CS292F StatRL Lecture 4

Terr

-lNite-

poral

orizo

Differe

"

ﬁ

MDPs /
ce Learning

Instructor: Yu-Xiang Wang

Spring 2021

UC Santa Barbara

Homework 1 released; project
ideas sharec

* You will learn the various elements of MDPs by solving
problems. Also you will practice using Hoeffding’s inequality
and Bernstein’s inequality.

* Mostly similar to what | covered in the lectures / sometimes
the solutions are readily available by reading the AJKS book.

* | shared a document with recent RL theory papers by
categories.
* You do NOT have to pick one from there

* Application projects are just as welcome --- e.g., applying RL to your
problem / formulate your problem as an MDP.

* | am happy to discuss with you if you have some fresh ideas.

Recap: MDP planning with
access to generative models

* Motivation:
1. Solving MDP faster / approximately with randomized
algs that sample

2. Study sample complexity of RL with unknown

transitions (without worrying about exploratlo/n)
A

o= (S, sV %)
* Algorithm of interest: Model-based plug |n
estimator.
* Sample all state-action pairs uniformly. Estimate the
transition kernel.
* Do VI /Pl on the approximate MDP. v At < (iﬂ

Recap: on a brief digression, we
learned concentration inequalities.

* Hoeffding’s inequality
| X — E \/— log(2/6)

* Bernstein inequality
X B < \/2Var[X1] log(2/5) + 2M log(2/9)

n 3n

___——

 McDiarmid’s inequality
* Concentration of f(X,, J ,X,) when f is stable / coordinate-wise

Lipschitz. r—Hx I O S R Jf)@/ o
* Concentration is now nough ustg(ly we need to also

compute expectation. - “?(X.. . &< (g
~Thth,

* Union bound: merging failure probabilities.

Recap: Sample comp\exny bound

Attempt 1 - Q" .
Gy (-G < Lp-plL
* Simulation Lemma /vu T $§M
A PP Py Fﬁﬁﬂ

e Uniform conver bound for all policies

* By Holder’s inequality, McDiarmid inequality.

* Sample complexity bound it suffices that we call

thi times.
is many Imgs(@A+SA log(254/3)) y

R o A

Recap: Sample complexity bound
Attempt 2

e Show that the V* of the estimated MDP is close to

the the V* function ofvthe true MDP.
1Q7 = Qoo = 72 IIP = P)‘//\\ loc

——

|
Tred Nt b,
e Use Q-value amplification lemma: a/%%

_N)*
o > Q€ — Qo
1 =7

* Overall sample complexity bound:

SAlog(25A/d
O(SALESA))

Recap: optimal sample complexity

* Optimal sample complexity:

SAlog(25A/o
O (1§(3)362/)))

* Ideas to achieve it:
* Bernstein inequality. (HW1)
e Strong variance bound. (HW1)

e Advanced Q-value error to policy value (not covered in
the class)

This lecture

1. Wrap up MDPs

* Performance difference lemma and advantage
decomposition (Readings: AJKS Section 1.6)

* Remarks about finite horizon / episodic MDPs.
(Readings: AJKS Section 1.2)

2. RL algorithms
* Model-based vs Model-free RL algorithms
* Temporal difference learning. (Sutton and Barto Ch 5-6)
* TD learning with linear function approximation.

Advantage function and
Performance Difference Lemma

* Advantage function: A"(s,a) := Q" (s,a) — V™(s).

