CS291A Introduction to Differential Privacy

Fall 2021

Lecture 6: Advanced Composition (Part II), Gaussian mechanism (October 13)

Lecturer: Yu-Xiang Wang Scribes: Kaiqi Zhang

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

6.1 Recap

6.1.1 Exponential mechanism

Utility of Exponential mechanism: utility is defined as

$$u(x,y) = -\max_{q \in Q} \left| \frac{1}{n} q^T x - \frac{1}{\|y\|_1} q^T y \right|$$

It satisfy with probability $1 - \beta$,

$$u(x, y^*) - u(x, \mathcal{M}(x)) \le \frac{2\Delta u}{\epsilon} \log \frac{|R|}{\beta}$$

Approximation error of a SmallDB: Let $m = \|\tilde{x}\|_1 \ge \frac{\log Q}{\alpha^2}$, $\exists \tilde{x}, s.t.error(\tilde{x}) \le \alpha$, and with probability at least $1 - \delta$,

$$error(\mathcal{M}(x)) \le \alpha + \frac{2}{n\epsilon} \Big(\frac{\log|x|\log|Q|}{\alpha^2} + \log\frac{1}{\beta} \Big).$$

6.1.2 Advanced composition

Theorem 1. The adaptive composition of k (ϵ, δ) -DP mechanisms satisfies $(\tilde{\epsilon}, \tilde{\delta})$ -DP where

$$\tilde{\epsilon} = \epsilon \sqrt{2k \log(1/\delta')} + 2k\epsilon^2, \tilde{\delta} = k\delta + \delta'$$

for any $\epsilon, \delta \geq 0, \delta' \geq 0$.

Application: Laplace mechanism, AboveThresh.

6.1.3 Privacy loss random variable

Definition:

$$\epsilon_{\mathcal{M}}^{x,x'} = \log \frac{p(y)}{p(y')}$$

where $y \sim \mathcal{M}(x)$.

Lemma 2. (Tail bound to (ϵ, δ) -DP conversion). Let $\epsilon_{\mathcal{M}_i}^{x,x'}$ be the PLRV of a mechanism. If

$$P(\epsilon_{\mathcal{M}_i}^{x,x'} > \epsilon) \le \delta$$

for all pairs of neighboring x, x', then \mathcal{M} satisfies (ϵ, δ) -DP.

6.2 Proof of advanced composition for pure DP mechanisms

Claim 3. The privacy loss random variable (PLRV) of adaptive composition is the sum of each mechanism.

Proof. Fix two neighboring datasets, consider a sequence of adaptively chosen pure-DP mechanisms $\mathcal{M}_1, \dots, \mathcal{M}_k$, outputing y_1, \dots, y_k respectively.

$$\epsilon_{\mathcal{M}_{1}...\mathcal{M}_{k}}^{x,x'} = \log \frac{p(y_{1}...y_{k})}{p'(y_{1}...y_{k})}$$

$$= \log \frac{p(y_{1})p(y_{2}|y_{1})p(y_{k}|y_{1}...y_{k-1})}{p'(p(y_{1})p'(y_{2}|y_{1})p'(y_{k}|y_{1}...y_{k-1})}$$

$$= \sum_{i=1}^{k} \epsilon_{\mathcal{M}_{i}(\cdot,y_{1}...y_{i-1})}^{x,x'} \leq k\epsilon$$

Proof Idea of Advanced Composition:

- Observation 1: sometimes PLRV is positive, other times negative. They cancel with each other.
- \bullet Observation 2: as k gets larger, the sum of PLRV concentrates around its mean. One can calculate their mean and bound the deviation from the mean.
- Observation 3: the adaptivity means that the PLRVwill depend on the past.

To prove advanced composition, we introduce Martingale and apply Azuma-Hoeffding's inequality.

