CS292F StatRL Lecture 4 Finite-Horizon MDPs / Temporal Difference Learning

Instructor: Yu-Xiang Wang

Spring 2021

UC Santa Barbara

Homework 1 released; project ideas shared

- You will learn the various elements of MDPs by solving problems. Also you will practice using Hoeffding's inequality and Bernstein's inequality.
- Mostly similar to what I covered in the lectures / sometimes the solutions are readily available by reading the AJKS book.
- I shared a document with recent RL theory papers by categories.
 - You do NOT have to pick one from there
 - Application projects are just as welcome --- e.g., applying RL to your problem / formulate your problem as an MDP.
 - I am happy to discuss with you if you have some fresh ideas.

Recap: MDP planning with access to generative models

- Motivation:
 - 1. Solving MDP faster / approximately with randomized algs that sample
 - 2. Study sample complexity of RL with unknown transitions (without worrying about exploration)
- Algorithm of interest: Model-based plug-in estimator.
 - Sample all state-action pairs uniformly. Estimate the transition kernel.
 - Do VI / PI on the approximate MDP. $\sqrt{\frac{2}{3}} = 2$

Recap: on a brief digression, we learned concentration inequalities.

- Hoeffding's inequality $|\bar{X} \mathbb{E}[\bar{X}]| \leq \sqrt{\frac{B^2}{2n}\log(2/\delta)}$
- Bernstein inequality $\left|\bar{X} \mathbb{E}[X_1]\right| \leq \sqrt{\frac{2\mathbf{Var}[X_1]}{n}\log(2/\delta)} + \frac{2M\log(2/\delta)}{3n}$
- McDiarmid's inequality
 - Concentration of f(X₁,...,X_n) when f is stable / coordinate-wise Lipschitz.
 Concentration is now enough, usually we need to also,
 - Concentration is now enough, usually we need to also compute expectation.

• Union bound: merging failure probabilities.

Recap: Sample complexity bound Attempt 1 $Q^{\pi} - \widehat{Q}^{\pi}$ • Simulation Lemma $Q^{\pi} - \widehat{Q}^{\pi} = \gamma (I - \gamma \widehat{P}^{\pi})^{-1} (P - \widehat{P}) V^{\pi}$

$$Q^{\pi} - \widehat{Q}^{\pi} = \gamma (I - \widehat{\gamma} \widehat{P}^{\pi})^{-1} (P - \widehat{P}) V^{\pi}$$

- Uniform convergence bound for all policies
 - By Holder's inequality, McDiarmid inequality.
- Sample complexity bound it suffices that we call this many times. $O(\frac{S^2A + SA\log(2SA/\delta))}{(1-\gamma)^4\epsilon^2})$

$$O(\frac{S^2A + SA\log(2SA/\delta))}{(1-\gamma)^4\epsilon^2})$$

Recap: Sample complexity bound Attempt 2

 Show that the V* of the estimated MDP is close to the the V* function of the true MDP.

$$\|Q^* - \widehat{Q}^*\|_{\infty} \le \frac{\gamma}{1 - \gamma} \|(P - \widehat{P})V^*\|_{\infty}$$
 value amplification lemma:

Use Q-value amplification lemma:

$$V^{\pi_Q} \ge V^* - \frac{2\|Q - Q^*\|_{\infty}}{1 - \gamma} \mathbb{1}.$$

Overall sample complexity bound:

$$O(\frac{SA\log(2SA/\delta))}{(1-\gamma)^6\epsilon^2})$$

Recap: optimal sample complexity

Optimal sample complexity:

$$\Theta\left(\frac{SA\log(2SA/\delta)}{(1-\gamma)^3\epsilon^2}\right)$$

- Ideas to achieve it:
 - Bernstein inequality. (HW1)
 - Strong variance bound. (HW1)
 - Advanced Q-value error to policy value (not covered in the class)

This lecture

1. Wrap up MDPs

- Performance difference lemma and advantage decomposition (Readings: AJKS Section 1.6)
- Remarks about finite horizon / episodic MDPs. (Readings: AJKS Section 1.2)

2. RL algorithms

- Model-based vs Model-free RL algorithms
- Temporal difference learning. (Sutton and Barto Ch 5-6)
- TD learning with linear function approximation.

