Hello!

CS292F StatRL Lecture 9 Exploration in Tabular MDPs

Instructor: Yu-Xiang Wang
Spring 2021
UC Santa Barbara

Logistic notes

- HW1 due today.
- HW2 is posted on the course website.
- Q1: A simple coding question
- Q2: An alternative rate-optimal algorithm for MAB.
- Q3: Exploration in tabular RL

Recap: Lecture 8

- Linear Bandits
- Problem setup
- Regret definition
- Optimism in the face of uncertainty
- LinUCB algorithm
- Bounding sum of square regrets with information gain.
- a self-normalized Martingale Concentration

This lecture: Exploration in Reinforcement Learning

- Why is it challenging?
- The reward depends on both s, a
- Unlike the generative model setting, we cannot just choose any s to explore.
- The data needs to be actively collected
- We will study
- Tabular MDP \leftarrow
- Linear MDPs
- Both in the finite horizon episodic setting.

Recap: Finite horizon MDPs

- Parameterization / Setup O-byyel index. Por P

$$
M=\left(\mathcal{S}, \mathcal{A},\{P\}_{h},\{r\}_{h}, H, \mu\right)
$$

Nanctaturay Tvansiton: $P_{n}(G: S \times A \rightarrow \Delta S)$ dffers freadh $h \quad j=S_{0}$

- Ádditional notations $E\left[R_{n} \mid S_{n}=S, A_{1}, a\right]=: r_{n}(S, a)$
- Q functions
- V functions
- Policies
\square $Q_{H}^{\pi(\cdot)}=Q_{H}^{\pi_{H}+2} 0 \quad \forall$ s.achere
V_{n}^{π}, V_{n}^{*} Holvan $H<+\infty$ \qquad

Problem setup: online learning of Finite horizon MDPs

- Agent decides on a policy
- Collect a trajectory

$$
\left(S_{0}^{k}, A_{0}^{k}\right)
$$

- Agent updates the policy.

$$
\pi_{1 k}=\left\{\pi_{k / h} \quad \text { fo } h=0,-\left(h h_{1}\right.\right.
$$

$T_{t s h} S \rightarrow \Delta(A)$

- Regret definition

$$
\begin{aligned}
& R_{\text {egret }}=\sum_{k=0}^{k-1} R_{\text {grefec }}=k \cdot V^{*}\left(s_{0}\right)-\sum_{k=1}^{k=1} V^{\pi}\left(s_{0}\right)
\end{aligned}
$$

Recap: The need for strategic exploration

$$
r\left(s_{i, i}=0 \quad \forall i<H-1\right.
$$

$$
r\left(S_{(u,-\infty}\right) \equiv 1
$$

 $\forall a$

Rendumand efturotan $\quad \bar{P}\left(S_{+1}\right)=\left(\left.\frac{1}{2}\right|^{1}\right)$

UCB-VI: model-based learning by

 optimistic value Iterations- Construct estimates of the transition kernels

- Design exploration bonuses

- Idea: based on the uncertainty in the transition kernel estimates
- Update the policy by optimistic value iteration

How do we estimate the model parameters (P and r)?

- Simple plug-in estimator

At k, h

$$
P_{h}^{k}\left(s^{\prime} \mid s_{a}\right)=\frac{N_{h}^{k}\left(s, a, s^{\prime}\right)}{N_{h}^{k}(s, a)}
$$

- What happens if we observe no state-action pairs?

$$
\frac{0}{0}=: 0
$$

What does value iteration do in

 finite horizon MDPs?$$
\begin{aligned}
& \widehat{V}_{H}^{k}(s)=0, \forall s, \\
& \widehat{\widehat{Q}_{h}^{k}(s, a)}=\min \left\{\underline{r_{h}(s, a)+b_{h}^{k}(s, a)}+\widehat{P}_{h}^{k}(\cdot \mid s, a) \cdot \widehat{V}_{h+1}^{k}, H\right\}, \\
& \widehat{V}_{h}^{k}(s)=\max _{a} \widehat{Q}_{h}^{k}(s, a), \pi_{h}^{k}(s)=\operatorname{argmax}_{a} \widehat{Q}_{h}^{k}(s, a), \forall h, s, a . \\
& \text { - Remark: } \\
& \text { - It converges in H steps }
\end{aligned}
$$

- It produces a non-stationary policy indexed by h

How do we design exploration bonuses?

- Intuitively, this encourages exploring new stateaction pairs.
- Idea: propagate errors from the estimated transitions over to the rewards.

The regret of UCB-VI

 (Arr eta., 2017) (Vackishicticlo.- Theorem (AJKS Thm 6.1):

$$
\begin{aligned}
\text { Regret }:=\mathbb{E}\left[\sum_{k=0}^{K-1}\left(V^{\star}-V^{\pi^{k}}\right)\right] & \leq 2 H^{2} S \sqrt{A K \cdot \ln \left(S A H^{2} K^{2}\right)}=\widetilde{O}\left(H^{2} S \sqrt{A K}\right) \\
& \left.N_{0} \text { regent (Carry } A / g / \overline{H^{4} S^{2} A K}\right)
\end{aligned}
$$

- This is not optimal in H, S, but a simple analysis to start. We will talk about how to improve it towards the end.

