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Recap: Lecture 12

• OPE algorithms in (Contextual) Bandits

• DM, IS,  WIS,  DR,  SWITCH

• Comparing DM and IS in Multi-armed Bandits:

• DM is asymptotically more efficient
• IS is better.

• More generally:

• DM is asymptotically more efficient if we assume 
realizability
• IS cannot be improved when we don’t
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Recap: Two standard approaches

• Direct method / regression estimator

• Importance sampling / Inverse Propensity Score /
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Recap:  Combining DM and IS 

• Doubly Robust Estimation

• Remains unbiased, but limited benefits to the variance

• SWITCH

• Introduce bias, but drastically reduce variance
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This lecture

• Generalizing the bandits OPE idea to RL

• Curse of Horizon

• Marginalized Importance Sampling
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OPE in Reinforcement Learning
• Importance sampling on the entire trajectory

• (Per-Step) Importance Sampling

• Exercise:
• Infinite horizon discounted version?
• Weighted Importance Sampling Extension?
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using the observed data and the known action probabilities. Different from previous studies, we focus
on the case where S is sufficiently small but S2A is too large for a reasonable sample size. In other
words, this is a setting where we do not have enough data points to estimate the state-action-state
transition dynamics, but we do observe the states and can estimate the distribution of the states
after the change of policies, which is our main strategy.

Assumptions: We list the technical assumptions we need and provide necessary justification.

A1. 9Rmax,� < +1 such that 0  E[rt|st, at, st+1]  Rmax,Var[rt|st, at, st+1]  �2 for all t, st, at.

A2. Behavior policy µ obeys that dm := mint,st d
µ

t
(st) > 0 8t, st such that d⇡t (st) > 0.

A3. Bounded weights: ⌧s := maxt,st
d
⇡
t (st)

d
µ
t (st)

< +1 and ⌧a := maxt,st,at
⇡(at|st)
µ(at|st) < +1.

Assumption A1 is assumed without loss of generality. The � bound is required even for on-policy
evaluation and the assumption on the non-negativity and Rmax can always be obtained by shifting
and rescaling the problem. Assumption A2 is necessary for any consistent off-policy evaluation
estimator. Assumption A3 is also necessary for discrete state and actions, as otherwise the second
moments of the importance weight would be unbounded. For continuous actions, ⌧a < +1 is
stronger than we need and should be considered a simplifying assumption for the clarity of our
presentation. Finally, we comment that the dependence in the parameter dm, ⌧s, ⌧a do not occur in
the leading O(1/n) term of our MSE bound, but only in simplified results after relaxation.

3 Marginalized Importance Sampling Estimators for OPE

In this section, we present the design of marginalized IS estimators for OPE. For small action spaces,
we may directly build models by the estimated transition function Tt(st|st�1, at�1) and the reward
function rt(st, at, st+1) from empirical data. However, the models may be inaccurate in large action
spaces, where not all actions are frequently visited. Function approximation in the models may cause
additional biases from covariate shifts due to the change of policies. Standard importance sampling
estimators (including the doubly robust versions)[Dudík et al., 2011; Jiang and Li, 2016] avoid the
need to estimate the model’s dynamics but rather directly approximating the expected reward:
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To adjust for the differences in the policy, importance weights are used and it can be shown that
this is an unbiased estimator of v⇡ (See more detailed discussion of IS and the doubly robust version
in Appendix C). The main issue of this approach, when applying to the episodic MDP with large
action space is that the variance of the importance weights grows exponentially in H [Liu et al.,
2018a], which makes the sample complexity exponentially worse than the model-based approaches,
when they are applicable. We address this problem by proposing an alternative way of estimating
the importance weights which achieves the same sample complexity as the model-based approaches
while allowing us to achieve the same flexibility and interpretability as the IS estimator that does not
explicitly require estimating the state-action dynamics Tt. We propose the Marginalized Importance
Sampling estimator:
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Doubly Robust OPE in
Reinforcement Learning
• An alternative form for the Per-Step IS

• Given a value function approximator
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Doubly Robust Off-policy Value Evaluation for Reinforcement Learning

sion estimators have provably low variances and negligible
biases (Mannor et al., 2007), and often outperform alterna-
tives in practice (Paduraru, 2013).

However, real-world problems usually have a large or even
infinite state space, and many state-action pairs will not
be observed even once in the data, rendering the necessity
of generalization in model fitting. To generalize, one can
either apply function approximation to fitting cM (Jong &
Stone, 2007; Grünewälder et al., 2012), or to fitting the
value function directly (Bertsekas & Tsitsiklis, 1996; Sutton
& Barto, 1998; Dann et al., 2014). While the use of function
approximation makes the problem tractable, it can introduce
bias to the estimated value when the MDP parameters or the
value function cannot be represented in the corresponding
function class. Such a bias is in general hard to quantify
from data, thus breaks the credibility of estimations given
by regression based approaches (Farahmand & Szepesvári,
2011; Marivate, 2015; Jiang et al., 2015).

3.2.2. IMPORTANCE SAMPLING ESTIMATORS

The IS estimator provides an unbiased estimate of ⇡1’s
value by averaging the following function of each trajec-
tory (s1, a1, r1, . . . , sH+1) in the data: define the per-step
importance ratio as ⇢t := ⇡1(at|st)/⇡0(at|st), and the
cumulative importance ratio ⇢1:t :=

Qt
t0=1 ⇢t0 ; the basic

(trajectory-wise) IS estimator, and an improved step-wise
version are given as follows:

VIS := ⇢1:H ·
�PH

t=1 �
t�1rt

�
, (4)

Vstep-IS :=
PH

t=1 �
t�1⇢1:t rt. (5)

Given a dataset D, the IS estimator is simply the average
estimate over the trajectories, namely 1

|D|
P

i=1 V
(i)

IS , where

|D| is the number of trajectories in D and V (i)
IS is IS applied

to the i-th trajectory. (This averaging step will be omitted for
the other estimators in the rest of this paper, and we will only
specify the estimate for a single trajectory). Typically, IS
(even the step-wise version) suffers from very high variance,
which easily grows exponentially in horizon.

A variant of IS, weighted importance sampling (WIS), is a
biased but consistent estimator, given as follows together
with its step-wise version: define wt =

P|D|
i=1 ⇢

(i)
1:t/|D| as

the average cumulative important ratio at horizon t in a
dataset D, then from each trajectory in D, the estimates
given by trajectory-wise and step-wise WIS are respectively

VWIS = ⇢1:H

wH

�PH
t=1 �

t�1rt
�
, (6)

Vstep-WIS =
PH

t=1 �
t�1 ⇢1:t

wt

rt . (7)

WIS has lower variance than IS, and its step-wise version
is considered as the most practical point estimator in the IS
family (Precup, 2000; Thomas, 2015). We will compare to
the step-wise IS/WIS baselines in the experiments.

3.3. Doubly Robust Estimator for Contextual Bandits

Contextual bandits may be considered as MDPs with hori-
zon 1, and the sample trajectories take the form of (s, a, r).
Suppose now we are given an estimated reward function
bR, possibly from performing regression over a separate
dataset, then the doubly robust estimator for contextual ban-
dits (Dudı́k et al., 2011) is defined as:

VDR := bV (s) + ⇢
⇣
r � bR(s, a)

⌘
, (8)

where ⇢ := ⇡1(a|s)
⇡0(a|s) and bV (s) :=

P
a ⇡1(a|s) bR(s, a). It is

easy to verify that bV (s) = Ea⇠⇡0

⇥
⇢ bR(s, a)

⇤
, as long as bR

and ⇢ are independent, which implies the unbiasedness of
the estimator. Furthermore, if bR(s, a) is a good estimate of
r, the magnitude of r � bR(s, a) can be much smaller than
that of r. Consequently, the variance of ⇢(r� bR(s, a)) tends

to be smaller than that of ⇢r, implying that DR often has a
lower variance than IS (Dudı́k et al., 2011).

In the case where the importance ratio ⇢ is unknown, DR
estimates both ⇢ and the reward function from data using
some parametric function classes. The name “doubly robust”
refers to fact that if either function class is properly specified,
the DR estimator is asymptotically unbiased, offering two
chances to ensure consistency. In this paper, however, we
are only interested in DR’s variance-reduction benefit.

Requirement of independence In practice, the target pol-
icy ⇡1 is often computed from data, and for DR to stay unbi-
ased, ⇡1 should not depend on the samples used in Eqn.(8);
the same requirement applies to IS. While bR should be in-
dependent of such samples as well, it is not required that
⇡1 and bR be independent of each other. For example, we
can use the same dataset to compute ⇡1 and bR, although an
independent dataset is still needed to run the DR estimator
in Eqn.(8). In other situations where ⇡1 is given directly,
to apply DR we can randomly split the data into two parts,
one for fitting bR and the other for applying Eqn.(8). The
same requirements and procedures apply to the sequential
case (discussed below). In Section 6, we will empirically
validate our extension of DR in both kinds of situations.