Advantage function and Performance Difference Lemma

- Advantage function: $A^{\pi}(s,a) := Q^{\pi}(s,a) V^{\pi}(s)$.
 - The advantage of taking given action over following the policy.
 - Simple fact: $A^*(s, a) := A^{\pi^*}(s, a) \le 0$
- Performance Difference Lemma

Lemma 1.16. (The performance difference lemma) For all policies
$$\pi$$
, π' and distributions μ over S ,

$$V^{\pi}(\mu) - V^{\pi'}(\mu) = \frac{1}{1 - \gamma} \mathbb{E}_{s' \sim d_{\mu}^{\pi}} \mathbb{E}_{a' \sim \pi(\cdot|s')} \left[A^{\pi'}(s', a') \right].$$

where
$$d^\pi_\mu(s)=(1-\gamma)\sum_{t=1}^\infty \gamma^{t-1}\mathbb{P}^\pi[S_t=s]=(1-\gamma)
u^\pi_\mu(s)$$

Proof of Performance Difference

Finite horizon MDPs

Parameterization / Setup

$$M = (S, A, \{P\}_h, \{r\}_h, H, \mu)$$

$$P_h(S_h|S_{h-1}, P_{h-1}) = P_h(S_h|S_h, P_h, H, \mu)$$

$$P_h(S_h|S_{h-1}, P_{h-1}) = P_h(S_h|S_h, P_h, H, \mu)$$

$$P_h(S_h|S_h, P_h, H, \mu)$$

$$P_h(S$$

• Finite horizon MDPs with stationary transitions / non-stationary transitions

If Pulsisal = Pulsi

11

Bellman equations and optimal 1d= 100 policies for the finite horizon MDPs

- Even if P and r are stationary

• the V functions are Q functions are not.

$$\sqrt{t} = rt + Pt \cdot \sqrt{t}t = Rt$$
 $\sqrt{t} = rt + Pt \cdot \sqrt{t}t = Rt$
 $\sqrt{t} = rt + Pt \cdot \sqrt{t}t = Rt$
 $\sqrt{t} = rt + Rt \cdot \sqrt{t}t = Rt$
 $\sqrt{t} = rt + Rt \cdot \sqrt{t}t = Rt$
 $\sqrt{t} = rt + Rt \cdot \sqrt{t}t = Rt$
 $\sqrt{t} = rt + Rt \cdot \sqrt{t}t = Rt$
 $\sqrt{t} = rt + Rt \cdot \sqrt{t}t = Rt$

- By the Markovian property, it suffices to consider "nonstationary" but "memoryless" policies. Telesia
 - There exists a deterministic / memoryless optimal policy.

Other aspects of finite-horizon MDPs

• Advantage function and Performance Difference Lemma H-1

$$V^{\pi} - V^{\widetilde{\pi}} = \sum_{h=0}^{H-1} \mathbb{E}_{s,a \sim \mathbb{P}_h^{\pi}} \left[A_h^{\widetilde{\pi}}(s,a) \right]$$
$$A_h^{\pi}(s,a) = Q_h^{\pi}(s,a) - V_h^{\pi}(s)$$

- Simulation lemma (HW1, last question)
- LP-formulation and occupancy measures
- Sample complexities under a generative model setting

Two-way reductions between finite horizon MDPs and infinite horizon / discounted MDPs

- Infinite horizon → finite horizon
 - Clip at $O(1/(1-\gamma))$.
 - Define time-varying rewards.

- Finite horizon
 infinite horizon
 - The last step transitions into an absorbing state with self-loops and zero rewards.
 - Discounting factor γ set to be 1.

S S USU US H U 7 145 doubs

Two-way reductions between finite-H MDPs with stationary and non-stationary transitions.

Stationary → Non-stationary

Non-stationary → Stationary

Stationary M = STAP, It, M}

S=S, U-- USH

Other MDP settings that we will not consider in this course

Infinite-horizon average reward MDPs

- Usually require additional conditions for this to be welldefined.
- Indefinite-horizon setting
 - H is a random variable
 - e.g. Frozen-lake / Mountain car / other navigation tasks
 - Tricky issue: not invariant to scaling / translation of the rewards.