Definition 1. Martingale: a sequence of r.v. S_1, \ldots, S_n, \ldots is a Martingale if for any n,

$$\mathbb{E}[|S_n|] < \infty,$$

$$\mathbb{E}[S_{n+1}|S_1, \dots, S_n] = S_n$$

Lemma 4. Azuma-Hoeffding's inequality: Assume X_1, \ldots, X_n are Martingale differences

$$S_n = X_1 + \dots + X_n$$

then S_n can be bounded w.h.p:

$$P[S_n > \epsilon] \le \exp\left(-\frac{2\epsilon^2}{\sum_{i=1}^n (b_i - a_i)^2}\right)$$

Let the martingale differences be

$$X_i = \epsilon_{\cdot | y_1, \dots, y_{i-1}}^{x, x'} - \mathbb{E}[\epsilon_{\cdot | y_1, \dots, y_{i-1}}^{x, x'} | y_1, \dots, y_{n-1}].$$

and they are bounded by

$$-\epsilon - \mathbb{E}[\epsilon_{\cdot,y_1,\dots,y_{i-1}}^{x,x'}|y_1,\dots,y_{n-1}] \le X_i \le \epsilon - \mathbb{E}[\epsilon_{\cdot,y_1,\dots,y_{i-1}}^{x,x'}|y_1,\dots,y_{n-1}].$$

Fix x, x', apply Azuma-Hoeffding's inequality

$$P\left[\sum_{i=1}^{k} \epsilon_{\mathcal{M}_{i}}^{x,x'} - \mathbb{E}\sum_{i=1}^{k} \epsilon_{\mathcal{M}_{i}}^{x,x'} \ge t\right] \le \exp\left(-\frac{2t^{2}}{4k\epsilon^{2}}\right)$$

which shows that $(\mathcal{M}_1, \ldots, \mathcal{M}_k)$ satisfy $(\tilde{\epsilon}, \tilde{\delta})$ -DP with

$$\tilde{\epsilon} = \mathbb{E}\left[\sum_{i=1}^{k} \epsilon_{\mathcal{M}_i}^{x,x'}\right] + \epsilon \sqrt{2k \log(1/\tilde{\delta})}$$

$$\leq 2k\epsilon^2 + \epsilon \sqrt{2k \log(1/\tilde{\delta})}$$

Here we omit the condition $(\cdot|y_1,\ldots,y_{i-1})$. To prove the last inequality above, observe the expectation of PLRV is the KL divergence:

$$\mathbb{E}[\epsilon_{\mathcal{M}_i}^{x,x'}] = \int p(y) \log \frac{p(y)}{q(y)} = D_{KL}(P||Q)$$

KL-divergence is always nonnegative, and satisfy Pinsker's inequality:

Lemma 5. Pinsker's inequality:

$$||P - Q||_1 \le \sqrt{2D_{KL}(P||Q)}$$

so it can be bounded by

$$D_{KL}(P||Q) = D_{KL}(P||Q) + D_{KL}(Q||P) - D_{KL}(Q||P)$$

$$\leq \int p(x) \log \frac{p(x)}{q(x)} dx + \int q(x) \log \frac{q(x)}{p(x)} dx$$

$$= \int (p(x) - q(x)) \frac{p(x)}{q(x)} dx$$

$$\leq \epsilon ||P - Q||_1$$

$$\leq \epsilon \sqrt{2D_{KL}(P||Q)}$$

which indicates that

$$D_{KL}(P||Q) \le 2\epsilon^2$$
.

There are improved bounds of the KL-divergence and tighter version of Advanced composition:

- Bound from Dwork and Roth book $D_{KL}(P||Q) \le \epsilon(e^{\epsilon} 1)$.
- Bound from Bun and Steinke: $D_{KL}(P||Q) \leq \epsilon^2/2$.
- Tight bound from Adam Smith (also in the proof of Bun and Steinke): $D_{KL}(P||Q) \leq \epsilon \frac{e^{\epsilon}-1}{e^{\epsilon}+1} = \epsilon \tanh(\epsilon/2)$.

