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Recap: Markov Decision processes
(MDP) parameterization
• Infinite horizon / discounted setting
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Initial state distribution

Transition kernel:

Discounting factor: 

(Expected)
reward function:



Recap: Reward function and Value 
functions
• Immediate reward function r(s,a,s’)
• expected immediate reward 

• state value function: Vp(s)
• expected long-term return when starting in s and following p

• state-action value function: Qp(s,a)
• expected long-term return when starting in s, performing a,

and following p

r(s, a, s0) = E[R1|S1 = s,A1 = a, S2 = s0]
<latexit sha1_base64="9A8DxuVxtlIxf2YElUYRp319rAQ="></latexit><latexit sha1_base64="9A8DxuVxtlIxf2YElUYRp319rAQ="></latexit><latexit sha1_base64="9A8DxuVxtlIxf2YElUYRp319rAQ="></latexit><latexit sha1_base64="9A8DxuVxtlIxf2YElUYRp319rAQ="></latexit>

r⇡(s) = Ea⇠⇡(a|s)[R1|S1 = s]
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Recap: Optimal value function
and the MDP planning problem
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Lemma 1.6. We have that:

[(1� �)(I � �P⇡)�1](s,a),(s0,a0) = (1� �)
1X

h=0

�tP⇡

h
(sh = s0, ah = a0|s0 = s, a0 = a)

so we can view the (s, a)-th row of this matrix as an induced distribution over states and actions when following ⇡
after starting with s0 = s and a0 = a.

We leave the proof as an exercise to the reader.

1.1.3 Bellman optimality equations

A remarkable and convenient property of MDPs is that there exists a stationary and deterministic policy that simulta-
neously maximizes V ⇡(s) for all s 2 S . This is formalized in the following theorem:

Theorem 1.7. Let ⇧ be the set of all non-stationary and randomized policies. Define:

V ?(s) := sup
⇡2⇧

V ⇡(s)

Q?(s, a) := sup
⇡2⇧

Q⇡(s, a).

which is finite since V ⇡(s) and Q⇡(s, a) are bounded between 0 and 1/(1� �).

There exists a stationary and deterministic policy ⇡ such that for all s 2 S and a 2 A,

V ⇡(s) = V ?(s)

Q⇡(s, a) = Q?(s, a).

We refer to such a ⇡ as an optimal policy.

Proof: First, let us show that conditioned on (s0, a0, r0, s1) = (s, a, r, s0), the maximum future discounted value,
from time 1 onwards, is not a function of s, a, r. Specifically,

sup
⇡2⇧

E
h 1X

t=1

�tr(st, at)
�� ⇡, (s0, a0, r0, s1) = (s, a, r, s0)

i
= �V ?(s0)

For any policy ⇡, define an “offset” policy ⇡(s,a,r), which is the policy that chooses actions on a trajectory ⌧ according
to the same distribution that ⇡ chooses actions on the trajectory (s, a, r, ⌧). For example, ⇡(s,a,r)(a0 = a0|s0 = s0) is
equal to the probability ⇡(a1 = a0|(s0, a0, r0, s1) = (s, a, r, s0)). By the Markov property, we have that:

E
h 1X

t=1

�tr(st, at)
�� ⇡, (s0, a0, r0, s1) = (s, a, r, s0)

i
= �E

h 1X

t=0

�tr(st, at)
�� ⇡(s,a,r), s0 = s0

i
= �V ⇡(s,a,r)(s0).

Hence, due to that V ⇡(s0) is not a function of (s, a, r), we have

sup
⇡2⇧

E
h 1X

t=1

�tr(st, at)
�� ⇡, (s0, a0, r0, s1) = (s, a, r, s0)

i
= � · sup

⇡2⇧
V ⇡(s,a,r)(s0) = � · sup

⇡2⇧
V ⇡(s0) = �V ?(s0),

thus proving the claim.
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Goal of MDP planning: 

Approximate solution:



Recap: General policy, Stationary
policy, Deterministic policy
• General policy could depend on the entire history

• Stationary policy

• Stationary, Deterministic policy
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Recap: We showed the following 
results about MDPs.  
• Proposition:  It suffices to consider stationary policies.