4. DR Estimator for the Sequential Setting
4.1. The Estimator

We now extend the DR estimator for bandits to the sequen-
tial case. A key observation is that Eqn.(5) can be written in
a recursive form. Define V 0

step-IS := 0, and for t = 1, . . . , H ,

V H+1�t
step-IS := ⇢t

⇣
rt + �V H�t

step-IS

⌘
. (9)

It can be shown that V H
step-IS is equivalent to Vstep-IS given

in Eqn.(5). While the rewriting is straight-forward, the
recursive form provides a novel and interesting insight that

Doubly Robust Off-policy Value Evaluation for Reinforcement Learning

sion estimators have provably low variances and negligible
biases (Mannor et al., 2007), and often outperform alterna-
tives in practice (Paduraru, 2013).

However, real-world problems usually have a large or even
infinite state space, and many state-action pairs will not
be observed even once in the data, rendering the necessity
of generalization in model fitting. To generalize, one can
either apply function approximation to fitting cM (Jong &
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is key to the extension of the DR estimator: that is, we can
view the step-wise importance sampling estimator as dealing
with a bandit problem at each horizon t = 1, . . . , H , where
st is the context, at is the action taken, and the observed
stochastic return is rt + �V H�t

step-IS, whose expected value is
Q(st, at). Then, if we are supplied with bQ, an estimate of
Q (possibly via regression on a separate dataset), we can
apply the bandit DR estimator at each horizon, and obtain
the following unbiased estimator: define V 0

DR := 0, and

V H+1�t
DR := bV (st) + ⇢t

⇣
rt + �V H�t

DR � bQ(st, at)
⌘
. (10)

The DR estimate of the policy value is then VDR := V H
DR.

4.2. Variance Analysis

In this section, we analyze the variance of DR in Theorem 1
and show that DR is preferable than step-wise IS when a
good value function bQ is available. The analysis is given in
the form of the variance of the estimate for a single trajec-
tory, and the variance of the estimate averaged over a dataset
D will be that divided by |D| due to the i.i.d. nature of D.
Due to space limit, the proof is deferred to Appendix A.

Theorem 1. VDR is an unbiased estimator of v⇡1,H , whose

variance is given recursively as follows: 8t = 1, . . . , H,

Vt

⇥
V H+1�t

DR

⇤
= Vt

⇥
V (st)

⇤
+ Et

h
Vt

⇥
⇢t�(st, at)

�� st
⇤i

+ Et

h
⇢2t Vt+1

⇥
rt
⇤i

+ Et

h
�2⇢2t Vt+1

⇥
V H�t

DR

⇤i
, (11)

where �(st, at) := bQ(st, at)�Q(st, at) and

VH+1

⇥
V 0

DR

�� sH , aH
⇤
= 0.

On the RHS of Eqn.(11), the first 3 terms are variances
due to different sources of randomness at time step t: state
transition randomness, action stochasticity in ⇡0, and reward
randomness, respectively; the 4th term contains the variance
from future steps. The key conclusion is that DR’s variance
depends on bQ via the error function � = bQ�Q in the 2nd
term, hence DR with a good bQ will enjoy reduced variance,
and in general outperform step-wise IS as the latter is simply
DR’s special case with a trivial value function bQ ⌘ 0.

4.3. Confidence Intervals

As mentioned in the introduction, an important motivation
for off-policy value evaluation is to guarantee safety before
deploying a policy. For this purpose, we have to charac-
terize the uncertainty in our estimates, usually in terms of
a confidence interval (CI). The calculation of CIs for DR
is straight-forward, since DR is an unbiased estimator ap-
plied to i.i.d. trajectories and standard concentration bounds
apply. For example, Hoeffding’s inequality states that for
random variables with bounded range b, the deviation of
the average from n independent samples from the expected

value is at most b
q

1
2n log 2

� with probability at least 1� �.
In the case of DR, n = |D| is the number of trajectories,
� the chosen confidence level, and b the range of the esti-
mate, which is a function of the maximal magnitudes of rt,
bQ(st, at), ⇢t and �. The application of more sophisticated
bounds for off-policy value evaluation in RL can be found
in Thomas et al. (2015a). In practice, however, strict CIs
are usually too pessimistic, and normal approximations are
used instead (Thomas et al., 2015b). In the experiments, we
will see how DR with normally approximated CIs can lead
to more effective and reliable policy improvement than IS.

4.4. An Extension

From Theorem 1, it is clear that DR only reduces the vari-
ance due to action stochasticity, and may suffer a large
variance even with a perfect Q-value function bQ = Q, as
long as the MDP has substantial stochasiticity in rewards
and/or state transitions. It is, however, possible to address
such a limitation. For example, one modification of DR that
further reduces the variance in state transitions is:

V H+1�t
DR-v2 = bV (st) + ⇢t

⇣
rt + �V H�t

DR-v2

� bR(st, at)� � bV (st+1)
bP (st+1|st,at)
P (st+1|st,at)

⌘
, (12)

where bP is the transition probability of the MDP model that
we use to compute bQ. While we can show that this estimator
is unbiased and reduces the state-transition-induced variance
with a good reward & transition functions bR and bP (we omit
proof), it is impractical as the true transition function P is
unknown. However, in problems where we are confident
that the transition dynamics can be estimated accurately
(but the reward function may be poorly estimated), we can
assume that P (·) = bP (·), and the last term in Eqn.(12)
becomes simply � bV (st+1). This generally reduces more
variance than the original DR at the cost of introducing a
small bias. The bias is bounded in Proposition 1, whose
proof is deferred to Appendix B. In Section 6.1.3 we will
demonstrate the use of such an estimator by an experiment.
Proposition 1. Define ✏ = maxs,a k bP (·|s, a)�P (·|s, a)k1.

Then, the bias of DR-v2, computed by Eqn.(12) with the

approximation bP/P ⌘ 1, is bounded by ✏Vmax
PH

t=1 �
t
,

where Vmax is a bound on the magnitude of bV .

5. Hardness of Off-policy Value Evaluation
In Section 4.4, we showed the possibility of reducing vari-
ance due to state transition stochasticity in a special scenario.
A natural question is whether there exists an estimator that
can reduce such variance without relying on strong assump-
tions like bP ⇡ P . In this section, we answer this question
by providing hardness results on off-policy value evaluation
via the Cramer-Rao lower bound (or C-R bound for short),
and comparing the C-R bound to the variance of DR.
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proof), it is impractical as the true transition function P is
unknown. However, in problems where we are confident
that the transition dynamics can be estimated accurately
(but the reward function may be poorly estimated), we can
assume that P (·) = bP (·), and the last term in Eqn.(12)
becomes simply � bV (st+1). This generally reduces more
variance than the original DR at the cost of introducing a
small bias. The bias is bounded in Proposition 1, whose
proof is deferred to Appendix B. In Section 6.1.3 we will
demonstrate the use of such an estimator by an experiment.
Proposition 1. Define ✏ = maxs,a k bP (·|s, a)�P (·|s, a)k1.

Then, the bias of DR-v2, computed by Eqn.(12) with the

approximation bP/P ⌘ 1, is bounded by ✏Vmax
PH

t=1 �
t
,

where Vmax is a bound on the magnitude of bV .

5. Hardness of Off-policy Value Evaluation
In Section 4.4, we showed the possibility of reducing vari-
ance due to state transition stochasticity in a special scenario.
A natural question is whether there exists an estimator that
can reduce such variance without relying on strong assump-
tions like bP ⇡ P . In this section, we answer this question
by providing hardness results on off-policy value evaluation
via the Cramer-Rao lower bound (or C-R bound for short),
and comparing the C-R bound to the variance of DR.
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sion estimators have provably low variances and negligible
biases (Mannor et al., 2007), and often outperform alterna-
tives in practice (Paduraru, 2013).

However, real-world problems usually have a large or even
infinite state space, and many state-action pairs will not
be observed even once in the data, rendering the necessity
of generalization in model fitting. To generalize, one can
either apply function approximation to fitting cM (Jong &
Stone, 2007; Grünewälder et al., 2012), or to fitting the
value function directly (Bertsekas & Tsitsiklis, 1996; Sutton
& Barto, 1998; Dann et al., 2014). While the use of function
approximation makes the problem tractable, it can introduce
bias to the estimated value when the MDP parameters or the
value function cannot be represented in the corresponding
function class. Such a bias is in general hard to quantify
from data, thus breaks the credibility of estimations given
by regression based approaches (Farahmand & Szepesvári,
2011; Marivate, 2015; Jiang et al., 2015).

3.2.2. IMPORTANCE SAMPLING ESTIMATORS

The IS estimator provides an unbiased estimate of ⇡1’s
value by averaging the following function of each trajec-
tory (s1, a1, r1, . . . , sH+1) in the data: define the per-step
importance ratio as ⇢t := ⇡1(at|st)/⇡0(at|st), and the
cumulative importance ratio ⇢1:t :=

Qt
t0=1 ⇢t0 ; the basic

(trajectory-wise) IS estimator, and an improved step-wise
version are given as follows:

VIS := ⇢1:H ·
�PH

t=1 �
t�1rt

�
, (4)

Vstep-IS :=
PH

t=1 �
t�1⇢1:t rt. (5)

Given a dataset D, the IS estimator is simply the average
estimate over the trajectories, namely 1

|D|
P

i=1 V
(i)

IS , where

|D| is the number of trajectories in D and V (i)
IS is IS applied

to the i-th trajectory. (This averaging step will be omitted for
the other estimators in the rest of this paper, and we will only
specify the estimate for a single trajectory). Typically, IS
(even the step-wise version) suffers from very high variance,
which easily grows exponentially in horizon.