* The advantage of taking given action over following the

policy.)
e Simple fact: A™(s,a) := A" (s,a) < actl, |
| J 7{/
r—— — S S
. K -
* Performance Difference Lemma \k/,;

ol

Lemma 1.16. (The performance difference lemma) For all policies 7, 7" and distributions u over S,
Vo” th w‘ﬂ/\’((' VJ/(DIA‘(b —
L , 1 / J
VW(IUJ) -V (:u) — 1—E8’Ndl’IEa’~7r(-|s’) |:A7T (S,7a/):| .
- B\

OCa/'PC"Cj Mexsuy fr r
m e %
where djj(s) = (1—7)) 7" 'PT[S = s] = (1 = 7)vj(s)

t=1 9

Proof of Performance Difference)
emma om0 -l ,;;W

&

+ 3 (vGs.a) 4&[/& °6,)) *‘&1/’7(2
VW<S) - VW/(S) - ETNPI"’T (T]so=s) Z ’yt’f’(St, at)] - Vﬂ/(s) { —-V‘[,_//‘I)
=0 ,(b)
= ETNPr”(ﬂsO:s) Z/yt T(St at) + VW/ S) -V (St)) o Vﬂ-l(s)

- ETNPr’T(ﬂso:s) 27t T(Sty at) + ’YVWI(St—Fl) - Vﬂ—/(st))-‘

A

(:) IE’TNPWr (T|s0o=s) Z 7t (T(Sl‘n CLt) + WE[VW/ (St-l‘l) |St? a’t] - Vﬂ-l (St)>]
| t=0 /
oo @

(c) ' '’

= ETNPr’T(ﬂso:s) 27t (Q (Sta Clt) -V (&5))]
| t=0

[& : 1 .
- ETNPr”(ﬂsO:s) nytAﬂ (8t7 at)] — S]Es’rvdg]anw(-|s)’7tA (Slaa)7

10

Finite horizon MDPs

» Parameterization / Setup
= (S, A AP}, {rin, H, 1)

Gl Fra-ELR 55 4]
—_—
Qoo e € fud € optlphey Sl LL%,/%)]

* Finite horizon MDPs with statlonary transmons/
_hon-stationary transitions. ,p)%[g 9@
[gj/f%/

 Evenif Pand r are stationary
* the V functions are qunctlons z\are not rmL\ @

Ve Y PV e
(.|/ (’t P \/

Yt R Q CR
{o oll £,

. By the Markovian property, it suffices to consider
“nonstationary” but “memoryless” policies. c(f[/g;)

* There exists a deterministic / memoryless opt|m7rpollcy

12

Other aspects of finite-horizon
MDPs

* Advantage function and Performance Difference

Lemma -l ~
VW — vﬁ = Z Es,aNPZ [AZ(S7 CL)}

h=0
A7(s,a) = Qf(s,a) = Vi (s)

e Simulation lemma (HW1, last question)
e LP-formulation and occupancy measures

* Sample complexities under a generative model
setting

Two-way reductions between finite
horizon MDPs and infinite horizon /

discounted MDPs Q { ;()
9 =
| oot

* Infinite horizon =» finite horizon
* Clip at O(1/(1-v)). »
* Define time-varying rewards. {an 0 ﬁ&/ﬂ\)

* Finite horizon =@ infinite horizon
* The last step transitions into an absorbing state with

self-loops and zero rewards. @
* Discounting factor y set to be 1. % >@\ b

@)

/‘g Q%j‘ %”)

Two-way reductions between finite-H
MDPs with stationary and non-
stationary transitions.

e Stationary =» Non-stationary

pE1sn)
i
Ph’(gl[g)ﬂ
. Non-stationa;y =>» Stationary E
N
Cunmy MAS AP, 101 e
?‘:— g/ U UgH _@(@

19 Cl&, .

Other MDP settings that we will
not consider in this course

* Infinite-horizon average reward MDPs

o [[W‘f Q‘J

e Usually require additional conditions for this to be well-
defined.

* Indefinite-horizon setting
* His arandom variable
* e.g. Frozen-lake / Mountain car / other navigation tasks
* Tricky issue: not invariant to scaling / translation of the

rewards. o<y (eakc [

*We are not going to cover these settings in this course.

Example: Frozen lake.

START

e reward +1 at [4,3], -1 at [4,2]
* reward -0.04 for each step

actions: UP, DOWN, LEFT, RIGHT

upP e.g.

State-transitions with action UP:

80% move up
10% move left
10% move right

*If you bump into a wall,
you stay where you are.