1. Occupancy measure

2. There exists a stationary policy with the same occupancy 
measure

• Corollary: There is a stationary policy that is optimal for all 
initial states.
• Proof sketch: 1. Construct an optimal non-stationary policy. 2. Apply 

the above proposition.
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Bellman equations – the fundamental 
equations of MDP and RL
• For stationary policies there is an alternative, 

recursive and more useful way of defining the V-
function and Q function

• Exercise:  
• Prove Bellman equation from the (first principle) definition.

• Write down the Bellman equation using Q function alone. 

V ⇡(s) =
X

a

⇡(a|s)
X

s0

P (s0|s, a)[r(s, a, s0) + �V ⇡(s0)] =
X

a

⇡(a|s)Q⇡(s, a)
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Q⇡(s, a) = ?
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Deriving Bellman Equation for
stationary policies

8



Bellman equations in matrix forms

• Lemma 1.4 (Bellman consistency): For stationary 
policies, we have 

• In matrix forms:
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on the quality or the price of the travel package found. In more generic conversational settings, the ultimate reward is
whether the conversation was satisfactory to the other agents or humans, or not.

Example 1.3 (Strategic games). This is a popular category of RL applications, where RL has been successful in
achieving human level performance in Backgammon, Go, Chess, and various forms of Poker. The usual setting consists
of the state being the current game board, actions being the potential next moves and reward being the eventual win/loss
outcome or a more detailed score when it is defined in the game. Technically, these are multi-agent RL settings, and,
yet, the algorithms used are often non-multi-agent RL algorithms.

1.1.2 Bellman consistency equations for stationary policies

Stationary policies satisfy the following consistency conditions:

Lemma 1.4. Suppose that ⇡ is a stationary policy. Then V ⇡ and Q⇡ satisfy the following Bellman consistency
equations: for all s 2 S, a 2 A,

V ⇡(s) = Q⇡(s,⇡(s)).

Q⇡(s, a) = r(s, a) + �Es0⇠P (·|s,a)

⇥
V ⇡(s0)

⇤
.

We leave the proof as an exercise to the reader.

It is helpful to view V ⇡ as vector of length |S| and Q⇡ and r as vectors of length |S| · |A|. We overload notation and
let P also refer to a matrix of size (|S| · |A|)⇥ |S| where the entry P(s,a),s0 is equal to P (s0|s, a).

We also will define P⇡ to be the transition matrix on state-action pairs induced by a stationary policy ⇡, specifically:

P⇡

(s,a),(s0,a0) := P (s0|s, a)⇡(a0|s0).

In particular, for deterministic policies we have:

P⇡

(s,a),(s0,a0) :=

⇢
P (s0|s, a) if a0 = ⇡(s0)

0 if a0 6= ⇡(s0)

With this notation, it is straightforward to verify:

Q⇡ = r + �PV ⇡

Q⇡ = r + �P⇡Q⇡ .

Corollary 1.5. We have that:
Q⇡ = (I � �P⇡)�1r (0.2)

where I is the identity matrix.

Proof: To see that the I � �P⇡ is invertible, observe that for any non-zero vector x 2 R|S||A|,

k(I � �P⇡)xk
1

= kx� �P⇡xk1
� kxk1 � �kP⇡xk1 (triangule inequality for norms)
� kxk1 � �kxk1 (each element of P⇡x is an average of x)
= (1� �)kxk1 > 0 (� < 1, x 6= 0)

which implies I � �P⇡ is full rank.

The following is also a helpful lemma:
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Closed-form solution for solving 
for value functions
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and occupancy measures
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Invertibility of the matrix  
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Corollary 1.5 in AJKS: the matrix is full rank / invertible for 
all gamma  < 1.