A variant of IS, weighted importance sampling (WIS), is a
biased but consistent estimator, given as follows together
with its step-wise version: define wt =

P|D|
i=1 ⇢

(i)
1:t/|D| as

the average cumulative important ratio at horizon t in a
dataset D, then from each trajectory in D, the estimates
given by trajectory-wise and step-wise WIS are respectively

VWIS = ⇢1:H

wH

�PH
t=1 �

t�1rt
�
, (6)

Vstep-WIS =
PH

t=1 �
t�1 ⇢1:t

wt

rt . (7)

WIS has lower variance than IS, and its step-wise version
is considered as the most practical point estimator in the IS
family (Precup, 2000; Thomas, 2015). We will compare to
the step-wise IS/WIS baselines in the experiments.

3.3. Doubly Robust Estimator for Contextual Bandits

Contextual bandits may be considered as MDPs with hori-
zon 1, and the sample trajectories take the form of (s, a, r).
Suppose now we are given an estimated reward function
bR, possibly from performing regression over a separate
dataset, then the doubly robust estimator for contextual ban-
dits (Dudı́k et al., 2011) is defined as:

VDR := bV (s) + ⇢
⇣
r � bR(s, a)

⌘
, (8)

where ⇢ := ⇡1(a|s)
⇡0(a|s) and bV (s) :=

P
a ⇡1(a|s) bR(s, a). It is

easy to verify that bV (s) = Ea⇠⇡0

⇥
⇢ bR(s, a)

⇤
, as long as bR

and ⇢ are independent, which implies the unbiasedness of
the estimator. Furthermore, if bR(s, a) is a good estimate of
r, the magnitude of r � bR(s, a) can be much smaller than
that of r. Consequently, the variance of ⇢(r� bR(s, a)) tends

to be smaller than that of ⇢r, implying that DR often has a
lower variance than IS (Dudı́k et al., 2011).

In the case where the importance ratio ⇢ is unknown, DR
estimates both ⇢ and the reward function from data using
some parametric function classes. The name “doubly robust”
refers to fact that if either function class is properly specified,
the DR estimator is asymptotically unbiased, offering two
chances to ensure consistency. In this paper, however, we
are only interested in DR’s variance-reduction benefit.

Requirement of independence In practice, the target pol-
icy ⇡1 is often computed from data, and for DR to stay unbi-
ased, ⇡1 should not depend on the samples used in Eqn.(8);
the same requirement applies to IS. While bR should be in-
dependent of such samples as well, it is not required that
⇡1 and bR be independent of each other. For example, we
can use the same dataset to compute ⇡1 and bR, although an
independent dataset is still needed to run the DR estimator
in Eqn.(8). In other situations where ⇡1 is given directly,
to apply DR we can randomly split the data into two parts,
one for fitting bR and the other for applying Eqn.(8). The
same requirements and procedures apply to the sequential
case (discussed below). In Section 6, we will empirically
validate our extension of DR in both kinds of situations.

4. DR Estimator for the Sequential Setting
4.1. The Estimator

We now extend the DR estimator for bandits to the sequen-
tial case. A key observation is that Eqn.(5) can be written in
a recursive form. Define V 0

step-IS := 0, and for t = 1, . . . , H ,

V H+1�t
step-IS := ⇢t

⇣
rt + �V H�t

step-IS

⌘
. (9)

It can be shown that V H
step-IS is equivalent to Vstep-IS given

in Eqn.(5). While the rewriting is straight-forward, the
recursive form provides a novel and interesting insight that

Jiang, N., & Li, L. Doubly robust off-policy value evaluation for reinforcement 
learning. In ICML 2016.
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is key to the extension of the DR estimator: that is, we can
view the step-wise importance sampling estimator as dealing
with a bandit problem at each horizon t = 1, . . . , H , where
st is the context, at is the action taken, and the observed
stochastic return is rt + �V H�t

step-IS, whose expected value is
Q(st, at). Then, if we are supplied with bQ, an estimate of
Q (possibly via regression on a separate dataset), we can
apply the bandit DR estimator at each horizon, and obtain
the following unbiased estimator: define V 0

DR := 0, and

V H+1�t
DR := bV (st) + ⇢t

⇣
rt + �V H�t

DR � bQ(st, at)
⌘
. (10)

The DR estimate of the policy value is then VDR := V H
DR.

4.2. Variance Analysis

In this section, we analyze the variance of DR in Theorem 1
and show that DR is preferable than step-wise IS when a
good value function bQ is available. The analysis is given in
the form of the variance of the estimate for a single trajec-
tory, and the variance of the estimate averaged over a dataset
D will be that divided by |D| due to the i.i.d. nature of D.
Due to space limit, the proof is deferred to Appendix A.

Theorem 1. VDR is an unbiased estimator of v⇡1,H , whose

variance is given recursively as follows: 8t = 1, . . . , H,

Vt

⇥
V H+1�t

DR

⇤
= Vt

⇥
V (st)

⇤
+ Et

h
Vt

⇥
⇢t�(st, at)

�� st
⇤i

+ Et

h
⇢2t Vt+1

⇥
rt
⇤i

+ Et

h
�2⇢2t Vt+1

⇥
V H�t

DR

⇤i
, (11)

where �(st, at) := bQ(st, at)�Q(st, at) and

VH+1

⇥
V 0

DR

�� sH , aH
⇤
= 0.

On the RHS of Eqn.(11), the first 3 terms are variances
due to different sources of randomness at time step t: state
transition randomness, action stochasticity in ⇡0, and reward
randomness, respectively; the 4th term contains the variance
from future steps. The key conclusion is that DR’s variance
depends on bQ via the error function � = bQ�Q in the 2nd
term, hence DR with a good bQ will enjoy reduced variance,
and in general outperform step-wise IS as the latter is simply
DR’s special case with a trivial value function bQ ⌘ 0.

4.3. Confidence Intervals

As mentioned in the introduction, an important motivation
for off-policy value evaluation is to guarantee safety before
deploying a policy. For this purpose, we have to charac-
terize the uncertainty in our estimates, usually in terms of
a confidence interval (CI). The calculation of CIs for DR
is straight-forward, since DR is an unbiased estimator ap-
plied to i.i.d. trajectories and standard concentration bounds
apply. For example, Hoeffding’s inequality states that for
random variables with bounded range b, the deviation of
the average from n independent samples from the expected

value is at most b
q

1
2n log 2

� with probability at least 1� �.
In the case of DR, n = |D| is the number of trajectories,
� the chosen confidence level, and b the range of the esti-
mate, which is a function of the maximal magnitudes of rt,
bQ(st, at), ⇢t and �. The application of more sophisticated
bounds for off-policy value evaluation in RL can be found
in Thomas et al. (2015a). In practice, however, strict CIs
are usually too pessimistic, and normal approximations are
used instead (Thomas et al., 2015b). In the experiments, we
will see how DR with normally approximated CIs can lead
to more effective and reliable policy improvement than IS.

4.4. An Extension

From Theorem 1, it is clear that DR only reduces the vari-
ance due to action stochasticity, and may suffer a large
variance even with a perfect Q-value function bQ = Q, as
long as the MDP has substantial stochasiticity in rewards
and/or state transitions. It is, however, possible to address
such a limitation. For example, one modification of DR that
further reduces the variance in state transitions is:

V H+1�t
DR-v2 = bV (st) + ⇢t

⇣
rt + �V H�t

DR-v2

� bR(st, at)� � bV (st+1)
bP (st+1|st,at)
P (st+1|st,at)

⌘
, (12)

where bP is the transition probability of the MDP model that
we use to compute bQ. While we can show that this estimator
is unbiased and reduces the state-transition-induced variance
with a good reward & transition functions bR and bP (we omit
proof), it is impractical as the true transition function P is
unknown. However, in problems where we are confident
that the transition dynamics can be estimated accurately
(but the reward function may be poorly estimated), we can
assume that P (·) = bP (·), and the last term in Eqn.(12)
becomes simply � bV (st+1). This generally reduces more
variance than the original DR at the cost of introducing a
small bias. The bias is bounded in Proposition 1, whose
proof is deferred to Appendix B. In Section 6.1.3 we will
demonstrate the use of such an estimator by an experiment.
Proposition 1. Define ✏ = maxs,a k bP (·|s, a)�P (·|s, a)k1.

Then, the bias of DR-v2, computed by Eqn.(12) with the

approximation bP/P ⌘ 1, is bounded by ✏Vmax
PH

t=1 �
t
,

where Vmax is a bound on the magnitude of bV .