* Finite horizon or infinite horizon?

 What is a good policy?

Optimal policies in the different
reward settings

- = = 1| | ==

* + |1

v ¥

- 5>

reward -0.04 for each step reward -2 for each step

==

Optimal policies in the different

reward settings

-

-)

-

+1

*

*

-1

-

-)

*

-

-

-

e
e
N

reward -0.04 for each step

-

AR AR

-)

reward -2 for each step

What if there is a positive reward for each step?

* POMDP:

e Estimate belief states (posterior distribution of state
given history, i.e., Kalman filter)

* Take actions according to the belief state.

 Computational considerations
MDP-planning: P-complete

POMDP-planning: PSPACE-complete (harder than NP-
complete) —

MDP-learning: polynomial sample complexity
POMDP-learning: often not identifiable.

*We are not going to cover POMDP in this course, but good references are available.

19

This lecture

2. RL algorithms
* Model-based vs Model-free RL algorithms
* Temporal difference learning. (Sutton and Barto Ch 5-6)
* TD learning with linear function approximation.

Recap: Policy Iterations and Value
terations

 What are these algorithms for?

» Algorithms of computing the V* and Q* functions from MDP
parameters

 Policy Iterations
e Value iterations

Via1(s) < mgxz P(s'|s,a)[r(s,a,s") +vVi(s')]

* How do we make sense of them?
* Recursively applying the Bellman equations until convergence.

Recap: Policy Iterations and Value
terations

 What are these algorithms for?

» Algorithms of computing the V* and Q* functions from MDP
parameters

 Policy Iterations
e Value iterations

Via1(s) < mc?xz P(s'|s,a)[r(s,a,s") +vVi(s')]

* How do we make sense of them?
* Recursively applying the Bellman equations until convergence.

*These methods are called “Dynamic Programming” approaches in Chap 4 of
Sutton and Barto.

They are no longer valid in RL

* Policy Evaluation
Viii(s) < > _m(als) > P(s'|s,a)r(s,a,8") + Vi (s')]

* Policy improvement
7'(s) = arg max Q" (s, a)

— arg max Z P(s'|s,a)[r(s,a,s") + 4V, (s")]

e \Value iterations

Vier1(8) < max Z P(s'|s,a)[r(s,a,s") +yVi(s')]

They are no longer valid in RL

* Policy Evaluation

Via(s)) _m(als)) PtsHea) Mtsmarsl) + Vi (s)

* Policy improvement
7'(s) = arg max Q" (s, a)

— arg mgxz Pl [Thsransl) + YV (8)]

e \Value iterations

Vig1(s) < mf}XZ P4 [T{srevsl) + 7V (7))

*We do not have the MDP parameters in RL!

22

Example: Frozen lake

+1 actions: UP, DOWN, LEFT, RIGHT

- 1 UP
80% move UP '
10% move LEFT

START 10% move RIGHT

e reward +1 at [4,3], -1 at [4,2]
* reward -0.04 for each step

e what's the strategy to achieve max reward?

Example: Frozen lake

actions: UP, DOWN, LEFT, RIGHT

UP
80% move UP '
10% move LEFT

START 10% move RIGHT

e reward—+tatt431=tat14,2]

e what's the strategy to achieve max reward?

Example: Frozen lake

START

actions: UP, DOWN, LEFT, RIGHT

upP

80% move
10% move LE
10% move RIGHT

e what's the strategy to achieve max reward?

23

Example: Frozen lake

Lale Of\

)
START ~

Action 1, Action 2, Action 3, Action 4
actions: UPDOWNRSTEFT, RIGHT—

upP

80% move
10% move LE
10% move RIGHT

e what's the strategy to achieve max reward?

23

Instead, reinforcement learning agents
have “online” access to an environment

e State, Action, Reward
 Unknown reward function, unknown state-transitions.

* Agents can “act” and “experiment”, rather than only doing
offline planning.

