
CS292F StatRL Lecture 9
Exploration in Tabular MDPs

Instructor: Yu-Xiang Wang
Spring 2021

UC Santa Barbara

1

Logistic notes

• HW1 due today.

• HW2 is posted on the course website.
• Q1: A simple coding question
• Q2: An alternative rate-optimal algorithm for MAB.
• Q3: Exploration in tabular RL

2

Recap: Lecture 8

• Linear Bandits
• Problem setup
• Regret definition

• Optimism in the face of uncertainty
• LinUCB algorithm
• Bounding sum of square regrets with information gain.
• a self-normalized Martingale Concentration

3

This lecture: Exploration in
Reinforcement Learning
• Why is it challenging?
• The reward depends on both s, a
• Unlike the generative model setting, we cannot just

choose any s to explore.
• The data needs to be actively collected

• We will study
• Tabular MDP
• Linear MDPs
• Both in the finite horizon episodic setting.

4

Recap: Finite horizon MDPs

• Parameterization / Setup

• Additional notations
• Q functions
• V functions
• Policies

• Observed trajectory data

5

This allows us to rewrite the Bellman optimality equation in the concise form:

Q = T Q,

and, so, the previous theorem states that Q = Q? if and only if Q is a fixed point of the operator T .

Proof: We first show sufficiency, i.e. that Q? (the state-action value of an optimal policy) satisfies Q? = T Q?. Let
⇡? be an optimal stationary and deterministic policy, which exists by Theorem 1.7. First let us show that V ?(s) =
maxa Q?(s, a). We have that V ?(s) = V ⇡

?

(s) = Q⇡
?

(s,⇡?(a)) = Q?(s,⇡?(a)), by Lemma 1.4 and Theorem 1.7.
Also,

max
a

Q?(s, a) � Q?(s,⇡?(a)) = V ?(s) � max
a

max
⇡

Q⇡(s, a) � max
a

Q⇡
?

(s, a) = max
a

Q?(s, a),

which proves the claim. Now for all actions a 2 A, we have:

Q?(s, a) = max
⇡

Q⇡(s, a) = r(s, a) + �max
⇡

Es0⇠P (·|s,a)[V
⇡(s0)]

(a)
= r(s, a) + �Es0⇠P (·|s,a)[V

?(s0)]

= r(s, a) + �Es0⇠P (·|s,a)[max
a0

Q?(s0, a0)].

Here the equality (a) follows from Theorem 1.7. This proves sufficiency.

For the converse, suppose Q = T Q for some Q. We now show that Q = Q?. Let ⇡ = ⇡Q. That Q = T Q implies
that Q = r + �P⇡QQ, and so:

Q = (I � �P⇡Q)�1r = Q⇡

using Equation 0.2 in the last step. In other words, Q is the action value of the policy ⇡Q. Now observe for any other
deterministic and stationary policy ⇡0:

Q�Q⇡
0

= Q⇡ �Q⇡
0

= Q⇡ � (I � �P⇡
0
)�1r

= (I � �P⇡
0
)�1((I � �P⇡

0
)� (I � �P⇡))Q⇡

= �(I � �P⇡
0
)�1(P⇡ � P⇡

0
)Q⇡ .

The proof is completed by noting that (P⇡ � P⇡
0
)Q⇡ � 0. To see this, recall that (1 � �)(I � �P⇡

0
)�1 is a matrix

with all positive entries (see Lemma 1.6), and now we can observe that:

[(P⇡ � P⇡
0
)Q⇡]s,a = Es0⇠P (·|s,a)[Q

⇡(s0,⇡(s0))�Q⇡(s0,⇡0(s0))] � 0

where the last step uses that ⇡ = ⇡Q. Thus we have that Q � Q⇡
0

for all deterministic and stationary ⇡0 which shows
Q = Q?, using Theorem 1.7. This completes the proof.

1.2 (Episodic) Markov Decision Processes

It will also be natural for us to work with episodic Markov decision Processes. In reinforcement learning, the inter-
actions between the agent and the environment are often described by an episodic time-dependent Markov Decision
Process (MDP) M = (S,A, {P}h, {r}h, H, µ), specified by:

• A state space S , which may be finite or infinite.

• An action space A, which also may be discrete or infinite.