5. Hardness of Off-policy Value Evaluation
In Section 4.4, we showed the possibility of reducing vari-
ance due to state transition stochasticity in a special scenario.
A natural question is whether there exists an estimator that
can reduce such variance without relying on strong assump-
tions like bP ⇡ P . In this section, we answer this question
by providing hardness results on off-policy value evaluation
via the Cramer-Rao lower bound (or C-R bound for short),
and comparing the C-R bound to the variance of DR.
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using the observed data and the known action probabilities. Different from previous studies, we focus
on the case where S is sufficiently small but S2A is too large for a reasonable sample size. In other
words, this is a setting where we do not have enough data points to estimate the state-action-state
transition dynamics, but we do observe the states and can estimate the distribution of the states
after the change of policies, which is our main strategy.

Assumptions: We list the technical assumptions we need and provide necessary justification.

A1. 9Rmax,� < +1 such that 0  E[rt|st, at, st+1]  Rmax,Var[rt|st, at, st+1]  �2 for all t, st, at.

A2. Behavior policy µ obeys that dm := mint,st d
µ

t
(st) > 0 8t, st such that d⇡t (st) > 0.

A3. Bounded weights: ⌧s := maxt,st
d
⇡
t (st)

d
µ
t (st)

< +1 and ⌧a := maxt,st,at
⇡(at|st)
µ(at|st) < +1.

Assumption A1 is assumed without loss of generality. The � bound is required even for on-policy
evaluation and the assumption on the non-negativity and Rmax can always be obtained by shifting
and rescaling the problem. Assumption A2 is necessary for any consistent off-policy evaluation
estimator. Assumption A3 is also necessary for discrete state and actions, as otherwise the second
moments of the importance weight would be unbounded. For continuous actions, ⌧a < +1 is
stronger than we need and should be considered a simplifying assumption for the clarity of our
presentation. Finally, we comment that the dependence in the parameter dm, ⌧s, ⌧a do not occur in
the leading O(1/n) term of our MSE bound, but only in simplified results after relaxation.

3 Marginalized Importance Sampling Estimators for OPE

In this section, we present the design of marginalized IS estimators for OPE. For small action spaces,
we may directly build models by the estimated transition function Tt(st|st�1, at�1) and the reward
function rt(st, at, st+1) from empirical data. However, the models may be inaccurate in large action
spaces, where not all actions are frequently visited. Function approximation in the models may cause
additional biases from covariate shifts due to the change of policies. Standard importance sampling
estimators (including the doubly robust versions)[Dudík et al., 2011; Jiang and Li, 2016] avoid the
need to estimate the model’s dynamics but rather directly approximating the expected reward:

bv⇡IS =
1

n

nX

i=1

HX

h=1

"
hY

t=1

⇡(a(i)
t
|s(i)

t
)

µ(a(i)
t
|s(i)

t
)

#
r(i)
h
.

To adjust for the differences in the policy, importance weights are used and it can be shown that
this is an unbiased estimator of v⇡ (See more detailed discussion of IS and the doubly robust version
in Appendix C). The main issue of this approach, when applying to the episodic MDP with large
action space is that the variance of the importance weights grows exponentially in H [Liu et al.,
2018a], which makes the sample complexity exponentially worse than the model-based approaches,
when they are applicable. We address this problem by proposing an alternative way of estimating
the importance weights which achieves the same sample complexity as the model-based approaches
while allowing us to achieve the same flexibility and interpretability as the IS estimator that does not
explicitly require estimating the state-action dynamics Tt. We propose the Marginalized Importance
Sampling estimator:

bv⇡MIS =
1

n

nX

i=1

HX

t=1

bd⇡t (s
(i)
t
)

bdµ
t
(s(i)

t
)
br⇡t (s

(i)
t
). (3.1)

4

The curse of horizon. (Liu et al, 2018 NeurIPS)
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From Importance Sampling to
Marginalized Importance Sampling

using the observed data and the known action probabilities. Different from previous studies, we focus
on the case where S is sufficiently small but S2A is too large for a reasonable sample size. In other
words, this is a setting where we do not have enough data points to estimate the state-action-state
transition dynamics, but we do observe the states and can estimate the distribution of the states
after the change of policies, which is our main strategy.

Assumptions: We list the technical assumptions we need and provide necessary justification.

A1. 9Rmax,� < +1 such that 0  E[rt|st, at, st+1]  Rmax,Var[rt|st, at, st+1]  �2 for all t, st, at.

A2. Behavior policy µ obeys that dm := mint,st d
µ

t
(st) > 0 8t, st such that d⇡t (st) > 0.

A3. Bounded weights: ⌧s := maxt,st
d
⇡
t (st)

d
µ
t (st)

< +1 and ⌧a := maxt,st,at
⇡(at|st)
µ(at|st) < +1.

Assumption A1 is assumed without loss of generality. The � bound is required even for on-policy
evaluation and the assumption on the non-negativity and Rmax can always be obtained by shifting
and rescaling the problem. Assumption A2 is necessary for any consistent off-policy evaluation
estimator. Assumption A3 is also necessary for discrete state and actions, as otherwise the second
moments of the importance weight would be unbounded. For continuous actions, ⌧a < +1 is
stronger than we need and should be considered a simplifying assumption for the clarity of our
presentation. Finally, we comment that the dependence in the parameter dm, ⌧s, ⌧a do not occur in
the leading O(1/n) term of our MSE bound, but only in simplified results after relaxation.

3 Marginalized Importance Sampling Estimators for OPE

In this section, we present the design of marginalized IS estimators for OPE. For small action spaces,
we may directly build models by the estimated transition function Tt(st|st�1, at�1) and the reward
function rt(st, at, st+1) from empirical data. However, the models may be inaccurate in large action
spaces, where not all actions are frequently visited. Function approximation in the models may cause
additional biases from covariate shifts due to the change of policies. Standard importance sampling
estimators (including the doubly robust versions)[Dudík et al., 2011; Jiang and Li, 2016] avoid the
need to estimate the model’s dynamics but rather directly approximating the expected reward:

bv⇡IS =
1

n

nX

i=1

HX

h=1

"
hY

t=1

⇡(a(i)
t
|s(i)

t
)

µ(a(i)
t
|s(i)

t
)

#
r(i)
h
.

To adjust for the differences in the policy, importance weights are used and it can be shown that
this is an unbiased estimator of v⇡ (See more detailed discussion of IS and the doubly robust version
in Appendix C). The main issue of this approach, when applying to the episodic MDP with large
action space is that the variance of the importance weights grows exponentially in H [Liu et al.,
2018a], which makes the sample complexity exponentially worse than the model-based approaches,
when they are applicable. We address this problem by proposing an alternative way of estimating
the importance weights which achieves the same sample complexity as the model-based approaches
while allowing us to achieve the same flexibility and interpretability as the IS estimator that does not
explicitly require estimating the state-action dynamics Tt. We propose the Marginalized Importance
Sampling estimator:

bv⇡MIS =
1

n

nX

i=1

HX

t=1

bd⇡t (s
(i)
t
)

bdµ
t
(s(i)

t
)
br⇡t (s

(i)
t
). (3.1)
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using the observed data and the known action probabilities. Different from previous studies, we focus
on the case where S is sufficiently small but S2A is too large for a reasonable sample size. In other
words, this is a setting where we do not have enough data points to estimate the state-action-state
transition dynamics, but we do observe the states and can estimate the distribution of the states
after the change of policies, which is our main strategy.

Assumptions: We list the technical assumptions we need and provide necessary justification.

A1. 9Rmax,� < +1 such that 0  E[rt|st, at, st+1]  Rmax,Var[rt|st, at, st+1]  �2 for all t, st, at.

A2. Behavior policy µ obeys that dm := mint,st d
µ

t
(st) > 0 8t, st such that d⇡t (st) > 0.

A3. Bounded weights: ⌧s := maxt,st
d
⇡
t (st)

d
µ
t (st)

< +1 and ⌧a := maxt,st,at
⇡(at|st)
µ(at|st) < +1.

Assumption A1 is assumed without loss of generality. The � bound is required even for on-policy
evaluation and the assumption on the non-negativity and Rmax can always be obtained by shifting
and rescaling the problem. Assumption A2 is necessary for any consistent off-policy evaluation
estimator. Assumption A3 is also necessary for discrete state and actions, as otherwise the second
moments of the importance weight would be unbounded. For continuous actions, ⌧a < +1 is
stronger than we need and should be considered a simplifying assumption for the clarity of our
presentation. Finally, we comment that the dependence in the parameter dm, ⌧s, ⌧a do not occur in
the leading O(1/n) term of our MSE bound, but only in simplified results after relaxation.