Step 1: Concentration
leman: for all h, k, s, a, up. $1-\delta$
$\underline{L_{\text {man }}} 2$ wop $\geqslant 1-\delta$, for $\forall s, a, h, k$

$$
\begin{aligned}
& \left\|\underline{\hat{P}_{h}^{k}(\cdot \mid s a) \cdot V_{h+1}^{*}}-P_{h}^{P_{n}^{k}}(\cdot \mid s p) \cdot V_{h+1}^{*}\right\| \leqslant 1+\sqrt{\frac{L}{N_{n}^{k}\left(s_{a}\right)}} \\
& \frac{1}{\left.N_{h}^{k} S_{\infty}\right)} \sum_{i=1}^{k-1} \underbrace{V_{h+1}^{*}\left(S_{n}^{i}\right) \|\left(S_{h}^{i}=S, A_{h}^{i}=a\right)}_{1_{h+1}^{\prime} \cdot d R \cdot V .} \quad \underline{P(F a r l) \leqslant 2 \delta}
\end{aligned}
$$

Lemma 3, $V_{n}^{k} \geqslant V_{n}^{\text {Me }}$ for all $h=0,1, \cdots, H-1 H$
Proof ${ }_{\text {Base: }} \hat{V}_{A}^{k}=V_{h}{ }_{n}^{*}=0$
Assume for $h, \hat{V}_{h}^{k} \geqslant V_{h}^{*}$, we will prow tot $\hat{V}_{h-1}^{k} \geqslant V_{h-1} *$

Case (1) who u H is the smaller.

$$
\mathcal{Q}_{n-1}\left(s_{c}\right)=H \geqslant Q_{n-1}^{*}\left(s_{f}\right)
$$

$$
Q_{r_{1}-s_{0}}^{*}=r_{r_{1}}\left(s_{2}\right)+P_{m=1} \cdot r_{c_{1}}
$$

$$
\begin{aligned}
& V_{n}^{*}\left({ }^{*}\right)
\end{aligned}
$$

Finite horizon simulation lemma (from HW1)

$$
V_{n}^{\pi}=r_{h}+p_{n}^{\pi} V_{n}^{\pi}
$$

Take difference
recursinly apply thadifference \square

Regret in th Episode

Total regret

$$
\leq\left(E\left[\left(\sum_{k=1}^{k-1} \sum_{k}^{k}-v^{\pi k}\right) \mathbb{N}\left(N_{A} F_{a, 1}\right)\right]+2 \delta \cdot K \cdot H\right.
$$

$$
\leq \mathbb{E}\left[\sum_{k=0}^{k=1} \sum_{h=0}^{H-1} \sqrt{1+\sqrt{S L}}\right]+2 \delta \cdot k \cdot H
$$

($\Delta 1 c_{\text {chox }} \delta=\frac{1}{k_{H}}$

$$
\begin{aligned}
& (\Delta) \leqslant \mathbb{E}\left[\sum_{h=1}^{(t-1} \sum_{s, a} 2 \sqrt{M_{h}{ }^{k}(S A N)}\right]+28 . k H \\
& \leqslant \sum_{n=1}^{+1} \sqrt{S A \cdot \sum_{k=a}^{5} N_{n}^{k}(S a)}+28 \mathrm{k} \cdot \mathrm{H} \\
& \leqslant 2 H \sqrt{S A F K}+28 K H \leq 4 H \sqrt{S A K}
\end{aligned}
$$

Ideas for improving the dependence on S and H

$$
\begin{aligned}
& H \longdiv { \frac { L } { N _ { (S _ { 2 1 } } } } \\
& =\frac{\left(\lambda \sqrt{\frac{L}{N}}+\frac{S H L}{N}\right.}{N}
\end{aligned}
$$

Improve lt: Bernstein's inequity

Final notes about exploration in Tabular MDPs

- Optimal rates:
- Non-stationary transitions
- Stationary transitions

- State of the art:
- Stationary case: MVP O(sqrt\{H^2SAK\} + $\left.\mathrm{H}^{\wedge} 2 \mathrm{~S}^{\wedge} 2 \mathrm{~A}\right)$
- Zhang, Ji and Du (2020) https://arxiv.org/pdf/2009.13503.pdf
- Modified the episode reward bound from [0,1] to [0,H] to be consistent with this lecture
- Nonstationary case: $\mathrm{O}\left(\mathrm{sqrt}\left(\mathrm{H}^{\wedge} 3 \mathrm{SAK}\right)+\mathrm{H}^{\wedge} 4 \mathrm{~S}^{\wedge} 2 \mathrm{~A}\right)$
- Q-learning: Jin et al., Bai et al., optimal rates in Zhang et al. (2020)
- Open problem:
- Is it possible to get rid of the S dependence in the low-order terms.