^{*}We are not going to cover these settings in this course.

actions: UP, DOWN, LEFT, RIGHT

UP e.g.,

State-transitions with action **UP**:

80% move up 10% move left 10% move right

*If you bump into a wall, you stay where you are.

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step
- Finite horizon or infinite horizon?
- What is a good policy?

Optimal policies in the different reward settings

reward <u>-0.04</u> for each step

reward -2 for each step

Optimal policies in the different reward settings

reward -0.04 for each step

reward -2 for each step

What if there is a positive reward for each step?

Partially Observed MDPs

• POMDP:

- Estimate belief states (posterior distribution of state given history, i.e., Kalman filter)
- Take actions according to the belief state.
- Computational considerations
 - MDP-planning: P-complete
 - POMDP-planning: PSPACE-complete (harder than NP-complete)
 - MDP-learning: polynomial sample complexity
 - POMDP-learning: often not identifiable.

^{*}We are not going to cover POMDP in this course, but good references are available.

This lecture

1. Wrap up MDPs

- Performance difference lemma and advantage decomposition (Readings: AJKS Section 1.6)
- Remarks about finite horizon / episodic MDPs.
 (Readings: AJKS Section 1.2)

2. RL algorithms

- Model-based vs Model-free RL algorithms
- Temporal difference learning. (Sutton and Barto Ch 5-6)
- TD learning with linear function approximation.

Recap: Policy Iterations and Value Iterations

- What are these algorithms for?
 - Algorithms of computing the V* and Q* functions from MDP parameters
- Policy Iterations

$$\pi_0 \to^E V^{\pi_0} \to^I \pi_1 \to^E V^{\pi_1} \to^I \dots \to^I \pi^* \to^E V^*$$

Value iterations

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V_k(s')]$$

- How do we make sense of them?
 - Recursively applying the Bellman equations until convergence.

Recap: Policy Iterations and Value Iterations

- What are these algorithms for?
 - Algorithms of computing the V* and Q* functions from MDP parameters
- Policy Iterations

$$\pi_0 \to^E V^{\pi_0} \to^I \pi_1 \to^E V^{\pi_1} \to^I \dots \to^I \pi^* \to^E V^*$$

Value iterations

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V_k(s')]$$

- How do we make sense of them?
 - Recursively applying the Bellman equations until convergence.

^{*}These methods are called "Dynamic Programming" approaches in Chap 4 of Sutton and Barto.

They are no longer valid in RL

Policy Evaluation

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V_k^{\pi}(s')]$$

Policy improvement

$$\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$$

$$= \arg\max_{a} \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V_k^{\pi}(s')]$$

Value iterations

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s,a)[r(s,a,s') + \gamma V_k(s')]$$

They are no longer valid in RL

Policy Evaluation

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V_k^{\pi}(s')]$$

Policy improvement

$$\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$$

$$= \arg\max_{a} \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V_k^{\pi}(s')]$$

Value iterations

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V_k(s')]$$

*We do not have the MDP parameters in RL!

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP 10% move LEFT 10% move RIGHT

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step
- what's the strategy to achieve max reward?

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP 10% move LEFT 10% move RIGHT

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step
- what's the strategy to achieve max reward?

actions: UP, DOWN, LEFT, RIGHT

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step
- what's the strategy to achieve max reward?

Action 1, Action 2, Action 3, Action 4 actions: UP, DOWN, LEFT, RIGHT

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step
- what's the strategy to achieve max reward?

Instead, reinforcement learning agents have "online" access to an environment

- State, Action, Reward
- Unknown reward function, unknown state-transitions.
- Agents can "act" and "experiment", rather than only doing offline planning.

Idea 1: **Model-based** Reinforcement Learning

- Model-based idea
 - Let's approximate the model based on experiences
 - Then solve for the values as if the learned model were correct
- Step 1: Get data by running the agent to explore
 - Many data points of the form: $\{(s_1, a_1, s_2, r_1), \dots, (s_N, a_N, s_{N+1}, r_N)\}$
- Step 2: Estimate the model parameters
 - $\hat{P}(s'|s,a)$ --- plug-in / MLE. We need to observe the transition many times for each s,a
 - $\hat{r}(s', a, s)$ --- this is an estimate of the empirical rewards.