10

Problem setup: online learning of
Finite horizon MDPs
• Agent decides on a policy

• Collect a trajectory

• Agent updates the policy.

• Regret definition

6

Recap: The need for strategic
exploration

7

UCB-VI: model-based learning by
optimistic value Iterations
• Construct estimates of the transition kernels

• Design exploration bonuses

• Idea: based on the uncertainty in the transition kernel
estimates

• Update the policy by optimistic value iteration

8

How do we estimate the model
parameters (P and r)?
• Simple plug-in estimator

• What happens if we observe no state-action pairs?

9

What does value iteration do in
finite horizon MDPs?

• Remark:
• It converges in H steps
• It produces a non-stationary policy indexed by h

10

Algorithm 3 UCBVI
Input: reward function r (assumed to be known), confidence parameters

1: for k = 0 . . .K do
2: Compute bP k

h
as the empirical estimates, for all h (Eq. 0.1)

3: Compute reward bonus bk
h

for all h (Eq. 0.2)
4: Run Value-Iteration on { bP k

h
, r + bk

h
}H�1
h=0 (Eq. 0.3)

5: Set ⇡k as the returned policy of VI.
6: end for

we define:

Nk

h
(s, a, s0) =

k�1X

i=1

1{(si
h
, ai

h
, si

h+1) = (s, a, s0)},

Nk

h
(s, a) =

k�1X

i=1

1{(si
h
, ai

h
) = (s, a)}, 8h, s, a.

Namely, we maintain counts of how many times s, a, s0 and s, a are visited at time step h from the beginning of the
learning process to the end of the episode k � 1. We use these statistics to form an empirical model:

bP k

h
(s0|s, a) = Nk

h
(s, a, s0)

Nk

h
(s, a)

, 8h, s, a, s0. (0.1)

We will also use the counts to define a reward bonus, denoted as bh(s, a) for all h, s, a. Denote L := ln (SAHK/�)
(� as usual represents the failure probability which we will define later). We define reward bonus as follows:

bk
h
(s, a) = H

s
L

Nk

h
(s, a)

. (0.2)

With reward bonus and the empirical model, the learner uses Value Iteration on the empirical transition bP k

h
and the

combined reward rh + bk
h

. Starting at H (note that H is a fictitious extra step as an episode terminates at H � 1), we
perform dynamic programming all the way to h = 0:

bV k

H
(s) = 0, 8s,

bQk

h
(s, a) = min

n
rh(s, a) + bk

h
(s, a) + bP k

h
(·|s, a) · bV k

h+1, H
o
,

bV k

h
(s) = max

a

bQk

h
(s, a),⇡k

h
(s) = argmax

a
bQk

h
(s, a), 8h, s, a. (0.3)

Note that when using bV k

h+1 to compute bQk

h
, we truncate the value by H . This is because we know that due to the

assumption that r(s, a) 2 [0, 1], no policy’s Q value will ever be larger than H .

Denote ⇡k = {⇡k

0 , . . . ,⇡
k

H�1}. Learner then executes ⇡k in the MDP to get a new trajectory ⌧k.

UCBVI repeats the above procedure for K episodes.

6.2 Analysis

We will prove the following theorem.

56

How do we design exploration
bonuses?

• Intuitively, this encourages exploring new state-
action pairs.
• Idea: propagate errors from the estimated

transitions over to the rewards.

11

Algorithm 3 UCBVI
Input: reward function r (assumed to be known), confidence parameters

1: for k = 0 . . .K do
2: Compute bP k

h
as the empirical estimates, for all h (Eq. 0.1)

3: Compute reward bonus bk
h

for all h (Eq. 0.2)
4: Run Value-Iteration on { bP k

h
, r + bk

h
}H�1
h=0 (Eq. 0.3)

5: Set ⇡k as the returned policy of VI.
6: end for

we define:

Nk

h
(s, a, s0) =

k�1X

i=1

1{(si
h
, ai

h
, si

h+1) = (s, a, s0)},

Nk

h
(s, a) =

k�1X

i=1

1{(si
h
, ai

h
) = (s, a)}, 8h, s, a.