6.3 Gaussian mechanism

Mechanism: given $f: \mathbb{N}^{|x|} \to \mathbb{R}^d$, output $f(x) + \mathcal{N}(0, \epsilon^2 I_d)$.

Advantages:

- Gaussian noise is more concentrated than Laplace noise.
- L2 sensitivities are often lower than L1 sensitivities.

6.3.1 PLRV of the Gaussian mechanism

Privacy Loss Random Variable of the Gaussian mechanism is Gaussian:

$$\epsilon_{\mathcal{M}}^{x,x'} \sim \mathcal{N}(\eta, 2\eta)$$

where $\eta = D^2/2\sigma^2$, D = ||f(x) - f(x')||.

Proof.

$$\log \frac{\exp(-\frac{\|f(x)-y\|^2}{2\sigma^2})}{\exp(-\frac{\|f'(x)-y\|^2}{2\sigma^2})} = \frac{-\|f(x)-y\|^2 + \|f(x')-y\|^2}{2\sigma^2}$$
$$= \frac{1}{2\sigma^2} (\|f(x)-f(x')\|^2 + 2(f(x')-f(x))^T (f(x)-y)) \sim \mathcal{N}(\eta, 2\eta).$$

6.3.2 Privacy analysis

Recall Lemma 2, using the tail bound of Gaussian mechanism, one can prove Gaussian mechanism is DP:

Lemma 6. Gaussian tail bound: let $X \sim \mathcal{N}(\mu, \sigma^2)$, we have

$$P(X-\mu \geq u) \leq \exp(-u^2/(2\sigma^2))$$

Combining the above two lemmas, one can find that the Gaussian mechanism with variance σ^2 for a query with L2-sensitivity Δ satisfies (ϵ, δ) -DP with

$$\epsilon = \frac{\Delta^2}{2\sigma^2} + \frac{\Delta^2}{\sigma} \sqrt{2\log(1/\delta)}$$

For $0 < \epsilon, \delta \le 1$, the mechanism observe (ϵ, δ) -DP if we choose

$$\sigma = \frac{\Delta}{\epsilon} \sqrt{2 \log(1.25/\delta)}.$$

6.4 Concentrated Differential Privacy

6.4.1 Centration inequalities

Markov's inequality: For any non-negative r.v. $X: P(X \geq t) \leq \frac{\mathbb{E}[X]}{t}$.

Chebychev's inequality: For any r.v. with variable σ^2 , $P(|X-E[X]| \ge t\sigma) \le \frac{1}{t^2}$. (proof: taking $(X-E[X])^2$ as the r.v. and apply Markov's inequality.)

Generalizing Chebychev inequality: $P(|X - E[X]| \ge t) \le \frac{\mathbb{E}[|X - E[X]|^k]}{t^k}$.

Chebychev's method: Define $\mu = \mathbb{E}[X]$. For any t > 0, we have that

$$P((X - \mu) \ge u) = P(\exp(t(X - \mu)) \ge \exp(tu)) \le \frac{\mathbb{E}[\exp(t(X - \mu))]}{\exp(tu)}$$

which leads to Chebychev's bound:

$$P((X - \mu) \ge u) \le \inf_{0 \le t \le b} \exp(-t(u + \mu)) \mathbb{E}[\exp(tX)].$$

6.4.2 Subgaussian random variables

We say a random variable with mean μ is σ -subgaussian if

$$\mathbb{E}[\exp(t(X-\mu))] \le \exp(\sigma^2 t^2/2)$$

for all $t \in \mathbb{R}$. We say that X is subgaussian if there exists constants σ . Gaussian random variables and bounded random variables are subgaussian. The tail of subgaussian random variables can be bounded by

$$P(X - \mu > u) \le \exp(-u^2/(2\sigma^2))$$

The proof uses Chernoff's method and set $t = \frac{u}{\sigma^2}$.