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} \hat{P}(s'|s,a) [\hat{r}(s,a,s') + \gamma V_{k}^{\pi}(s')]$$

$$\pi' \leftarrow \arg\max_{a} \sum_{s'} \hat{P}(s'|s,a) [\hat{r}(s,a,s') + \gamma V_{k}^{\pi}(s')]$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} \hat{P}(s'|s,a) [\hat{r}(s,a,s') + \gamma V_{k}(s')]$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} \hat{P}(s'|s,a) [\hat{r}(s,a,s') + \gamma V_{k}^{\pi}(s')]$$

$$\pi' \leftarrow \arg\max_{a} \sum_{s'} \hat{P}(s'|s,a) [\hat{r}(s,a,s') + \gamma V_{k}^{\pi}(s')]$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} \hat{P}(s'|s,a) [\hat{r}(s,a,s') + \gamma V_{k}(s')]$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} \hat{P}(s'|s,a) [\hat{r}(s,a,s') + \gamma V_{k}^{\pi}(s')]$$

$$\pi' \leftarrow \arg \max_{a} \sum_{s'} \hat{P}(s'|s,a) [\hat{r}(s,a,s') + \gamma V_{k}^{\pi}(s')]$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} \hat{P}(s'|s,a) [\hat{r}(s,a,s') + \gamma V_{k}(s')]$$

^{*} As usual, "hat" indicates empirical estimates.

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} \hat{P}(s'|s,a) [\hat{r}(s,a,s') + \gamma V_{k}^{\pi}(s')]$$

$$\pi' \leftarrow \arg\max_{a} \sum_{s'} \hat{P}(s'|s,a) [\hat{r}(s,a,s') + \gamma V_{k}^{\pi}(s')]$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} \hat{P}(s'|s,a) [\hat{r}(s,a,s') + \gamma V_{k}(s')]$$

^{*} As usual, "hat" indicates empirical estimates.

^{*} These iterations will produce \widehat{V}^* and \widehat{Q}^* functions, and then $\widehat{\pi}^*$

This is OK if we have a generative model! But there are complications.

This is OK if we have a generative model! But there are complications.

For MDPs

- Often we need to take a carefully chosen sequence of actions to reach a state
- The chance of randomly running into a state can be **exponentially small,** if we decide to take random actions.

This is OK if we have a generative model! But there are complications.

- For MDPs
 - Often we need to take a carefully chosen sequence of actions to reach a state
 - The chance of randomly running into a state can be **exponentially small,** if we decide to take random actions.
 - Question: What is an example of this?

This is OK if we have a generative model! But there are complications.

- For MDPs
 - Often we need to take a carefully chosen sequence of actions to reach a state
 - The chance of randomly running into a state can be exponentially small, if we decide to take random actions.

• Question: What is an example of this?

Question: What is an example of this?

*Need to somehow update the "exploration policy" on the fly!

More generally, model-based method is a algorithm design principle.

We use function approximation on P

• Function classes: $\beta \in \mathcal{H}$ Menval network

Menval network

Mixtur of Grouge of H

Simulation lemma still applies

$$Q^{\pi} - \widehat{Q}^{\pi} = \gamma (I - \gamma \widehat{P}^{\pi})^{-1} (P - \widehat{P}) V^{\pi}$$
• If: P is a valid - transition kernel
• But: error propagation might be fricky

Idea 2: **Model-free** Reinforcement Learning

 Do we need the model? Can we learn the Q function directly?

$$\pi_0 \to^E V^{\pi_0} \to^I \pi_1 \to^E V^{\pi_1} \to^I \dots \to^I \pi^* \to^E V^*$$

Idea 2: **Model-free** Reinforcement Learning

- Do we need the model? Can we learn the Q function directly?
 - Inction directly?
 How many free parameters are there to represent the Q-function?

$$\pi_0 \to^E V^{\pi_0} \to^I \pi_1 \to^E V^{\pi_1} \to^I \dots \to^I \pi^* \to^E V^*$$

Idea 2: **Model-free** Reinforcement Learning

- Do we need the model? Can we learn the Q function directly?
 - How many free parameters are there to represent the Q-function?

