CS292F StatRL Lecture 2 Markov Decision Processes

Instructor: Yu-Xiang Wang
Spring 2021
UC Santa Barbara

Recap: Markov Decision processes (MDP) parametrization rolled out

- Infinite horizon / discounted setting $y=\left(S_{1}, A, R_{1}, S_{2}, A_{2}, R_{2}\right.$,

$$
\begin{aligned}
& \mathcal{M}(\mathcal{S}, \mathcal{A}, \underline{P}, r, \gamma, \mu) \\
& \mathcal{M}(\mathcal{S}, \mathcal{A}, P, r, \gamma, \mu) \\
& \text { who } A_{1} u \pi\left(\left.a\right|_{S-S_{1}}\right) \\
& s_{2} \sim P(s)=s= \\
& \text { Transion leven: } P: S \times A \rightarrow \Delta(S) \text { ie. } P(S \mid S, A)
\end{aligned}
$$

$$
\begin{aligned}
& {[0,1]} \\
& \text { Initial state distribution } \mu_{0} \in \bigsqcup_{0}(S) \\
& \text { Discounting factor: } 0 \leqq \gamma \leqslant 1 \quad \text { Horizon } \frac{1}{1-\gamma}=1+\gamma+\gamma^{2}+\cdots \text {. }
\end{aligned}
$$

Recap: Reward function and Value functions

- Immediate reward function r(s,a,s')
- expected immediate reward

$$
\begin{aligned}
& r\left(s, a, s^{\prime}\right)=\mathbb{E}\left[R_{1} \mid S_{1}=s, A_{1}=a, S_{2}=s^{\prime}\right] \\
& \underline{r^{\pi}}(s)=\mathbb{E}_{a \sim \pi(a \mid s)}\left[R_{1} \mid S_{1}=s\right]
\end{aligned}
$$

- state value function: $\mathrm{V}^{\pi}(\mathrm{s})$
- expected long-term return when starting in s and following π

$$
V^{\pi}(s)=\mathbb{E}_{\pi}\left[R_{1}+\gamma R_{2}+\ldots+\gamma^{t-1} R_{\underline{t}}+\ldots \mid S_{1}=s\right]
$$

- state-action value function: $\mathrm{Q}^{\pi}(\mathrm{s}, \mathrm{a})$
- expected long-term return when starting in s, performing a, and following π

$$
Q^{\pi}(s, a)=\mathbb{E}_{\pi}\left[R_{1}+\gamma R_{2}+\ldots+\gamma^{t-1} R_{t}+\ldots \mid S_{1}=s, A_{1}=a\right]
$$

Recap: Optimal value function and the MDP planning problem

$$
\begin{aligned}
V^{\star}(s) & :=\sup _{\pi \in \Pi} V^{\pi}(s) \\
Q^{\star}(s, a) & :=\sup _{\pi \in \Pi} Q^{\pi}(s, a) .
\end{aligned}
$$

Goal of MDP planning:

$$
\text { Find } \pi^{*} \text { such that } V^{\pi^{*}}(s)=V^{*}(s) \quad \forall s
$$

Approximate solution:

$$
\pi \text { is } \epsilon \text {-optimal if } V^{\pi} \geq V^{*}(s)-\epsilon \mathbf{1}
$$

Recap: General policy, Stationary policy, Deterministic policy

- General policy could depend on the entire history

$$
\pi:(\mathcal{S} \times \mathcal{A} \times \mathbb{R})^{*} \times \mathcal{S} \rightarrow \Delta(\mathcal{A})
$$

menrugless

- Stationary policy

$$
\pi: \mathcal{S} \rightarrow \Delta(\mathcal{A})
$$

- Stationary, Deterministic policy

$$
\pi: \mathcal{S} \rightarrow \mathcal{A}
$$

Recap: We showed the following results about MOPs.

- Proposition: It suffices to consider stationary policies.
π 1. Occupancy measure

2. There exists a stationary policy with the same occupancy measure

- Corollary: There is a stationary policy that is optimal for all initial states.
- Proof sketch: 1. Construct an optimal non-stationary policy. 2. Apply the above proposition.