’_[Agent}
sate il action
S, | IR .
4 Ria dl
L S| Environment]4

\,

dea 1: Model-based
Reinforcement Learning
* Model-based idea

» Let’s approximate the model based on experiences
* Then solve for the values as if the learned model were correct

e Step 1: Get data by running the agent to explore

 Many data points of the form:
{(Shli Q1, T);) (SNJ AN, SN+1 TN)}

“5.1)
e Step 2: Estimate the model parameters

« P(s'|s,a) - plug-in / MLE. We need to observe the
transition many times for each s, a

* 7(s',a,s) --- this is an estimate of the empirical rewards.

Then we can plug in these estimates
and then use dynamic programming
for policy evaluation / improvements.

Vi (s eZW als) ZP "Is,a)[7(s,a,s") + VI (s)]
T %argmaxZP "Is,a)[F(s,a,8") + YV (s)]

Vier1(s)%maXZP |5, a)[*(s,a,8") + Vi (s)]

Then we can plug in these estimates
and then use dynamic programming
for policy evaluation / improvements.

Vi (s) <) _mlals) Y |P(s']s,a)[7(s, a,8") + Vi (s')]

S/

7’ < arg maxz P(s'|s,a)[f(s,a,s) +~yV(s")]

Vi1 (s) < max » ~ P(s'|s,a)[F(s,a,s") +yVi(s"))

Then we can plug in these estimates
and then use dynamic programming
for policy evaluation / improvements.

Viti(s) < Y m(als) Y |P(s']s,a)[(s,a,s)

S/

+ Vi (s)]

7’ < arg maxz P(s'|s,a)[f(s,a,s) +~yV(s")]

Vi1 (s) < max » ~ P(s'|s,a)[F(s,a,s") +yVi(s"))

* As usual, “hat” indicates empirical estimates.

Then we can plug in these estimates
and then use dynamic programming
for policy evaluation / improvements.

Vi (s) <) _mlals) Y |P(s']s,a)[7(s, a,8") + Vi (s')]

S/

7' < arg max g P(s'|s,a)[f(s,a,s")
a
8/

+ Vi (s')]

Vk—l—l (3) < Inax Z p(s/‘sa a)[f(sa a, S/) + ’ka(S/)]

a

S/

* As usual, “hat” indicates empirical estimates.

* These iterations will produce V* and Q* functions, and then #*

26

This is OK if we have a generative
model! But there are complications.

This is OK if we have a generative
model! But there are complications.

* For MDPs

e Often we need to take a carefully chosen sequence of
actions to reach a state

* The chance of randomly running into a state can be
exponentially small, if we decide to take random actions.

This is OK if we have a generative
model! But there are complications.

* For MDPs

e Often we need to take a carefully chosen sequence of
actions to reach a state

* The chance of randomly running into a state can be
exponentially small, if we decide to take random actions.

* Question: What is an example of this?

This is OK if we have a generative
model! But there are complications.

* For MDPs

e Often we need to take a carefully chosen sequence of
actions to reach a state

* The chance of randomly running into a state can be
exponentially small, if we decide to take random actions.

* Question: What is an example of this? P@/ =0~
G/) @P(@w
~—
=
/

*Need to somehow update the “exploration policy” on the fly!

27

More generally, model-based method
IS a algorithm design principle.

* We use function approximation on P

J M@Iﬂlﬂ\[nmk
- /
* Function classes: pc B

Lfk\m < Gy, / V¢ H

e Simulation lemma still applies

AN

Qﬂ'_Qﬂ' — ,Y(I_,YPW) 1(P_P 7 _
° If_ A ~N T o _[7,{::
B e o o Lo o
* But: ia O

P e g,

28

dea 2: Model-free Reinforcement
_earning

e Do we need the model? Can we learn the Q
function directly?

7TO_>Ev7T0_>I7T1_>Ev7T1 _>I”._>I7_‘_>|<_>EV>|<

dea 2: Model-free Reinforcement
_earning

)9 Aé’g 9%/%@,{%%

e Do we need the model? Can we learn the Q

function directly? & oy by <4 s
* How many free parameters are there to represent the’ %
Q-function?