Proof:



Bellman optimality equations
characterizes the optimal policy

• system of n non-linear equations
• solve for V*(s)
• easy to extract the optimal policy

• having Q*(s,a) makes it even simpler

V ⇤(s) = max
a

X

s0

P (s0|s, a)[r(s, a, s0) + �V ⇤(s0)]
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Proposition: There is a deterministic, 
stationary and optimal policy.
• And it is given by:

• Proof:

14



The crux of solving the MDP planning 
problem is to construct Q*
• In the remainder of this lecture, we will talk about 

two approaches

1. By solving a Linear Program

2. By solving Bellman equations / Bellman optimality 
equations.

15



The linear programming approach

• Solve for V* by solving the following LP

16

Iteration complexity for an exact solution. With regards to computing an exact optimal policy, it clear from the
previous results that policy iteration is no worse than value iteration. However, with regards to obtaining an exact
solution MDP that is independent of the bit complexity, L(P, r, �), improvements are possible (and where we assume
basic arithmetic operations on real numbers are order one cost). Naively, the number of iterations of policy iterations
is bounded by the number of policies, namely |A||S|; here, a small improvement is possible, where the number of
iterations of policy iteration can be bounded by |A|

|S|

|S|
. Remarkably, for a fixed value of �, policy iteration can be

show to be a strongly polynomial time algorithm, where policy iteration finds an exact policy in at most
|S|

2
|A| log |S|2

1��

1��

iterations. See Table 0.1 for a summary, and Section 1.7 for references.

1.5 The Linear Programming Approach

It is helpful to understand an alternative approach to finding an optimal policy for a known MDP. With regards to
computation, consider the setting where our MDP M = (S,A, P, r, �, µ) is known and P , r, and � are all specified by
rational numbers. Here, from a computational perspective, the previous iterative algorithms are, strictly speaking, not
polynomial time algorithms, due to that they depend polynomially on 1/(1 � �), which is not polynomial in the de-
scription length of the MDP . In particular, note that any rational value of 1�� may be specified with only O(log 1

1��
)

bits of precision. In this context, we may hope for a fully polynomial time algorithm, when given knowledge of the
MDP, which would have a computation time which would depend polynomially on the description length of the MDP
M , when the parameters are specified as rational numbers. We now see that the LP approach provides a polynomial
time algorithm.

1.5.1 The Primal LP and A Polynomial Time Algorithm

Consider the following optimization problem with variables V 2 R|S|:

min
X

s

µ(s)V (s)

subject to V (s) � r(s, a) + �
X

s0

P (s0|s, a)V (s0) 8a 2 A, s 2 S

Here, the optimal value function V ?(s) is the unique solution to this linear program. With regards to computation
time, linear programming approaches only depend on the description length of the coefficients in the program, due
to that this determines the computational complexity of basic additions and multiplications. Thus, this approach will
only depend on the bit length description of the MDP, when the MDP is specified by rational numbers.

Computational complexity for an exact solution. Table 0.1 shows the runtime complexity for the LP approach,
where we assume a standard runtime for solving a linear program. The strongly polynomial algorithm is an interior
point algorithm. See Section 1.7 for references.

Policy iteration and the simplex algorithm. It turns out that the policy iteration algorithm is actually the simplex
method with block pivot. While the simplex method, in general, is not a strongly polynomial time algorithm, the
policy iteration algorithm is a strongly polynomial time algorithm, provided we keep the discount factor fixed. See
[Ye, 2011].
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Quiz 1:  Once we have V*,  how to construct Q*?



The Lagrange dual of the LP

17

• Exercise:  Deriving the dual by applying the standard 
procedure.



The Lagrange dual of the LP

17

• Exercise:  Deriving the dual by applying the standard 
procedure.

Quiz 2:  Once we have the solution how to construct the policy?