Namely, we maintain counts of how many times s, a, s0 and s, a are visited at time step h from the beginning of the
learning process to the end of the episode k � 1. We use these statistics to form an empirical model:

bP k

h
(s0|s, a) = Nk

h
(s, a, s0)

Nk

h
(s, a)

, 8h, s, a, s0. (0.1)

We will also use the counts to define a reward bonus, denoted as bh(s, a) for all h, s, a. Denote L := ln (SAHK/�)
(� as usual represents the failure probability which we will define later). We define reward bonus as follows:

bk
h
(s, a) = H

s
L

Nk

h
(s, a)

. (0.2)

With reward bonus and the empirical model, the learner uses Value Iteration on the empirical transition bP k

h
and the

combined reward rh + bk
h

. Starting at H (note that H is a fictitious extra step as an episode terminates at H � 1), we
perform dynamic programming all the way to h = 0:

bV k

H
(s) = 0, 8s,

bQk

h
(s, a) = min

n
rh(s, a) + bk

h
(s, a) + bP k

h
(·|s, a) · bV k

h+1, H
o
,

bV k

h
(s) = max

a

bQk

h
(s, a),⇡k

h
(s) = argmax

a
bQk

h
(s, a), 8h, s, a. (0.3)

Note that when using bV k

h+1 to compute bQk

h
, we truncate the value by H . This is because we know that due to the

assumption that r(s, a) 2 [0, 1], no policy’s Q value will ever be larger than H .

Denote ⇡k = {⇡k

0 , . . . ,⇡
k

H�1}. Learner then executes ⇡k in the MDP to get a new trajectory ⌧k.

UCBVI repeats the above procedure for K episodes.

6.2 Analysis

We will prove the following theorem.

56

Algorithm 3 UCBVI
Input: reward function r (assumed to be known), confidence parameters

1: for k = 0 . . .K do
2: Compute bP k

h
as the empirical estimates, for all h (Eq. 0.1)

3: Compute reward bonus bk
h

for all h (Eq. 0.2)
4: Run Value-Iteration on { bP k

h
, r + bk

h
}H�1
h=0 (Eq. 0.3)

5: Set ⇡k as the returned policy of VI.
6: end for

we define:

Nk

h
(s, a, s0) =

k�1X

i=1

1{(si
h
, ai

h
, si

h+1) = (s, a, s0)},

Nk

h
(s, a) =

k�1X

i=1

1{(si
h
, ai

h
) = (s, a)}, 8h, s, a.

Namely, we maintain counts of how many times s, a, s0 and s, a are visited at time step h from the beginning of the
learning process to the end of the episode k � 1. We use these statistics to form an empirical model:

bP k

h
(s0|s, a) = Nk

h
(s, a, s0)

Nk

h
(s, a)

, 8h, s, a, s0. (0.1)

We will also use the counts to define a reward bonus, denoted as bh(s, a) for all h, s, a. Denote L := ln (SAHK/�)
(� as usual represents the failure probability which we will define later). We define reward bonus as follows:

bk
h
(s, a) = H

s
L

Nk

h
(s, a)

. (0.2)

With reward bonus and the empirical model, the learner uses Value Iteration on the empirical transition bP k

h
and the

combined reward rh + bk
h

. Starting at H (note that H is a fictitious extra step as an episode terminates at H � 1), we
perform dynamic programming all the way to h = 0:

bV k

H
(s) = 0, 8s,

bQk

h
(s, a) = min

n
rh(s, a) + bk

h
(s, a) + bP k

h
(·|s, a) · bV k

h+1, H
o
,

bV k

h
(s) = max

a

bQk

h
(s, a),⇡k

h
(s) = argmax

a
bQk

h
(s, a), 8h, s, a. (0.3)

Note that when using bV k

h+1 to compute bQk

h
, we truncate the value by H . This is because we know that due to the

assumption that r(s, a) 2 [0, 1], no policy’s Q value will ever be larger than H .

Denote ⇡k = {⇡k

0 , . . . ,⇡
k

H�1}. Learner then executes ⇡k in the MDP to get a new trajectory ⌧k.

UCBVI repeats the above procedure for K episodes.

6.2 Analysis

We will prove the following theorem.

56

where

The regret of UCB-VI

• Theorem (AJKS Thm 6.1):

• This is not optimal in H, S, but a simple analysis to
start. We will talk about how to improve it towards
the end.