29

dea 2: Model-free Reinforcement
_earning

e Do we need the model? Can we learn the Q
function directly?

 How many free parameters are there to represent the
Q-function?

e Recall: Policy iterations

7T0—>EV7TO—>I7T1—>EV7T1 _>I”._>I7_‘_>|<_>EV>|<

* Maybe we can do policy evaluation / value iterations
without estimating the model?

29

Model-free method is yet another
algorithm design principle

* We use function approximation on Q directly
Kell

e Function classes C XA DR

* Induced policy class

(/\7:; = % g (%) % AG}/?

30

Monte Carlo Policy Evaluation (Prediction)

* want to estimate V*(s)
= expected return starting from s and following ©
e estimate as average of observed returns in state s

* We can execute the policy

e first-visit MC
» average returns following the first visit to state s

S S
® ® ® ® ® ® ® C— =
So @ o @ T o > @ 5 o ” o 3 o e G4(s) = +2

31

Monte Carlo Policy Evaluation (Prediction)

e want to estimate V*(s)

* We can execute the policy T
* first-visit MC

= expected return starting from s and following ©
e estimate as average of observed returns in state s

O;lo%r«uwg%4

» average returns following the first visit to state s IR
S S
5) 0—e—0—e—@ o+10 0_20 00 ® o+10 0_30 o+ W Gy(s)=+2
So O——0——0——0—0—0—0—0—0—0—0—0——1
S) O—0—0—0—0—0—@—0—0—0—0—0—@—o—0—o—1l G,(s) = +1
5; —0—@—o—0—o0—0—o—0—o—0—o—0—o—0—o—1l Gs(s) = -5
S) O—0—@—0—0—0—0—0—0——0—0— 001
S) O——0——0—0—0—0—0— 00— 0—0—0—0—0—l (Gys)=+4

Vi(s) = 2 +1-5+4)/4=0.5

Monte Carlo Policy Optimization (Control)

V™ not enough for policy improvement
* need exact model of environment

estimate Q"(s,a)
7'(s) = arg max Q" (s,a)

MC control
0 _E QWO I T _E le I T * _E Q*

e update after each episode

Two problems
» greedy policy won’t explore all actions

* Requires many independent episodes for the estimated value function to be
accurate.

32

Monte Carlo Policy Optimization (Control)

V™ not enough for policy improvement
* need exact model of environment

estimate Q"(s,a)

7'(s) = arg max Q" (s,a)

MC control
0 _E QWO I T _E le I T * _E Q*

e update after each episode

Two problems
* greedy policy won’t explore all actions eps-greedy, or bonus design.

* Requires many independent episodes for the estimated value function to be
accurate.

32

Improved Monte-Carlo Q-function
estimate using Bellman equations

e Recall:

Q"(s,a) =) P(s'|s,a)lr(s,a,8") +v) _m(a'|s)Q7 (',)]

QW(Sa CL) — TW(Sa a’) + /YES/NP(S’l.S,CL) [VW(S,)]

Improved Monte-Carlo Q-function
estimate using Bellman equations

e Recall:
Q7 (s,a) = P(s|s,a)[r(s,a,8) +v) m(a'|s)Q7(s',a")]
QW(Sa CL) — TW(Sa a’) + /YES/NP(S’l.S,CL) [VW(S,)]

* We can use the empirical (Monte Carlo) estimate.

Q™ (s,a) = 77(5,a) + Y By p(sris.a) [V (5)]

Improved Monte-Carlo Q-function
estimate using Bellman equations

e Recall:

Q"(s,a) =) P(s'|s,a)lr(s,a,8") +v) _m(a'|s)Q7 (',)]

QW(Sa a) — ’rw(sa a’) + /YES/NP(S’l.S,CL) [Vﬁ(s,)]

* We can use the empirical (Monte Carlo) estimate.
Q™ (s,a) = 77(5,a) + Y By p(sris.a) [V (5)]