Bellman equations - the fundamental equations of MDP and RL

- For stationary policies there is an alternative, recursive and more useful way of defining the Vfunction and Q function

- Write down the Bellman equation using Q function alone.

$$
Q^{\pi}(s, a)=? \sum_{s^{\prime}} P(s^{\prime}(s, a)[r\left(s, a, s^{\prime}\right)+\underbrace{\sum_{a^{\prime}} \pi\left(a^{\prime}\left(s^{\prime}\right)\right.}_{V^{\prime \prime}\left(s^{\prime}\right)} Q^{\pi}\left(s^{\prime}, a^{\prime}\right)]
$$

Deriving Bellman Equation for stationary policies

Bellman equations in matrix forms

- Lemma 1.4 (Bellman consistency): For stationary policies, we have

$$
\begin{aligned}
V^{\pi}(s) & =Q^{\pi}(s, \pi(s)) .=E\left[Q_{a}^{\top}(s, a)\right] \\
Q^{\pi}(s, a) & =r(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(\cdot|s,| s, a)}\left[V^{\pi}\left(s^{\prime}\right)\right] .
\end{aligned}
$$

- In matrix forms:

$$
\begin{aligned}
& V^{\pi}=r^{\pi}+\gamma \underline{P}^{\pi} V^{\pi} \Leftrightarrow\left(I-\gamma P^{\pi}\right) V^{\pi}=\gamma^{\pi} \in R^{S} \\
& Q^{\pi}=r+\gamma P V^{\pi} \text { Goistovar ar } \\
& \frac{Q^{\pi}=r+\sqrt{\left(\widetilde{P}^{\pi}\right.} Q^{\pi}}{G R^{S A \operatorname{bas}^{S A}}} \cdot\left(I-\gamma p^{T_{i}}\right) Q^{\pi}=r \in R^{S A}
\end{aligned}
$$

Closed-form solution for solving

 for value functions$V^{\pi}=r^{\pi}+\gamma P^{\pi} V^{\pi}$

$Q^{\pi}=r+\gamma P V^{\pi}$
$Q^{\pi}=r+\gamma P^{\pi} Q^{\pi}$.

$$
\begin{aligned}
V^{\pi}(\mu) & \left.=\sum_{s \in \alpha} \mathcal{H}(s, a)\right]_{\mu}^{\pi}(s, a) \\
& =\left\langle r, v_{u}^{\pi}\right\rangle
\end{aligned}
$$

Duality between value functions and occupancy measures

$$
\begin{aligned}
& V^{\pi}=r^{\pi}+\gamma \underline{P}^{\pi} V^{\pi} \\
& Q^{\pi}=r+\gamma P V^{\pi} \\
& Q^{\pi}=r+\gamma \stackrel{M}{P}^{\pi} Q^{\pi} \text {. } \\
& \mid v^{(}(s)=\mu(s)+\sum_{s^{\prime}} v^{\pi}(s) \cdot p^{\pi}\left(s \mid s^{\prime}\right) \\
& v^{\pi}=\mu+\gamma\left(\underline{P}^{\pi}\right)^{\top} V^{\pi}
\end{aligned}
$$

A is fullarke $\Leftrightarrow A^{\top}$ ital rank

Invertibility of the matrix $I-\gamma P^{\pi}$

Corollary 1.5 in AJKS: the matrix $\quad I-\gamma P^{\pi}$ is full rank / invertible for all gamma < 1.

Proof:

$$
\begin{aligned}
& \left\|\left(\stackrel{d}{I}-\gamma P^{\pi}\right) x\right\|_{\infty}=\left\|x-\gamma P^{\pi} x\right\|_{\infty} \\
& \underset{\text { Hinumberin }}{ } \geq\|x\|_{\infty}-\gamma \| \underline{\left\|^{\pi} x\right\|_{\infty}} \\
& \geq\|x\|_{\infty}-\gamma\|x\|_{\infty} \\
& =\frac{(1-\gamma)\|x\|_{\infty}}{\gamma<1}>0
\end{aligned}
$$

Bellman optimality equations

 characterizes the optimal policy$$
V^{*}(s)=\max _{\frac{a}{T}} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)[r\left(s, a, s^{\prime}\right)+\underbrace{\left.\gamma V^{*}\left(s^{\prime}\right)\right]}_{\text {expected iminephater reared }}]
$$

- system of n non-linear equations
- solve for $\mathrm{V}^{*}(\mathrm{~s})$
- easy to extract the optimal policy
- having $Q^{*}(\mathrm{~s}, \mathrm{a})$ makes it even simpler

$$
\pi^{*}(s)=\arg \max _{a} Q^{*}(s, a)
$$

Proposition: There is a deterministic, stationary and optimal policy.