Value iterations for MDP planning

• Recall: Bellman optimality equations

18

V ⇤(s) = max
a

X

s0

P (s0|s, a)[r(s, a, s0) + �V ⇤(s0)]
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We now show the deterministic and stationary policy ⇡(s) = argmax
a2A

sup
⇡02⇧ Q⇡

0
(s, a) satisfies V ⇡(s) =

sup
⇡02⇧ V ⇡

0
(s). For this, we have that:

V ?(s0) = sup
⇡2⇧

E
h
r(s0, a0) +

1X

t=1

�tr(st, at)
i

= sup
⇡2⇧

E
h
r(s0, a0) + E

h 1X

t=1

�tr(st, at)
�� ⇡, (s0, a0, r0, s1)

ii

 sup
⇡2⇧

E
h
r(s0, a0) + sup

⇡02⇧
E
h 1X

t=1

�tr(st, at)
�� ⇡0, (s0, a0, r0, s1)

ii

= sup
⇡2⇧

E
h
r(s0, a0) + �V ?(s1)

i

= E
h
r(s0, a0) + �V ?(s1)

�� ⇡
i
.

where the second equality is by the tower property of conditional expectations, and the last equality follows from the
definition of ⇡. Now, by recursion,

V ?(s0)  E
h
r(s0, a0) + �V ?(s1)

�� ⇡
i
 E

h
r(s0, a0) + �r(s1, a1) + �2V ?(s2)

�� ⇡
i
 . . .  V ⇡(s0).

Since V ⇡(s)  sup
⇡02⇧ V ⇡

0
(s) = V ?(s), we have that V ⇡ = V ?, which completes the proof of the first claim.

For the same policy ⇡, an analogous argument can be used prove the second claim.

This shows that we may restrict ourselves to using stationary and deterministic policies without any loss in perfor-
mance. The following theorem, also due to [Bellman, 1956], gives a precise characterization of the optimal value
function.

Let us say that a vector Q 2 R|S||A| satisfies the Bellman optimality equations if:

Q(s, a) = r(s, a) + �Es0⇠P (·|s,a)


max
a02A

Q(s0, a0)

�
.

Theorem 1.8 (Bellman Optimality Equations). For any Q 2 R|S||A|, we have that Q = Q? if and only if Q satisfies
the Bellman optimality equations. Furthermore, the deterministic policy ⇡(s) 2 Q?(s, a) is an optimal policy (where
ties are broken in some arbitrary and deterministic manner).

Before we prove this claim, we will provide a few definitions. Let ⇡Q denote the greedy policy with respect to a vector
Q 2 R|S||A|, i.e

⇡Q(s) := argmax
a2A

Q(s, a) .

where ties are broken in some arbitrary (and deterministic) manner. With this notation, by the above theorem, the
optimal policy ⇡? is given by:

⇡? = ⇡Q? .

Let us also use the following notation to turn a vector Q 2 R|S||A| into a vector of length |S|.

VQ(s) := max
a2A

Q(s, a).

The Bellman optimality operator TM : R|S||A| ! R|S||A| is defined as:

T Q := r + �PVQ . (0.3)

9

Theorem 1.8 (AJKS):  Q = Q* if and only if Q satisfies the Bellman 
optimality equations.
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�
.
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9

where



Value iterations for MDP planning

• The value iteration algorithm iteratively applies the 
Bellman operator until it converges.

1. Initialize Q0 arbitrarily

2. for i in 1,2,3,…, k,  update

3. Return Qk
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Value iterations for MDP planning

• The value iteration algorithm iteratively applies the 
Bellman operator until it converges.