*No need to estimate P(s’ | s,a) or r(s,a,s’) as intermediate steps.
*Require only O(SA) space, rather than O(S"2A)

Online averaging representation of MC

So @

So @

So @

So @
So @

So @

® OO0 00 Ow
® ¢ ¢ ¢ ¢ 0

® 00606 O
® ¢ ¢ ¢ ¢ .0
H BB ENE B

DP + MC = Temporal Difference Learning

* Monte Carlo V(S:) < V(S:) + Oz[Gt — V(St)]a

DP + MC = Temporal Difference Learning

* Monte Carlo V(S:) < V(S:) + Oz[Gt — V(St)]:

Issue: G; can only be obtained after the entire episode!

35

DP + MC = Temporal Difference Learning

* Monte Carlo V(S:) < V(S:) + Oz[Gt — V(St)]:

Issue: G; can only be obtained after the entire episode!
* The idea of TD learning:
Ex|Gi] = Ex|[Ri|St] + V7 (Se41)

35

DP + MC = Temporal Difference Learning

* Monte Carlo V() « V(S,) + oG~ V(S))].

Issue: G; can only be obtained after the entire episode!

* The idea of TD learning: b

E |Gt = Ex [Ré‘st] + V7 (Str1)

We only need one step before we can plug-in and estimate the RHS!

35

DP + MC = Temporal Difference Learning

* Monte Carlo V(S:) < V(S:) + Oz[Gt — V(St)}a

Issue: G; can only be obtained after the entire episode!

* The idea of TD learning:
Eﬂ' [Gt] — Eﬂ' [Rt‘st] + VW(St—i—l)

We only need one step before we can plug-in and estimate the RHS!

* TD-Policy evaluation

V(S)) ¢ V(S:) +a| Rt +9V (1) = V(S0)

35

DP + MC = Temporal Difference Learning

* Monte Carlo V(S:) < V(S:) + Oz[Gt — V(St)]:

Issue: G; can only be obtained after the entire episode!

* The idea of TD learning:
Er|Gi] = Ex[Re|St] + 7V (St41)

We only need one step before we can plug-in and gstimate the RHS!

* TD-Policy evaluation Bootstrapping!

V(S,) « V(S:) + a [Rt“ AV (Si) — V(St)}

35

Bootstrap’s origin

* “The Surprising Adventures of Baron Munchausen”
* Rudolf Erich Raspe, 1785

ot Pulling! PULL
/ o/ YOURSELF
UP BY

THE
BOOT
STRAPS!!!

* |In statistics: Brad Efron’s resampling methods
* |[n computing: Booting...
* In RL: It simply means TD learning

36

TD policy optimization (TD-
control)

e SARSA (On-Policy TD-control)
* Update the Q function by bootstrapping Bellman Equation

Q(S,A) « Q(S,A) + a[R+Q(S", A") — Q(S, A)]
* Choose the next ;A’ using Q, e.g., eps-greedy.

* Q-Learning (Off-policy TD-control)
* Update the Q function by bootstrapping Bellman Optimality Eq.

Q(S, 4) + Q(5,4) + a| R + ymaxa Q(5', a) — Q(S5, 4),

* Choose the next A’ using Q, e.g., eps-greedy, or any other policy.
¢
Remarks:

 These are proven to converge asymptotically.
* Much more data-efficient in practice, than MC.
* Regret analysis is still active area of research. 37

Advantage of TD over Monte
Carlo

* Given a trajectory, a roll-out, of T steps.
* MC updates the Q function only once

e TD updates the Q function (and the policy) T times!

Advantage of TD over Monte
Carlo

* Given a trajectory, a roll-out, of T steps.
* MC updates the Q function only once

e TD updates the Q function (and the policy) T times!

Remark: This is the same kind of improvement from Gradient Descent to
Stochastic Gradient Descent (SGD).

Model-free vs Model-based RL
algorithms

* Different function approximations

* Different space efficiency

* Which one is more statistically efficient?
* More or less equivalent in the tabular case.
 Different challenges in their analysis.