- And it is given by:

$$
\pi^{*}(s)=\arg \max _{a} Q^{*}(s, a)
$$

- Proof:
π^{*} is Statuary

$$
\begin{aligned}
& =\max _{a} Q^{*}(s, a)=Q^{(1)} \\
& \text { substitute } \pi=\pi^{\prime} \\
& \text { defoe } \pi^{\prime}(s)=\underset{a}{\operatorname{argmax}} Q^{*}\left(S_{1}, \|_{1}^{\prime}\right. \\
& \begin{array}{l}
\pi^{\prime} \text { is stotrang } \\
\pi^{\prime} \text { is defeminitic } V^{\pi /(s)}
\end{array}
\end{aligned}
$$

The crux of solving the MDP planning problem is to construct Q^{*}

- In the remainder of this lecture, we will talk about two approaches

1. By solving a Linear Program
2. By solving Bellman equations / Bellman optimality equations.

The linear programming approach

- Solve for V^{*} by solving the following LP

$$
\begin{aligned}
& \min _{V \in R^{s}} \sum_{s} \mu(s) V(s) \quad \text { subssiticu } V=\underline{V^{*}} \quad S_{s} M(s) V^{*}(s)=\underline{V^{*}(a)} \\
& \text { subject to } \rightarrow V(s) \geq r(s, a)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V\left(s^{\prime}\right) \quad \forall a \in \mathcal{A}, s \in \mathcal{S} \\
& \left.R_{-}\right) V(S) \geqslant \max _{a} X(s, a)+\gamma \sum_{s^{\prime}}, \mathcal{S}^{\prime}(s, a) V\left(s^{\prime}\right)
\end{aligned}
$$

The linear programming approach

- Solve for V^{*} by solving the following LP

$$
\min \quad \sum_{s} \mu(s) V(s)
$$

subject to

$$
V(s) \geq \underset{\sim}{r}(s, a)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V\left(s^{\prime}\right) \quad \forall a \in \mathcal{A}, s \in \mathcal{S}
$$

Quiz 1: Once we have V^{*}, how to construct Q^{*} ?

$$
Q^{*}\left(s_{(}\right)=\left[r\left(s_{1}\right)+r \leq P s^{2}\left(x_{s, s}\right.\right.
$$

- Exercise: Deriving the dual by applying the standard procedure.

The Lagrange dual of the LP

subject to $\quad \nu \geq 0$

$$
\sum_{z} \nu(s, a)=\mu(s)+\gamma \sum_{s^{\prime}, a^{\prime}} P\left(s \mid s^{\prime}, a^{\prime}\right) \nu\left(s^{\prime}, a^{\prime}\right)
$$

- Exercise: Deriving the dual by applying the standard procedure.

Quiz 2: Once we have the solution how to construct the policy?

$$
V^{*}(s a)=V^{\pi *}(s, a)=V^{\pi}(s) \cdot \pi(a / s)
$$

Value iterations for MDP planning

- Recall: Bellman optimality equations

$$
\rightarrow \quad \frac{V^{*}(s)=\max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]}{Q(s, a)=r(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)}\left[\max _{a^{\prime} \in \mathcal{A}} Q\left(s^{\prime}, a^{\prime}\right)\right] .}
$$

$$
Q^{\prime} \leftarrow \ddot{\mathcal{T}} Q=r+P V_{Q} \quad \text { where } \quad V_{Q}(s):=\max _{a \in \mathcal{A}} Q(s, a) .
$$

Theorem 1.8 (AJKS): $Q=Q^{*}$ if and only if Q satisfies the Bellman optimality equations.

Value iterations for MDP planning

- The value iteration algorithm iteratively applies the Bellman operator until it converges.

