 + ε
√

2 log(1/δ).

2. Gaussian mechanism: ε = k∆2

2σ2 + ∆
σ

√
2k log(1/δ).


	Recap
	Exponential mechanism
	Advanced composition
	Privacy loss random variable

	Proof of advanced composition for pure DP mechanisms
	Gaussian mechanism
	PLRV of the Gaussian mechanism
	Privacy analysis

	Concentrated Differential Privacy
	Centration inequalities
	Subgaussian random variables
	Renyi Differential Privacy