1. Initialize Q0 arbitrarily

2. for i in 1,2,3,…, k,  update

3. Return Qk

• What is the right question to ask here?
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Convergence analysis of VI

• Lemma 1. The Bellman operator is a γ-contraction.
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Value Iteration Policy Iteration LP-Algorithms

Poly? |S|2|A|L(P,r,�) log 1
1��

1��
(|S|3 + |S|2|A|)L(P,r,�) log 1

1��

1��
|S|3|A|L(P, r, �)

Strongly Poly? 7 (|S|3 + |S|2|A|) ·min

⇢
|A|

|S|

|S|
,
|S|

2
|A| log |S|2

1��

1��

�
|S|4|A|4 log |S|

1��

Table 0.1: Computational complexities of various approaches (we drop universal constants). Polynomial time algo-
rithms depend on the bit complexity, L(P, r, �), while strongly polynomial algorithms do not. Note that only for a
fixed value of � are value and policy iteration polynomial time algorithms; otherwise, they are not polynomial time
algorithms. Similarly, only for a fixed value of � is policy iteration a strongly polynomial time algorithm. In contrast,
the LP-approach leads to both polynomial time and strongly polynomial time algorithms; for the latter, the approach
is an interior point algorithm. See text for further discussion, and Section 1.7 for references. Here, |S|2|A| is the
assumed runtime per iteration of value iteration, and |S|3 + |S|2|A| is the assumed runtime per iteration of policy
iteration (note that for this complexity we would directly update the values V rather than Q values, as described in the
text); these runtimes are consistent with assuming cubic complexity for linear system solving.

Suppose that (P, r, �) in our MDP M is specified with rational entries. Let L(P, r, �) denote the total bit-size required
to specify M , and assume that basic arithmetic operations +,�,⇥,÷ take unit time. Here, we may hope for an
algorithm which (exactly) returns an optimal policy whose runtime is polynomial in L(P, r, �) and the number of
states and actions.

More generally, it may also be helpful to understand which algorithms are strongly polynomial. Here, we do not want
to explicitly restrict (P, r, �) to be specified by rationals. An algorithm is said to be strongly polynomial if it returns
an optimal policy with runtime that is polynomial in only the number of states and actions (with no dependence on
L(P, r, �)).

1.4 Iterative Methods

Planning refers to the problem of computing ⇡?

M
given the MDP specification M = (S,A, P, r, �). This section

reviews classical planning algorithms that compute Q?.

1.4.1 Value Iteration

A simple algorithm is to iteratively apply the fixed point mapping: starting at some Q, we iteratively apply T :

Q T Q ,

This is algorithm is referred to as Q-value iteration.

Lemma 1.10. (contraction) For any two vectors Q,Q0 2 R|S||A|,

kT Q� T Q0k1  �kQ�Q0k1

Proof: First, let us show that for all s 2 S , |VQ(s)�VQ0(s)|  maxa2A |Q(s, a)�Q0(s, a)|. Assume VQ(s) > VQ0(s)
(the other direction is symmetric), and let a be the greedy action for Q at s. Then

|VQ(s)� VQ0(s)| = Q(s, a)�max
a02A

Q0(s, a0)  Q(s, a)�Q0(s, a)  max
a2A

|Q(s, a)�Q0(s, a)|.
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Convergence analysis of VI

• Lemma 2. Convergence of the Q function.

21

Quiz 3: Computing “Iteration complexity” from “convergence bound”?



Convergence of the Q function implies 
the convergence of the value of the 
induced policy.
Lemma 1.11 AJKS (Q-error amplification):

22

Using this,

kT Q� T Q0k1 = �kPVQ � PVQ0k1
= �kP (VQ � VQ0)k1
 �kVQ � VQ0k1
= �max

s

|VQ(s)� VQ0(s)|

 �max
s

max
a

|Q(s, a)�Q0(s, a)|

= �kQ�Q0k1

where the first inequality uses that each element of P (VQ � VQ0) is a convex average of VQ � VQ0 and the second
inequality uses our claim above.

The following result bounds the sub-optimality of the greedy policy itself, based on the error in Q-value function.