12

Theorem 6.1 (Regret Bound of UCBVI). UCBVI achieves the following regret bound:

Regret := E
"
K�1X

k=0

⇣
V ? � V ⇡

k
⌘#

 2H2S
p
AK · ln(SAH2K2) = eO

⇣
H2S

p
AK

⌘

Remark While the above regret is sub-optimal, the algorithm we presented here indeed achieves a sharper bound
in the leading term eO(H2

p
SAK) [Azar et al., 2017], which gives the tight dependency bound on S,A,K. The

dependency on H is not tight and tightening the dependency on H requires modifications to the reward bonus (use
Bernstein inequality rather than Hoeffding’s inequality for reward bonus design).

We prove the above theorem in this section.

We start with bounding the error from the learned model bP k

h
.

Lemma 6.2 (State-action wise `1 model error). Fix � 2 (0, 1). For all k 2 [0, . . . ,K � 1], s 2 S, a 2 A, h 2
[0, . . . , H � 1], with probability at least 1� �, we have:

��� bP k

h
(·|s, a)� P ?

h
(·|s, a)

���
1

s
S ln(SAHK/�)

Nk

h
(s, a)

.

The proof of the above lemma uses Proposition A.4 and a union bound over all s, a, n, h.

The following lemma is still about model error, but this time we consider an average model error.

Lemma 6.3 (State-action wise average model error). Fix � 2 (0, 1). For all k 2 [1, . . . ,K � 1], s 2 S, a 2 A, h 2
[0, . . . , H � 1], and consider V ?

h
: S ! [0, H], with probability at least 1� �, we have:

��� bP k

h
(·|s, a) · V ?

h+1 � P ?

h
(·|s, a) · V ?

h+1

��� H

s
ln(SAHN/�)

Nk

h
(s, a)

.

Proof: We provide a proof sketch. Consider a fixed s, a, k, h. We have:

bP k

h
(·|s, a) · V ?

h+1 =
1

Nk

h
(s, a)

k�1X

i=1

1{(si
h
, ak

h
) = (s, a)}V ?

h+1(s
i

h+1).

Note that for any (si
h
, ai

h
) = (s, a), we have E

⇥
V ?

h+1(s
i

h+1)|sih, aih
⇤
= Ph(·|s, a) · V ?

h+1. Thus, we can apply

Hoeffding’s inequality here to bound
��� bP k

h
(·|s, a) · V ?

h+1 � Ph(·|s, a) · V ?

h+1

���. With a union bound over all s, a, k, h,
we conclude the proof.

We denote the two inequalities in Lemma 6.2 and Lemma 6.3 as event Emodel. Note that the failure probability of
Emodel is at most 2�. Below we condition on Emodel being true (we deal with failure event at the very end).

Now we study the effect of reward bonus. Similar to the idea in multi-armed bandits, we want to pick a policy ⇡k,
such that the value of ⇡k in under the combined reward rh+ bk

h
and the empirical model bP k

h
is optimistic, i.e., we want

bV k

0 (s0) � V ?

0 (s0) for all s0. The following lemma shows that via reward bonus, we are able to achieve this optimism.

Lemma 6.4 (Optimism). Assume Emodel is true. For all episode k, we have:

bV k

0 (s0) � V ?

0 (s0), 8s0 2 S;

where bV k

h
is computed based on VI in Eq. 0.3.

57

Step 1: Concentration

13

Step 2: Optimism

14

Finite horizon simulation lemma
(from HW1)

15

Regret in kth Episode

16

Total regret

17

Ideas for improving the
dependence on S and H

18

Final notes about exploration in
Tabular MDPs
• Optimal rates:

• Non-stationary transitions
• Stationary transitions

• State of the art:
• Stationary case: MVP O(sqrt{H^2SAK} + H^2S^2A)

• Zhang, Ji and Du (2020) https://arxiv.org/pdf/2009.13503.pdf
• Modified the episode reward bound from [0,1] to [0,H] to be consistent

with this lecture
• Nonstationary case: O(sqrt(H^3SAK) + H^4S^2A)
• Q-learning: Jin et al., Bai et al., optimal rates in Zhang et al. (2020)

• Open problem:
• Is it possible to get rid of the S dependence in the low-order terms.

19