3 Marginalized Importance Sampling Estimators for OPE

In this section, we present the design of marginalized IS estimators for OPE. For small action spaces,
we may directly build models by the estimated transition function Tt(st|st�1, at�1) and the reward
function rt(st, at, st+1) from empirical data. However, the models may be inaccurate in large action
spaces, where not all actions are frequently visited. Function approximation in the models may cause
additional biases from covariate shifts due to the change of policies. Standard importance sampling
estimators (including the doubly robust versions)[Dudík et al., 2011; Jiang and Li, 2016] avoid the
need to estimate the model’s dynamics but rather directly approximating the expected reward:

bv⇡IS =
1

n

nX

i=1

HX

h=1

"
hY

t=1

⇡(a(i)
t
|s(i)

t
)

µ(a(i)
t
|s(i)

t
)

#
r(i)
h
.

To adjust for the differences in the policy, importance weights are used and it can be shown that
this is an unbiased estimator of v⇡ (See more detailed discussion of IS and the doubly robust version
in Appendix C). The main issue of this approach, when applying to the episodic MDP with large
action space is that the variance of the importance weights grows exponentially in H [Liu et al.,
2018a], which makes the sample complexity exponentially worse than the model-based approaches,
when they are applicable. We address this problem by proposing an alternative way of estimating
the importance weights which achieves the same sample complexity as the model-based approaches
while allowing us to achieve the same flexibility and interpretability as the IS estimator that does not
explicitly require estimating the state-action dynamics Tt. We propose the Marginalized Importance
Sampling estimator:

bv⇡MIS =
1
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nX

i=1

HX

t=1

bd⇡t (s
(i)
t
)
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t
(s(i)

t
)
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(i)
t
). (3.1)

4
12

Xie, W., and Ma. (2019): Towards Optimal OPE for RL using Marginalized
Importance Sampling. NeurIPS 2019.
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using the observed data and the known action probabilities. Different from previous studies, we focus
on the case where S is sufficiently small but S2A is too large for a reasonable sample size. In other
words, this is a setting where we do not have enough data points to estimate the state-action-state
transition dynamics, but we do observe the states and can estimate the distribution of the states
after the change of policies, which is our main strategy.

Assumptions: We list the technical assumptions we need and provide necessary justification.

A1. 9Rmax,� < +1 such that 0  E[rt|st, at, st+1]  Rmax,Var[rt|st, at, st+1]  �2 for all t, st, at.

A2. Behavior policy µ obeys that dm := mint,st d
µ

t
(st) > 0 8t, st such that d⇡t (st) > 0.

A3. Bounded weights: ⌧s := maxt,st
d
⇡
t (st)

d
µ
t (st)

< +1 and ⌧a := maxt,st,at
⇡(at|st)
µ(at|st) < +1.

Assumption A1 is assumed without loss of generality. The � bound is required even for on-policy
evaluation and the assumption on the non-negativity and Rmax can always be obtained by shifting
and rescaling the problem. Assumption A2 is necessary for any consistent off-policy evaluation
estimator. Assumption A3 is also necessary for discrete state and actions, as otherwise the second
moments of the importance weight would be unbounded. For continuous actions, ⌧a < +1 is
stronger than we need and should be considered a simplifying assumption for the clarity of our
presentation. Finally, we comment that the dependence in the parameter dm, ⌧s, ⌧a do not occur in
the leading O(1/n) term of our MSE bound, but only in simplified results after relaxation.

3 Marginalized Importance Sampling Estimators for OPE

In this section, we present the design of marginalized IS estimators for OPE. For small action spaces,
we may directly build models by the estimated transition function Tt(st|st�1, at�1) and the reward
function rt(st, at, st+1) from empirical data. However, the models may be inaccurate in large action
spaces, where not all actions are frequently visited. Function approximation in the models may cause
additional biases from covariate shifts due to the change of policies. Standard importance sampling
estimators (including the doubly robust versions)[Dudík et al., 2011; Jiang and Li, 2016] avoid the
need to estimate the model’s dynamics but rather directly approximating the expected reward:
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To adjust for the differences in the policy, importance weights are used and it can be shown that
this is an unbiased estimator of v⇡ (See more detailed discussion of IS and the doubly robust version
in Appendix C). The main issue of this approach, when applying to the episodic MDP with large
action space is that the variance of the importance weights grows exponentially in H [Liu et al.,
2018a], which makes the sample complexity exponentially worse than the model-based approaches,
when they are applicable. We address this problem by proposing an alternative way of estimating
the importance weights which achieves the same sample complexity as the model-based approaches
while allowing us to achieve the same flexibility and interpretability as the IS estimator that does not
explicitly require estimating the state-action dynamics Tt. We propose the Marginalized Importance
Sampling estimator:

bv⇡MIS =
1

n

nX

i=1

HX

t=1

bd⇡t (s
(i)
t
)

bdµ
t
(s(i)

t
)
br⇡t (s

(i)
t
). (3.1)
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space, A is the action space, Tt : S ⇥A⇥S ! [0, 1] is the transition function with Tt(s0|s, a) defined
by probability of achieving state s0 after taking action a in state s at time t, and rt : S ⇥A⇥S ! R
is the expected reward function with rt(s, a, s0) defined by the mean of immediate received reward
after taking action a in state s and transitioning into s0, and H denotes the finite horizon. We use
P[E] to denote the probability of an event E and p(x) the p.m.f. (or pdf) of the random variable
X taking value x. E[·] and E[·|E] denotes the expectation and conditional expectation given E,
respectively.

Let µ,⇡ : S ! PA be policies which output a distribution of actions given an observed state. We
call µ the behavioral policy and ⇡ the target policy. For notation convenience we denote µ(at|st)
and ⇡(at|st) the p.m.f of actions given state at time t. The expectation operators in this paper will
either be indexed with ⇡ or µ, which denotes that all random variables coming from roll-outs from
the specified policy. Moreover, we denote dµ

t
(st) and d⇡t (st) the induced state distribution at time t.

When t = 1, the initial distributions are identical dµ1 = d⇡1 = d1. For t > 1, dµ
t
(st) and d⇡t (st) are

functions of not just the policies themselves but also the unknown underlying transition dynamics,
i.e., for ⇡ (and similarly µ), recursively define

d⇡t (st) =
X

st�1

P ⇡

t (st|st�1)d
⇡

t�1(st�1),

where P ⇡

t (st|st�1) =
X

at�1

Tt(st|st�1, at�1)⇡(at�1|st�1).
(2.1)

We denote P ⇡

i,j
2 RS⇥S 8j < i as the state-transition probability from step j to step i under a

sequence of actions taken by ⇡. Note that P ⇡

t+1,t(s
0|s) =

P
a
Pt+1,t(s0|s, a)⇡t(a|s) = Tt+1(s0|s,⇡t(s)).

Behavior policy µ is used to collect data in the form of (s(i)
t
, a(i)

t
, r(i)

t
) 2 S ⇥A⇥R for time index

t = 1, . . . , H and episode index i = 1, ..., n. Target policy ⇡ is what we are interested to evaluate.
Also, let D to denote the historical data, which contains n episode trajectories in total. We also
define Dh = {(s(i)

t
, a(i)

t
, r(i)

t
) : i 2 [n], t  h} to be roll-in realization of n trajectories up to step h.

Throughout the paper, probability distributions are often used in their vector or matrix form. For
instance, d⇡t without an input is interpreted as a vector in a S-dimensional probability simplex and
P ⇡

i,j
is then a stochastic transition matrix. This allows us to write (2.1) concisely as d⇡

t+1 = P ⇡

t+1,td
⇡
t .

Also note that while st, at, rt are usually used to denote fixed elements in set S,A and R,
in some cases we also overload them to denote generic random variables s(1)

t
, a(1)

t
, r(1)

t
. For

example, E⇡[rt] = E⇡[r
(1)
t

] =
P

st,at,st+1
d⇡(st, at, st+1)rt(st, at, st+1) and Var⇡[rt(st, at, st+1)] =

Var⇡[rt(s
(1)
t

, a(1)
t

, s(1)
t+1)]. The distinctions will be clear in each context.

Problem setup. The problem of off-policy evaluation is about finding an estimator bv⇡ : (S ⇥A⇥
R)H⇥n ! R that makes use of the data collected by running µ to estimate

v⇡ =
HX

t=1

X

st

d⇡t (st)
X

at

⇡(at|st)
X

st+1

Tt(st+1|st, at)rt(st, at, st+1), (2.2)

where we assume knowledge about µ(a|s) and ⇡(a|s) for all (s, a) 2 S ⇥ A, but do not observe
rt(st, at, st+1) for any actions other than a noisy version of it the evaluated actions. Nor do we
observe the state distributions d⇡t (st)8t > 1 implied by the change of policies. Nonetheless, our goal
is to find an estimator to minimize the mean-square error (MSE): MSE(⇡, µ,M) = Eµ[(v̂⇡ � v⇡)2],
using the observed data and the known action probabilities. Different from previous studies, we focus
on the case where S is sufficiently small but S2A is too large for a reasonable sample size. In other

3

It turns out that if we take bdµ
t
(st) :=

1
n

P
i
1(s(i)

t
= st) — the empirical mean — and define

bd⇡t (st)/bd
µ

t
(st) = 0 whenever nst = 0, then (3.1) is equivalent to

P
H

t=1

P
st

bd⇡t (st)br⇡(st) – the direct
plug-in estimator of (2.2). It remains to specify bd⇡t (st) and br⇡(st). bd⇡t (st) is estimated recursively
using

bd⇡t = bP ⇡

t
bd⇡t�1, where bP ⇡

t (st|st�1) =
1

nst�1

nX

i=1

⇡(a(i)
t�1|st�1)

µ(a(i)
t�1|st�1)

1((s(i)
t�1, s

(i)
t
) = (st�1, st));

and br⇡t (st) =
1

nst

nX

i=1

⇡(a(i)
t
|st)

µ(a(i)
t
|st)

r(i)
t
1(s(i)

t
= st), (3.2)

where ns⌧ is the empirical visitation frequency to state s⌧ at time ⌧ . Note that our estimator of
r⇡t (st) is the standard IS estimators we use in bandits [Li et al., 2015], which are shown to be optimal
(up to a universal constant) when A is large [Wang et al., 2017].