1. Initialize Q_{0} arbitrarily
$Q_{0} \equiv 0$
2. for i in $1,2,3, \ldots, \mathrm{k}$, update $Q_{i}=\mathcal{T} Q_{i-1}$
3. Return Q_{k}

Value iterations for MDP planning

- The value iteration algorithm iteratively applies the Bellman operator until it converges.

1. Initialize Q_{0} arbitrarily
2. forimin $1,2,3, \ldots$, , , update $Q_{i}=\mathcal{T} Q_{i-1}$
3. Return Q_{k}

- What is the right question to ask here?

3. Iferaites conplexity: $\begin{aligned} & \text { easanimpx } \\ & k \geqslant \operatorname{func}(\varepsilon)\end{aligned}$

Convergence analysis of VI

$$
I_{Q}=r+\gamma P \cdot V_{Q}, V_{Q}=
$$

- Lemma 1. The Bellman operator is a γ-contraction.

For any two vectors $Q, Q^{\prime} \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}|}$,

$$
\begin{aligned}
& \left\|\mathcal{T} Q-\mathcal{T} Q^{\prime}\right\|_{\infty} \leq \gamma\left\|Q-Q^{\prime}\right\|_{\infty} \\
& \left\|T Q-T Q^{\prime}\right\|_{\infty}=\gamma\left\|P V_{Q}-P U_{Q^{\prime}}\right\|_{\infty}=\gamma\left\|P\left(V_{Q}-V_{Q}\right)^{\prime}\right\|^{\prime} \\
& \text { operator } \rightarrow \leqslant \gamma\left\|V_{Q}-V_{Q^{\prime}}\right\|_{\infty}=\gamma \max _{s}\left|V_{Q}(s)-V_{Q}(s)\right| \leqslant \gamma \max _{S_{a}} \mid Q_{(s)}
\end{aligned}
$$

$$
\begin{aligned}
& \gamma \max _{s}\left(V_{(\alpha)}(s)-V_{(21 s)}\right) \leq \gamma \quad\left(2(s, a)-\max _{a}\left(Q^{\prime}(s, a)\right.\right. \\
& a=\underset{a}{\operatorname{argmax}} Q(s a) \\
& \leq r Q\left(s_{a}\right)-Q^{\prime}(s, a) \\
& \leqslant r\left(Q\left(s_{p}\right)-Q^{\prime}\left(s_{, a}\right)\right)^{20}
\end{aligned}
$$

Convergence analysis of VI

- Lemma 2. Convergence of the Q function.

$$
\begin{aligned}
& Q^{\prime}=Q^{*} \text {, } \\
& \vec{E} Q^{*}=Q^{*} \\
& \left\|Q_{k}^{Q}-Q^{x}\right\|_{\infty} \underset{=}{\sin }\left\|\tau Q_{k=1}-Q^{\star}\right\|_{\infty} \leqslant \gamma\left\|Q_{k-1}-Q^{\star}\right\|_{b} \\
& \left.\left|Q_{0}, Q^{*}\right|\right|_{\infty} \leq \frac{1}{1-\gamma} \\
& 0 \leq r\left(s_{\alpha}\right) \leq 1 \left\lvert\, \sum_{\sum_{t=1}^{\infty} \gamma \gamma^{t-1}\left|\left(s_{\alpha}\right)\right| \leq \frac{1}{1-\alpha}}\right. \\
& \leq \gamma^{k} \cdot \frac{1}{1-\gamma}
\end{aligned}
$$

Quiz 3: Computing "Iteration complexity" from "convergence bound"?

$$
\varepsilon=\frac{e^{-(1-\gamma) k}}{1-\gamma} \Leftrightarrow k=\frac{\log \frac{1}{1(1-1)}}{1-\gamma} \quad \lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)^{n}=e^{-1}\left(\frac { (1 - \frac { 1 } { n }) ^ { n } \leqslant e ^ { - 1 }) } { } \left(n \text { all } n 21^{21}\right.\right.
$$

Convergence of the Q function implies the convergence of the value of the induced policy.