Claim 7. Average of n independent σ -subgaussian RVs is $\frac{\sigma}{\sqrt{n}}$ subgaussian.

Proof. Define $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$. Obvoulsy, $\mathbb{E}[\hat{\mu}] = \frac{1}{n} \sum_{i=1}^{n} \mu = \mu$

$$\mathbb{E}[\exp(t(\hat{\mu} - \mu))] = \mathbb{E}[\exp(t/n\sum_{i=1}^{n}(X_i - \mu))]$$
$$= \prod_{i=1}^{n}\mathbb{E}[\exp(t(X_i - \mu)/n)]$$
$$\leq \exp(t^2\sigma^2/(2n))$$

This implies that

$$P(|\hat{\mu} - \mu| > k\sigma/\sqrt{n}) \le 2\exp(-k^2/2).$$

To handle mechanisms that are Gaussian-mechanism-like, one can prove that for any neighboring datasets, the PLRV is σ -subgaussian. Then the sum of k PLRVs is $\sigma\sqrt{k}$ -subgaussian, which proves the composition.

6.4.3 Renyi Differential Privacy

The Moment Generating function of PLRV is

$$\mathbb{E}_{x \sim P}[\exp(t \log \frac{p(x)}{q(x)})] = \mathbb{E}_{x \sim P}[(\frac{p(x)}{q(x)})^t]$$

$$= \int p(x)(\frac{p(x)}{q(x)})^t dx$$

$$= \int q(x)((\frac{p(x)}{q(x)})^{t+1}) dx$$

$$= \mathbb{E}_{x \sim Q}((\frac{p(x)}{q(x)})^{t+1})$$

Definition 2. Renyi divergence: for $\alpha \in (0,1) \cup (1,\infty)$,

$$D_{\alpha}(P||Q) = \frac{1}{\alpha - 1} \ln \int p^{\alpha} q^{1 - \alpha} du$$

Special cases:

- $\alpha = 1$: KL divergence.
- $\alpha = \infty$: $D_{\infty}(P||Q) = \in (\operatorname{ess\,sup}_{P} \frac{p}{q})$.
- $\alpha = 2$: χ^2 divergence.
- $\alpha = 1/2$: Hellinger distance.

We say that a mechanism satisfies (α, ϵ) -Renyi DP, if

$$D_{\alpha}(\mathcal{M}(x)||\mathcal{M}(x')) \leq \epsilon.$$

We say a mechanism satisfies ρ -zCDP, if

$$D_{\alpha}(\mathcal{M}(x)||\mathcal{M}(x')) \le \rho\alpha, \forall \alpha > 1.$$

If a mechanism is ρ -zCDP, it's PLRV is $O(\rho)$ subgaussian.

Properties:

- Adaptive composition: if \mathcal{M}_1 is (α, ϵ_1) -Renyi DP, \mathcal{M}_2 is (α, ϵ_2) -Renyi DP, then $(\mathcal{M}_1, \mathcal{M}_2)$ is $(\alpha, \epsilon_1 + \epsilon_2)$ -Renyi DP.
- Conversion to approximate DP: (α, ϵ_1) -Renyi DP implies $(\epsilon(\alpha) + \frac{\log(1/\delta)}{\alpha 1}, \delta) DP$. ρ -zCDP implies $(\rho + 2\sqrt{\rho \log(1/\delta)}, \delta)$ -DP.
- Other properties: Postprocessing, risk multiplier, group privacy (see Mironov, 2017).

zCDP provides tighter composition:

- 1. pure-DP mechanism: $\epsilon = \frac{k}{2}\epsilon^2 + \epsilon\sqrt{2\log(1/\delta)}$.
- 2. Gaussian mechanism: $\epsilon = \frac{k\Delta^2}{2\sigma^2} + \frac{\Delta}{\sigma} \sqrt{2k \log(1/\delta)}$.