The advantage of MIS over the naive IS estimator is that the variance of the importance weight
need not depend exponentially in H. A major theoretical contribution of this paper is to formalize
this argument by characterizing the dependence on ⇡, µ as well as parameters of the MDP M . Note
that MIS estimator does not dominate the IS estimator. In the more general setting when the state
is given by the entire history of observations, Jiang and Li [2016] establishes that no estimators can
achieve polynomial dependence in H. We give a concrete example later (Example 1) about how IS
estimator suffers from the “curse of horizon” [Liu et al., 2018a]. MIS estimator can be thought of as
one that exploits the state-observability while retaining properties of the IS estimators to tackle the
problem of large action space. As we illustrate in the experiments, MIS estimator can be modified
to naturally handle partially observed states, e.g., when s is only observed every other step.

Finally, when available, model-based approaches can be combined into importance-weighted
methods [Jiang and Li, 2016; Thomas and Brunskill, 2016]. We defer discussions about these
extensions in Appendix C to stay focused on the scenarios where model-based approaches are not
applicable.

4 Theoretical Analysis of the MIS Estimator

Motivated by the challenge of curse of horizon with naive IS estimators, similar to [Liu et al., 2018a],
we show that the sample complexity of our MIS estimator reduces to O(H3). To the best of our
knowledge, this is first sample complexity guarantee under this setting, which also matches the
Cramer-Rao lower bound for DAG-MDP [Jiang and Li, 2016] as n ! 1 up to a factor of H.

Example 1 (Curse of horizon). Assume a MDP with i.i.d. state transition models over time and
assume that ⇡t

µt
is bounded from both sides for all t. Suppose the reward is a constant 1 only shown

at the last step, such that naive IS becomes bv⇡IS = 1
n

P
n

i=1

Q
H

t=1
⇡(a

(i)
t

|s(i)
t

)

µ(a
(i)
t

|s(i)
t

)

�
. For every trajectory,

Q
H

t=1
⇡t

µt
= exp

hP
H

t=1 log
⇡t

µt

i
; let Elog = E[log ⇡t

µt
] and Vlog = Var[log ⇡t

µt
]. By Central Limit Theorem,

P
H

t=1 log
⇡t

µt
asymptotically follows a normal distribution with parameters

�
�HElog, HVlog

�
. In other

words,
Q

H

t=1
⇡t

µt
asymptotically follows LogNormal

�
�HElog, HVlog

�
, whose variance is exponential in

horizon:
�
exp (HVlog) � 1

�
. On the other hand, MIS estimates the state distributions recursively,

yielding variance that is polynomial in horizon and small OPE errors.

We now formalize the sample complexity bound in Theorem 4.1.
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Results: OPE error bound of MIS

• The MSE of MIS estimator obeys:
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Abstract
Motivated by the many real-world applications of reinforcement learning (RL) that require

safe-policy iterations, we consider the problem of off-policy evaluation (OPE) — the problem of

evaluating a new policy using the historical data obtained by different behavior policies — under

the model of nonstationary episodic Markov Decision Processes (MDP) with a long horizon

and a large action space. Existing importance sampling (IS) methods often suffer from large

variance that depends exponentially on the RL horizon H. To solve this problem, we consider a

marginalized importance sampling (MIS) estimator that recursively estimates the state marginal

distribution for the target policy at every step. MIS achieves a mean-squared error of

1

n

HX

t=1

Eµ


d⇡
t
(st)2

dµ
t
(st)2

Varµ


⇡t(at|st)
µt(at|st)

�
V ⇡

t+1(st+1) + rt
�����st

��
+ Õ(n�1.5)

where µ and ⇡ are the logging and target policies, dµ
t
(st) and d⇡

t
(st) are the marginal distribution

of the state at tth step, H is the horizon, n is the sample size and V ⇡

t+1 is the value function

of the MDP under ⇡. The result matches the Cramer-Rao lower bound in Jiang and Li

[2016] up to a multiplicative factor of H. To the best of our knowledge, this is the first OPE

estimation error bound with a polynomial dependence on H. Besides theory, we empirically

demonstrate the superiority of our method in time-varying, partially observable, and long-horizon

RL environments.

1 Introduction

The problem of off-policy evaluation (OPE), which predicts the performance of a policy with data
only sampled by a behavior policy [Sutton and Barto, 1998], is crucial for using reinforcement
learning (RL) algorithms responsibly in many real-world applications. In many settings where RL
algorithms have already been deployed, e.g., targeted advertising and marketing [Bottou et al., 2013;
Tang et al., 2013; Chapelle et al., 2015; Theocharous et al., 2015; Thomas et al., 2017] or medical
treatments [Murphy et al., 2001; Ernst et al., 2006; Raghu et al., 2017], online policy evaluation
is usually expensive, risky, or even unethical. Also, using a bad policy in these applications is
dangerous and could lead to severe consequences. Solving OPE is often the starting point in many
RL applications.

⇤Part of this work performed at Amazon AI.
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Importance Sampling. NeurIPS 2019.
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Experiment on mountain car
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(a) ModelWin with differ-

ent number of episodes n.

(b) ModelWin with differ-

ent horizon H.

(c) ModelFail with differ-

ent number of episodes n.

(d) ModelFail with differ-

ent horizon H.

Figure 2: Results on Time-invariant MDPs. MIS matches DM on ModelWin and outperforms
IS/WIS on ModelFail, both of which are the best existing methods on their respective domains.

5.2 Time-varying MDPs

We also test our approach in the time-varying MDPs. The time-varying MDPs we use in this section
are also modified on the standard domains introduced by Thomas and Brunskill [2016]. We use the
similar dynamic of ModelWin MDP and ModelFail MDP, but we set the transition probability pt to
be varying over time t for both MDPs, where pt is sampled from a uniform distribution U(0.2, 0.5)
for each t.

(a) ModelWin with differ-

ent number of episodes, n
(b) ModelWin with differ-

ent horizon, H
(c) ModelFail with differ-

ent number of episodes, n
(d) ModelFail with differ-

ent horizon, H

Figure 3: Results on time-varying MDPs. Besides amplifying the time-invariant results, MIS
outperforms SSD-ID, which is the best existing method with infinite-horizon MDPs.

Figure 3 shows the relative RMSE in the time-varying ModelWin MDP and ModelFail MDP.
We observe the results of Figure 3 are similar to the time-invariant case, which demonstrate
the effectiveness of our approach in the time-varying domains. Particularly, we show that MIS
outperforms SSD-ID, which is the best existing method with infinite-horizon MDPs. SSD-ID is
inferior because the stationary state distribution it finds does not agree with the true time-varying
state distributions and SSD-ID cannot aggregate only on the partially observed states as MIS.

5.3 Mountain Car

Figure 4: Mountain Car with differ-
ent number of episodes.

To demonstrate the scalability of the proposed marginalized
approaches, we also test all estimators in the Mountain Car
domain [Singh and Sutton, 1996], where an under-powered
car drives up a steep valley by “swinging” on both sides to
gradually build up potential energy. We use a horizon of H =

10



Challenges of the analysis

1. Dependent data: The data within each trajectory 

are not independent

2. An annoying bias:  there is a non-zero probability 

that some states are not visited at all. And it 

affects all future estimates

3. Error propagation from recursive estimation

17



Addressing Challenge 1:  Define 
an appropriate martingale
• Consider the data collection in parallel

• Group all data for time h together

• Conditioning on the number of times states are 

visited
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Addressing Challenge  2: Fictitious 
estimator technique

19

Constructing a fictitious estimator. Our proof makes novel use of a fictitious estimator ev⇡
which uses ed⇡t = eP ⇡

t+1,t
ed⇡
t�1 and er⇡t instead of bd⇡t = bP ⇡

t+1,t(·|st)bd⇡t�1 and br⇡t in the original estimator
bv⇡.

To write it down more formally,

ev⇡ :=
HX

t=1

X

st

ed⇡t (st)er⇡t (st)

where ed⇡t (st) is constructed recursively using

ed⇡t = eP⇡

t,t�1
ed⇡t�1

as in our regular estimator for t = 2, 3, 4, ..., H, and ed⇡1 = bd1. In particular,

er⇡t (st) =
(
br⇡t (st) if nst � ndµ

t
(st)(1� �)

r⇡t (st) otherwise;

and
eP⇡

t,t�1(·|st�1) =

(
bP⇡

t,t�1 if nst�1 � ndµ
t
(st�1)(1� �)

P⇡

t,t�1 otherwise.

In the above, 0 < � < 1 is a parameter that we will choose later.
This estimator ev⇡ is fictitious because it is not implementable using the data4, but it is somewhat

easier to work with and behaves essentially the same as our actual estimator bv⇡. As a result, we can
analyze our estimator through analyzing ev⇡. The following lemma formalizes the idea.