Lemma 1.11. (Q-Error Amplification) For any vector Q 2 R|S||A|,

V ⇡Q � V ? � 2kQ�Q?k1
1� �

1.

where 1 denotes the vector of all ones.

Proof: Fix state s and let a = ⇡Q(s). We have:

V ?(s)� V ⇡Q(s) =Q?(s,⇡?(s))�Q⇡Q(s, a)

=Q?(s,⇡?(s))�Q?(s, a) +Q?(s, a)�Q⇡Q(s, a)

=Q?(s,⇡?(s))�Q?(s, a) + �Es0⇠P (·|s,a)[V
?(s0)� V ⇡Q(s0)]

 Q?(s,⇡?(s))�Q(s,⇡?(s)) +Q(s, a)�Q?(s, a)

+ �Es0⇠P (s,a)[V
?(s0)� V ⇡Q(s0)]

 2kQ�Q?k1 + �kV ? � V ⇡Qk1.

where the first inequality uses Q(s,⇡?(s))  Q(s,⇡Q(s)) = Q(s, a) due to the definition of ⇡Q.

Theorem 1.12. (Q-value iteration convergence). Set Q(0) = 0. For k = 0, 1, . . ., suppose:

Q(k+1) = T Q(k)

Let ⇡(k) = ⇡Q(k) . For k �
log 2

(1��)2✏

1��
,

V ⇡
(k)

� V ? � ✏1 .

Proof: Since kQ?k1  1/(1� �), Q(k) = T kQ(0) and Q? = T Q?, Lemma 1.10 gives

kQ(k) �Q?k1 = kT kQ(0) � T kQ?k1  �kkQ(0) �Q?k1 = (1� (1� �))kkQ?k1  exp(�(1� �)k)

1� �
.

The proof is completed with our choice of � and using Lemma 1.11.

Iteration complexity for an exact solution. With regards to computing an exact optimal policy, when the gap
between the current objective value and the optimal objective value is smaller than 2�L(P,r,�), then the greedy policy
will be optimal. This leads to claimed complexity in Table 0.1. Value iteration is not strongly polynomial algorithm
due to that, in finite time, it may never return the optimal policy.
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An alternative method: policy 
iteration
1.4.2 Policy Iteration

The policy iteration algorithm starts from an arbitrary policy ⇡0, and repeat the following iterative procedure: for
k = 0, 1, 2, . . .

1. Policy evaluation. Compute Q⇡k

2. Policy improvement. Update the policy:

⇡k+1 = ⇡Q
⇡
k

In each iteration, we compute the Q-value function of ⇡k, using the analytical form given in Equation 0.2, and update
the policy to be greedy with respect to this new Q-value. The first step is often called policy evaluation, and the second
step is often called policy improvement.

Lemma 1.13. We have that:

1. Q⇡k+1 � T Q⇡k � Q⇡k

2. kQ⇡k+1 �Q?k1  �kQ⇡k �Q?k1

Proof: First let us show that T Q⇡k � Q⇡k . Note that the policies produced in policy iteration are always deterministic,
so V ⇡k(s) = Q⇡k(s,⇡k(s)) for all iterations k and states s. Hence,

T Q⇡k(s, a) = r(s, a) + �Es0⇠P (·|s,a)[max
a0

Q⇡k(s0, a0)]

� r(s, a) + �Es0⇠P (·|s,a)[Q
⇡k(s0,⇡k(s

0))] = Q⇡k(s, a).

Now let us prove that Q⇡k+1 � T Q⇡k . First, let use see that Q⇡k+1 � Q⇡k :

Q⇡k = r + �P⇡kQ⇡k  r + �P⇡k+1Q⇡k 
1X

t=0

�t(P⇡k+1)tr = Q⇡k+1 .

where we have used that ⇡k+1 is the greedy policy in the first inequality and recursion in the second inequality. Using
this,

Q⇡k+1(s, a) = r(s, a) + �Es0⇠P (·|s,a)[Q
⇡k+1(s0,⇡k+1(s

0))]

� r(s, a) + �Es0⇠P (·|s,a)[Q
⇡k(s0,⇡k+1(s

0))]

= r(s, a) + �Es0⇠P (·|s,a)[max
a0

Q⇡k(s0, a0)] = T Q⇡k(s, a)

which completes the proof of the first claim.