Recall: Policy iterations

$$\pi_0 \to^E V^{\pi_0} \to^I \pi_1 \to^E V^{\pi_1} \to^I \dots \to^I \pi^* \to^E V^*$$

 Maybe we can do policy evaluation / value iterations without estimating the model?

Model-free method is yet another algorithm design principle

We use function approximation on Q directly

Function classes

Induced policy class

Monte Carlo Policy Evaluation (Prediction)

- want to estimate $V^{\pi}(s)$
 - = expected return starting from s and following π
 - estimate as average of observed returns in state s
- We can execute the policy π
- first-visit MC
 - average returns following the first visit to state s

Monte Carlo Policy Evaluation (Prediction)

- want to estimate $V^{\pi}(s)$
 - = expected return starting from s and following π
 - estimate as average of observed returns in state s
- We can execute the policy π
- first-visit MC
 - average returns following the first visit to state s

$$V^{\pi}(s) \approx (2 + 1 - 5 + 4)/4 = 0.5_{31}$$

 $G_1 = 0 + 7 - 1 + 0 + 3^3 (-2)$

Monte Carlo Policy Optimization (Control)

- V^{π} not enough for policy improvement
 - need exact model of environment

• estimate $Q^{\pi}(s,a)$

$$\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$$

MC control

$$\pi_0 \to^E Q^{\pi_0} \to^I \pi_1 \to^E Q^{\pi_1} \to^I \dots \to^I \pi^* \to^E Q^*$$

- update after each episode
- Two problems
 - greedy policy won't explore all actions
 - Requires many independent episodes for the estimated value function to be accurate.

Monte Carlo Policy Optimization (Control)

- V^{π} not enough for policy improvement
 - need exact model of environment

• estimate $Q^{\pi}(s,a)$

$$\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$$

MC control

$$\pi_0 \to^E Q^{\pi_0} \to^I \pi_1 \to^E Q^{\pi_1} \to^I \dots \to^I \pi^* \to^E Q^*$$

- update after each episode
- Two problems
 - greedy policy won't explore all actions
 eps-greedy, or bonus design.
 - Requires many independent episodes for the estimated value function to be accurate.

Improved Monte-Carlo Q-function estimate using Bellman equations

Recall:

$$Q^{\pi}(s, a) = \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma \sum_{a'} \pi(a'|s') Q^{\pi}(s', a')]$$
$$Q^{\pi}(s, a) = r^{\pi}(s, a) + \gamma \mathbb{E}_{s' \sim P(s'|s, a)} [V^{\pi}(s')]$$

Improved Monte-Carlo Q-function estimate using Bellman equations

Recall:

$$Q^{\pi}(s, a) = \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma \sum_{a'} \pi(a'|s') Q^{\pi}(s', a')]$$
$$Q^{\pi}(s, a) = r^{\pi}(s, a) + \gamma \mathbb{E}_{s' \sim P(s'|s, a)} [V^{\pi}(s')]$$

We can use the empirical (Monte Carlo) estimate.

$$\widehat{Q}^{\pi}(s,a) = \widehat{r}^{\pi}(s,a) + \gamma \widehat{\mathbb{E}}_{s' \sim P(s'|s,a)} [\widehat{V}^{\pi}(s')]$$

Improved Monte-Carlo Q-function estimate using Bellman equations

Recall:

$$Q^{\pi}(s, a) = \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma \sum_{a'} \pi(a'|s') Q^{\pi}(s', a')]$$
$$Q^{\pi}(s, a) = r^{\pi}(s, a) + \gamma \mathbb{E}_{s' \sim P(s'|s, a)} [V^{\pi}(s')]$$

• We can use the empirical (Monte Carlo) estimate.

$$\widehat{Q}^{\pi}(s,a) = \widehat{r}^{\pi}(s,a) + \gamma \widehat{\mathbb{E}}_{s' \sim P(s'|s,a)} [\widehat{V}^{\pi}(s')]$$

^{*}No need to estimate $P(s' \mid s,a)$ or r(s,a,s') as intermediate steps.