Lemma B.1. Let bv⇡ be our MIS estimator and P be the projection operator to [0, HRmax] and ev⇡
be the unbiased fictitious estimator that we described above with parameter �. The MSE of the clipped
version of our MIS estimator obeys

E[(Pbv⇡ � v⇡)2]  E[(ev⇡ � v⇡)2] + 3H3SR2
maxe

�
�
2
nmint,st

d
µ

t
(st)

2

Proof of Lemma B.1. Let E denotes the event of {9t, st, s.t. nst < ndµ
t
(st)(1� �)}. Let PE be the

conditional projection operator that clips the value to [0, HRmax] whenever E is true. Note that for
any x 2 R, we have P(PEx) = Px. By the non-expansiveness of P,

E[(Pbv⇡ � v⇡)2]  E[(PEbv⇡ � v⇡)2] = E[(PEbv⇡ � PEev⇡ + PEev⇡ � v⇡)2]

=E[(PEbv⇡ � PEev⇡)2] + 2E[(PEbv⇡ � PEev⇡)(PEev⇡ � v⇡)] + E[(PEev⇡ � v⇡)2]

=P[E]E
⇥
(PEbv⇡ � PEev⇡)2 + 2(PEbv⇡ � PEev⇡)(PEev⇡ � v⇡)

��E
⇤
+ P[Ec] · 0 + E[(PEev⇡ � PEv

⇡)2]

3P[E]H2R2
max + E[(ev⇡ � v⇡)2].

The third line is by the law of total expectation and the fact that whenever E is not true, bv⇡ = ev⇡.
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Constructing a fictitious estimator. Our proof makes novel use of a fictitious estimator ev⇡
which uses ed⇡t = eP ⇡

t+1,t
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t�1 and er⇡t instead of bd⇡t = bP ⇡
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This estimator ev⇡ is fictitious because it is not implementable using the data4, but it is somewhat

easier to work with and behaves essentially the same as our actual estimator bv⇡. As a result, we can
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Multiplicative Chernoff Bound

• Apply to our problem
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Appendix

A Concentration inequalities

Lemma A.1 (Multiplicative Chernoff bound [Chernoff et al., 1952] ). Let X be a Binomial random
variable with parameter p, n. For any � > 0, we have that

P[X > (1 + �)pn] <

✓
e�

(1 + �)1+�

◆np

and

P[X < (1� �)pn] <

✓
e��

(1� �)1��

◆np

.

A slightly weaker bound that suffices for our propose is the following:

P[X < (1� �)pn] < e�
�
2
pn

2

If we take � =
q

20 log(n)
pn

,
P[X < (1� �)pn] < n�10.

B Theoretical analysis of the marginalized IS estimator

Recall that the marginalized IS estimators are of the following form:

bv⇡ =
HX

t=1

X

st

bd⇡t (st)br⇡t (st),

where we recursively estimate the state-marginal under the target policy ⇡ using

bd⇡t (st) =
X

st�1

bP ⇡

t�1,t(st|st�1)bd⇡t�1(st�1).

We focus on the setting where the number of actions is large and possibly unbounded, in which
case, we use importance sampling based estimators of bP ⇡

t�1,t and br⇡t (st) instead to get bounds that
are independent to A. Specifically, we use:

bP ⇡

t�1(st|st�1) =
1

nst�1

nX

i=1

⇡(a(i)
t�1|st�1)

µ(a(i)
t�1|st�1)

1(s(i)
t�1 = st�1, a

(i)
t�1, s

(i)
t

= st).

and

br⇡t (st) =
1

nst

nX

i=1

⇡(a(i)
t
|st)

µ(a(i)
t
|st)

r(i)
t
1(s(i)

t
= st).

The main challenge in analyzing these involves finding a way to decompose the error in the face
of the complex recursive structure, as well as to deal with the bias of the estimator.
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Address Challenge 3:  Empirical / 
Offline version of Bellman equation
of variance

21

Fictitious estimator technique. We address the bias issue by defining a fictitious estimator
ev⇡. The fictitious estimator is constructed by, instead of d̂⇡t and r̂⇡t , the fictitious version of these
estimators d̃⇡t and r̃⇡t , where d̃⇡t is constructed recursively using

d̃⇡t (st) =
X

st�1

P̃ ⇡(st|st�1)d̃
⇡

t�1(st�1).

The key difference is that whenever nst < Eµnst(1� �) for some 0 < � < 1, we assign P̃ ⇡(st+1|st) =
P ⇡(st+1|st) and r̃⇡(st) = E⇡[rt|st] — the true values of interest. This ensures that the fictitious
estimator is always unbiased (see Lemma B.2). Note that this fictitious estimator cannot be
implemented in practice. It is used as a purely theoretical construct that simplifies the analysis of
the (biased) MIS estimator. In Lemma B.1, we show that the ṽ⇡ and v̂⇡ are exponentially close to
each other.
Disentangling the dependency by backwards peeling. The fictitious estimator technique
reduces the problem of calculating the MSE of the MIS estimator to a variance analysis of the
fictitious estimator. By recursively applying the law of total variance backwards that peels one item
at a time from Datat, we establish an exact linear decomposition of the variance of the fictitious
estimator (Lemma B.3):

Var[ev⇡] =
HX

h=0

X

sh

E
"
ed⇡
h
(sh)2

nsh

1

✓
nsh �

ndµ
h
(sh)

(1� �)�1

◆#
Varµ

"
⇡(a(1)

h
|sh)

µ(a(1)
h

|sh)
(V ⇡

h+1(s
(1)
h+1) + r(1)

h
)

�����s
(1)
h

= sh

#
.

Observe that the value function V ⇡
t shows up naturally. This novel decomposition can be thought

of as a generalization of the celebrated Bellman-equation of variance [Sobel, 1982] in the off-policy,
episodic MDP setting with a finite sample and can be of independent interest.
Characterizing the error propagation in d̃⇡

h
(sh). Lastly, we bound the error term in the state

distribution estimation as follows

E
"
ed⇡
h
(sh)2

nsh

1

✓
nsh

�
ndµ

h
(sh)

(1� �)�1

◆#
 (1� �)�1

n

✓
d⇡
h
(sh)2

dµ
h
(sh)

+ Var
h
ed⇡
h
(sh)

i◆
,

which reduces the problem to bounding Var[ed⇡
h
(sh)]. We show (in Theorem B.1) that instead of an

exponential blow-up as will a concentration-inequality based argument imply, the variance increases
at most linearly in h: Var[ed⇡

h
(sh)] 

2(1��)�1
hd

⇡

h
(sh)

n
. The proof uses a novel decomposition of Cov(ed⇡

h
)

(Lemma B.5), which is derived using a similar backwards peeling argument as before. Finally,
Theorem 4.1 is established by appropriately choosing � = O(

p
log n/nmint,st d

µ

t
(st)).

Due to space limits, we can only highlight a few key elements of the proof. We invite the readers
to check out a more detailed exposition in Appendix B.

5 Experiments

Throughout this section, we present the empirical results to illustrate the comparison among different
estimators. We demonstrate the effectiveness of our proposed marginalized estimator by comparing
it with different classic estimators on several domains.

The methods we compare in this section are: direct method (DM), importance sampling (IS),
weighted importance sampling (WIS), importance sampling with stationary state distribution (SSD-
IS), and marginalized importance sampling (MIS). DM uses the model-based approach to estimate
Tt(st|st�1, at�1), rt(st, at) by enumerating all tuples of (st�1, at�1, st), IS is the step-wise importance
sampling method, WIS uses the step-wise weighted (self-normalized) importance sampling method,

8



Bounding error propagation

• Bounding the variance of is somewhat tedious

• Requires use to bound the covariance
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5 Experiments
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Is MIS optimal for OPE in RL?

• It depends on the settings.

• For finite-state / infinite action space, we 

conjecture that it is.

• For fully tabular setting, it is not optimal, at least 

asymptotically. 
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(Still an open problem now.)



Tabular MIS

• With a minor change to the following recursive 

estimation
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and it is finite by the Assumption 2.2; similarly, ⌧a < 1 is also automatically satisfied if
mint,st,at µ(at|st) > 0. Finally, as we will see in the results, explicit dependence on ⌧s, ⌧a
and dm only appear in the low-order terms of the error bound.

2.2 Tabular-MIS estimator

To overcome the barrier caused by cumulative importance weights in IS type estimators,
marginalized importance sampling directly estimates the marginalized state visitation
distribution bdt and defines the MIS estimator:

bv⇡MIS =
1

n

nX

i=1

HX

t=1

bd⇡t (s
(i)
t
)

bdµ
t
(s(i)

t
)
br⇡t (s(i)). (1)

and bdµ
t
(·) is directly estimated using the empirical mean, i.e. bdµ

t
(st) :=

1
n

P
i
1(s(i)

t
= st) :=

nst

n
whenever nst > 0 and bd⇡t (st)/bd

µ

t
(st) = 0 when nst = 0. Then the MIS estimator (1)

becomes:

bv⇡MIS =
HX

t=1

X

st

bd⇡t (st)br⇡t (st) (2)

Construction of State-MIS estimator. Based on the estimated marginal state tran-
sition bd⇡t = bP ⇡

t
bd⇡
t�1, State-MIS estimatorin Xie et al. (2019) directly estimates the state

transition P ⇡
t (st|st�1) and state reward r⇡t (st) as:

bP ⇡

t (st|st�1) =
1

nst�1

nX

i=1

⇡(a(i)
t�1|st�1)

µ(a(i)
t�1|st�1)

· 1((s(i)
t�1, s

(i)
t
, a(i)

t
) = (st�1, st, at));

br⇡t (st) =
1

nst

nX

i=1

⇡(a(i)
t
|st)

µ(a(i)
t
|st)

r(i)
t

· 1(s(i)
t

= st).