For the second claim,

kQ? �Q⇡k+1k1  kQ? � T Q⇡kk1 = kT Q? � T Q⇡k+1k1  �kQ? �Q⇡kk1
where we have used that Q? � Q⇡k+1 � Q⇡k in second step and the contraction property of T (·) (see Lemma 1.10 in
the last step.

With this lemma, a convergence rate for the policy iteration algorithm immediately follows.

Theorem 1.14. (Policy iteration convergence). Let ⇡0 be any initial policy. For k � log 1
(1��)✏

1��
, the k-th policy in

policy iteration has the following performance bound:

Q⇡
(k)

� Q? � ✏1 .
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Initialize a policy π0 arbitrarily.
for k= 1,2,3,4,…
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Computational complexity of 
these MDP solvers
• VI:

• PI:

• LP:

24



Strongly polynomial algorithms
are independent to ε
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Value Iteration Policy Iteration LP-Algorithms
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Table 0.1: Computational complexities of various approaches (we drop universal constants). Polynomial time algo-
rithms depend on the bit complexity, L(P, r, �), while strongly polynomial algorithms do not. Note that only for a
fixed value of � are value and policy iteration polynomial time algorithms; otherwise, they are not polynomial time
algorithms. Similarly, only for a fixed value of � is policy iteration a strongly polynomial time algorithm. In contrast,
the LP-approach leads to both polynomial time and strongly polynomial time algorithms; for the latter, the approach
is an interior point algorithm. See text for further discussion, and Section 1.7 for references. Here, |S|2|A| is the
assumed runtime per iteration of value iteration, and |S|3 + |S|2|A| is the assumed runtime per iteration of policy
iteration (note that for this complexity we would directly update the values V rather than Q values, as described in the
text); these runtimes are consistent with assuming cubic complexity for linear system solving.

Suppose that (P, r, �) in our MDP M is specified with rational entries. Let L(P, r, �) denote the total bit-size required
to specify M , and assume that basic arithmetic operations +,�,⇥,÷ take unit time. Here, we may hope for an
algorithm which (exactly) returns an optimal policy whose runtime is polynomial in L(P, r, �) and the number of
states and actions.

More generally, it may also be helpful to understand which algorithms are strongly polynomial. Here, we do not want
to explicitly restrict (P, r, �) to be specified by rationals. An algorithm is said to be strongly polynomial if it returns
an optimal policy with runtime that is polynomial in only the number of states and actions (with no dependence on
L(P, r, �)).

1.4 Iterative Methods

Planning refers to the problem of computing ⇡?

M
given the MDP specification M = (S,A, P, r, �). This section

reviews classical planning algorithms that compute Q?.

1.4.1 Value Iteration

A simple algorithm is to iteratively apply the fixed point mapping: starting at some Q, we iteratively apply T :

Q T Q ,

This is algorithm is referred to as Q-value iteration.

Lemma 1.10. (contraction) For any two vectors Q,Q0 2 R|S||A|,

kT Q� T Q0k1  �kQ�Q0k1

Proof: First, let us show that for all s 2 S , |VQ(s)�VQ0(s)|  maxa2A |Q(s, a)�Q0(s, a)|. Assume VQ(s) > VQ0(s)
(the other direction is symmetric), and let a be the greedy action for Q at s. Then

|VQ(s)� VQ0(s)| = Q(s, a)�max
a02A

Q0(s, a0)  Q(s, a)�Q0(s, a)  max
a2A

|Q(s, a)�Q0(s, a)|.
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Next lecture

• Approximate / randomized solvers for MDP

• MDP / RL with generative models
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