^{*}Require only O(SA) space, rather than O(S^2A)

Online averaging representation of MC

Alternative, online averaging update

$$V(S_t) \leftarrow V(S_t) + \alpha \left[G_t - V(S_t) \right], \text{ where } \alpha = 1/N_{S_t}$$

34

• Monte Carlo $V(S_t) \leftarrow V(S_t) + \alpha \Big[G_t - V(S_t) \Big],$

• Monte Carlo $V(S_t) \leftarrow V(S_t) + \alpha \left[G_t - V(S_t) \right],$

Issue: G_t can only be obtained after the entire episode!

• Monte Carlo $V(S_t) \leftarrow V(S_t) + \alpha \Big[G_t - V(S_t) \Big],$

Issue: G_t can only be obtained after the entire episode!

The idea of TD learning:

$$\mathbb{E}_{\pi}[G_t] = \mathbb{E}_{\pi}[R_t|S_t] + \gamma V^{\pi}(S_{t+1})$$

• Monte Carlo $V(S_t) \leftarrow V(S_t) + \alpha \Big[G_t - V(S_t) \Big],$

Issue: G_t can only be obtained after the entire episode!

• The idea of TD learning:

$$\mathbb{E}_{\pi}[G_t] = \mathbb{E}_{\pi}[R_t|S_t] + \gamma V^{\pi}(S_{t+1})$$

We only need one step before we can plug-in and estimate the RHS!

- Monte Carlo $V(S_t) \leftarrow V(S_t) + \alpha \left[G_t V(S_t) \right],$
 - Issue: G_t can only be obtained after the entire episode!
- The idea of TD learning:

$$\mathbb{E}_{\pi}[G_t] = \mathbb{E}_{\pi}[R_t|S_t] + \gamma V^{\pi}(S_{t+1})$$

We only need one step before we can plug-in and estimate the RHS!

TD-Policy evaluation

$$V(S_t) \leftarrow V(S_t) + \alpha \left[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right]$$

• Monte Carlo $V(S_t) \leftarrow V(S_t) + \alpha |G_t - V(S_t)|,$

Issue: G_t can only be obtained after the entire episode!

The idea of TD learning:

$$\mathbb{E}_{\pi}[G_t] = \mathbb{E}_{\pi}[R_t|S_t] + \gamma V^{\pi}(S_{t+1})$$

We only need one step before we can plug-in and estimate the RHS!

TD-Policy evaluation

Policy evaluation
$$V(S_t) \leftarrow V(S_t) + \alpha \Big[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \Big]$$

Bootstrap's origin

- "The Surprising Adventures of Baron Münchausen"
 - Rudolf Erich Raspe, 1785

- In statistics: Brad Efron's resampling methods
- In computing: Booting...
- In RL: It simply means TD learning

TD policy optimization (TD-control)

- SARSA (On-Policy TD-control)
 - Update the Q function by bootstrapping Bellman Equation

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A) \right]$$

- Choose the next A' using Q, e.g., eps-greedy.
- Q-Learning (Off-policy TD-control)
 - Update the Q function by bootstrapping Bellman Optimality Eq.

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_{a} Q(S',a) - Q(S,A) \right]$$

• Choose the next A' using Q, e.g., eps-greedy, or any other policy.

Remarks:

- These are proven to converge asymptotically.
- Much more data-efficient in practice, than MC.
- Regret analysis is still active area of research.

Advantage of TD over Monte Carlo

- Given a trajectory, a roll-out, of T steps.
 - MC updates the Q function only once
 - TD updates the Q function (and the policy) T times!

Advantage of TD over Monte Carlo

- Given a trajectory, a roll-out, of T steps.
 - MC updates the Q function only once
 - TD updates the Q function (and the policy) T times!

Remark: This is the same kind of improvement from Gradient Descent to Stochastic Gradient Descent (SGD).

Model-free vs Model-based RL algorithms

Different function approximations

Different space efficiency

- Which one is more statistically efficient?
 - More or less equivalent in the tabular case.
 - Different challenges in their analysis.