Lemma 1.11 AJKS (Q-error amplification):

$$
V^{\pi_{Q}} \geq V^{\star}-\frac{2\left\|Q-Q^{\star}\right\|_{\infty}}{1-\gamma} \mathbb{1}
$$

Proof: Fix state s and let $a=\pi_{Q}(s)$. We have:

$$
\begin{aligned}
V^{\star}(s)-V^{\pi_{Q}}(s)= & Q^{\star}\left(s, \pi^{\star}(s)\right)-Q^{\pi_{Q}}(s, a) \\
= & Q^{\star}\left(s, \pi^{\star}(s)\right)-Q^{\star}(s, a)+Q^{\star}(s, a)-Q^{\pi_{Q}}(s, a) \\
= & Q^{\star}\left(s, \pi^{\star}(s)\right)-Q^{\star}(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)}\left[V^{\star}\left(s^{\prime}\right)-V^{\pi_{Q}}\left(s^{\prime}\right)\right] \\
\leq & Q^{\star}\left(s, \pi^{\star}(s)\right)-Q\left(s, \pi^{\star}(s)\right)+Q(s, a)-Q^{\star}(s, a) \\
& +\gamma \mathbb{E}_{s^{\prime} \sim P(s, a)}\left[V^{\star}\left(s^{\prime}\right)-V^{\pi_{Q}}\left(s^{\prime}\right)\right] \\
\leq & 2\left\|Q-Q^{\star}\right\|_{\infty}+\gamma\left\|V^{\star}-V^{\pi_{Q}}\right\|_{\infty} .
\end{aligned}
$$

where the first inequality uses $Q\left(s, \pi^{\star}(s)\right) \leq Q\left(s, \pi_{Q}(s)\right)=Q(s, a)$ due to the definition of π_{Q}.

An alternative method: policy iteration

Initialize a policy π_{0} arbitrarily. for $k=1,2,3,4, \ldots$

1. Policy evaluation. Compute $Q^{\pi_{k}}$
2. Policy improvement. Update the policy: $\pi_{k+1}=\pi_{Q^{\pi_{k}}}$

Theorem 1.14. (Policy iteration convergence). Let π_{0} be any initial policy. For $k \geq \frac{\log \frac{1}{(1-\gamma) \epsilon}}{1-\gamma}$, the k-th policy in policy iteration has the following performance bound:

$$
Q^{\pi^{(k)}} \geq Q^{\star}-\epsilon \mathbb{1}
$$

Computational complexity of these MDP solvers

- PI: $\quad(S A)^{3} \cdot \frac{\log \frac{1}{1-\alpha-\alpha}}{1-\gamma} \Rightarrow\left(S^{3}+S^{2} A\right) \cdot \frac{\cos (-1-\alpha)}{1-\alpha}$
- LP: $\quad \operatorname{pdy}(S, A)$

Strongly polynomial algorithms are independent to ε

	Value Iteration	Policy Iteration	LP-Algorithms
Poly?	$\|\mathcal{S}\|^{2}\|\mathcal{A}\| \frac{L(P, r, \gamma) \log \frac{1}{1-\gamma}}{1-\gamma}$	$\left(\|\mathcal{S}\|^{3}+\|\mathcal{S}\|^{2}\|\mathcal{A}\|\right) \frac{\mathbb{L (P , r , \gamma)} \frac{\log \frac{1}{1-\gamma}}{1-\gamma}}{\|\mathcal{S}\|^{3}\|\mathcal{A}\| L(P, r, \gamma)}$	
Strongly Poly?	\boldsymbol{x}	$\left(\|\mathcal{S}\|^{3}+\|\mathcal{S}\|^{2}\|\mathcal{A}\|\right) \cdot \min \left\{\frac{\|\mathcal{A}\|^{\|\mathcal{S}\|} \mid}{\|\mathcal{S}\|}, \frac{\left.\|\mathcal{S}\|^{2}\|\mathcal{A}\| \log \frac{\|\mathcal{S}\|^{2}}{1-\gamma}\right\}}{1-\gamma}\right\}$	$\|\mathcal{S}\|^{4}\|\mathcal{A}\|^{4} \log \frac{\|\mathcal{S}\|}{1-\gamma}$

$$
(s)^{2}
$$

Next lecture

- Approximate / randomized solvers for MDP
- MDP / RL with generative models