State-MIS estimator directly constructs state transitions bP ⇡
t (st|st�1) without explicitly

modeling actions. Therefore, it is still valid when action space A is unbounded. However,
importance weights must be explicitly utilized for compensating the discrepancy between µ
and ⇡ and the knowledge of µ(a|s) at each state-action pair (s, a) is required.
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A short detour:  How shall we do 
DM in RL?
• How would you do DM in this case?

1. Estimate MDP

2. Plug-in the target policy
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TMIS is equivalent to DM --- a 
model-based approach
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MSE of the TMIS / model-based  
OPE estimator
• Theorem 3.1 (Yin and W., 2020) 
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Theorem 3.1. Suppose the n episodic historical data D =
n
(s(i)

t
, a(i)

t
, r(i)

t
)
o
t=1,...,H

i=1,...,n
is

obtained by running a logging policy µ and ⇡ is the new target policy which we want to test.

If the number of episodes n satisfies

n > max


16 log n

mint,st,at d
µ

t
(st, at)

,
4H⌧a⌧s

mint,st max{d⇡
t
(st), d

µ

t
(st)}

�
,

then under Assumption 2.1-2.3 our Tabular-MIS estimator bv⇡TMIS has the following Mean-

Square-Error upper bound:

E[(bv⇡TMIS � v⇡)2]

 1

n

HX

h=0

X

sh,ah

d⇡
h
(sh)2

dµ
h
(sh)

⇡(ah|sh)2

µ(ah|sh)
Var

h
(V ⇡

h+1(s
(1)
h+1) + r(1)

h
)
���s(1)

h
= sh, a

(1)
h

= ah
i
·
 
1 +

s
16 log n

nmint,st d
µ

t
(st)

!

+O(
⌧2a ⌧sH

3

n2 · dm
),

(5)

where the value function under ⇡ is defined as: V ⇡

h
(sh) := E⇡

hP
H

t=h
r(1)
t

���s(1)
h

= sh
i
, 8h 2

{1, 2, ..., H}.

The proof of this theorem, and all the other technical results we present in this section, are
deferred to the appendix due to the space constraint. We summarize the novel ingredients
in the proof in Section 3.1. Before that, we make a few remarks about a few interesting
aspects of this result.

Remark 3.2 (Asymptotic e�ciency and local minimaxity). The error bound implies that

limn!1 n · E[(bv⇡TMIS � v⇡)2]

HX

t=0

Eµ

"
d⇡(s(1)

t
, a(1)

t
)2

dµ(s(1)
t

, a(1)
t

)2
Var
h
V ⇡

t+1(s
(1)
t+1) + r(1)

t

���s(1)t
, a(1)

t

i#
.

This exactly matches the CR-lower bound in Jiang & Li (2016, Proposition 3) for DAG-

MDP
5
. In contrast, the State-MIS estimator in (Xie et al., 2019) achieves an asymptotic

MSE of
HX

t=0

Eµ

"
d⇡(s(1)

t
)2

dµ(s(1)
t

)2
Var
h⇡(a(1)

t
|s(1)

t
)

µ(a(1)
t

|s(1)
t

)
(V ⇡

t+1(s
(1)
t+1) + r(1)

t
)
���s(1)t

i#
. (6)

We note that while in classical literature CR-lower bound is often used to lower bound the
variance of unbiased estimators, the modern theory of estimation establishes that it is also
the correct asymptotic minimax lower bound for the MSE of all estimators in every local
neighborhood of the parameter space (see, e.g., Van der Vaart, 2000, Chapter 8). In other

5
Jiang & Li (2016) focused on the special case with deterministic reward only at t = H. It is straightfor-

ward to show that the above expression is the CR-lower bound in the general tabular setting.
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Yin & W. (2020). Asymptotically efficient off-policy evaluation for tabular 
reinforcement learning. In AISTATS-2020
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TMIS vs on-policy evaluation
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words, our results imply that Tabular-MIS estimator is asymptotically, locally, uniformly
minimax optimal, namely, optimal for every problem instance separately.

It is worth pointing out that while asymptotically e�cient estimators for this problem
in related settings have been proposed in independent recent work (Kallus & Uehara,
2019a,b), our estimator is the first that comes with finite sample guarantees with an explicit
expression on the low-order terms. Moreover, our estimator demonstrates that doubly
robust estimation techniques is not essential for achieving asymptotic e�ciency.
Remark 3.3 (Simplified finite sample error bound). The theory implies that there is

universal constants C1, C2 such that for all n � C1H
⌧a

dm
, i.e., when we have a just visited

every state-action pair for ⌦(H) times, E[(bv⇡TMIS � v⇡)2] = C2H2⌧a⌧sR2
max/n.

In deriving the above remark, we used the somewhat surprising observation that

HX

t=1

E⇡

h
Var

h
V ⇡

t+1(s
(1)
t+1) + r(1)

t

���s(1)t
, a(1)

t

ii
 H2R2

max.

Note that we are summing H quantities that are potentially on the order of H2R2
max, yet

no additional factors of H shows up. This observation is folklore and has been used in
deriving tight results for tabular RL in (e.g., Azar et al., 2017). It can be proven using the
following decomposition of the variance of the empirical mean estimator and the fact that
it is bounded by H2R2

max/4.
Lemma 3.4. For any policy ⇡ and any MDP.

Var⇡

"
HX

t=1

r(1)
t

#
=

HX

t=1

⇣
E⇡

h
Var

h
r(1)
t

+ V ⇡

t+1(s
(1)
t+1)

���s(1)t
, a(1)

t

ii

+ E⇡

h
Var

h
E[r(1)

t
+ V ⇡

t+1(s
(1)
t+1)|s

(1)
t

, a(1)
t

]
���s(1)t

ii ⌘
.

The proof, which applies the law-of-total-variance recursively, is deferred to the ap-
pendix.
Remark 3.5 (When ⇡ = µ). One surprising observation is that Tabular-MIS estimator

improves the e�ciency even for the on-policy evaluation problem when ⇡ = µ. In other

word, the natural Monte Carlo estimator of the reward in the on-policy evaluation problem

is in fact asymptotically ine�cient.

3.1 Building blocks of the analysis

At the high level, the techniques we used, including the idea of fictitious estimator and
peeling the variance (expectation) of fictitious estimator ev⇡ from behind by applying total
law of variances (expectations) repeatedly, are consistent with Xie et al. (2019).

11

Combined with the previous observation:

1.  TMIS has an error that is linear in H.

2. TMIS is better than MC even when we are doing on-policy evaluation



Fitted Q Iterations
• Recall Bellman Optimality equation and the 

Bellman operator

• Given offline transition data and a function class

• For the finite horizon episodic case:
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Chapter 15

Offline Reinforcement Learning

Offline reinforcement learning broadly refers to reinforcement learning problems in which the learner does not get to
interact with the environment. Instead, the learner is simply presented with a batch of experience collected by some
decision-making policy, and the goal is to use this data to learn a near-optimal (or at the very least) better policy. This
setting is quite important for high-stakes decision-making scenarios which might arise in precision medicine or where
safety is a serious concern. On the other hand, one significant challenge is that exploration is not controlled by the
learner. Thus we will either (a) require some assumptions that ensure that the data-collection policy effectively covers
the state-action space, or (b) not be able to find a global near-optimal policy.

The fitted Q-iteration sample complexity analysis which this chapter focusses on, is originally due to [Munos, 2003,
Munos and Szepesvári, 2008, Antos et al., 2008].

15.1 Setting

We consider infinite horizon discounted MDP M = {S,A, �, P, r, ⇢} where ⇢ is the initial state distribution. We
assume reward is bounded, i.e., sup

s,a
r(s, a) 2 [0, 1]. For any policy ⇡ : S 7! A, we denote V ⇡ and Q⇡ as the value

and Q function of ⇡, and we denote d⇡ 2 �(S ⇥ A) as the state-action visitation of ⇡. For notation simplicity, we
denote Vmax := 1/(1� �).

Given any f : S ⇥A 7! R, we denote the Bellman operator T f : S ⇥A 7! R as follows. For all s, a 2 S ⇥A,

T f(s, a) := r(s, a) + Es0⇠P (·|s,a) max
a02A

f(s0, a0).

In batch RL, rather than interact with the environment to collect data, we will be presented with n tuples (s, a, r, s0)
where (s, a) ⇠ µ, r = r(s, a) and s0 ⇠ P (· | s, a). Here µ is an approximation of the data collection policy, and
it is only an approximation because we think of the tuples as iid. This is primarily to simplify the analysis, and it
is possible to obtain results when we replace the iid dataset with one actually collected by a policy, which involves
dealing with temporal correlations. See Section 15.4 for further discussion.

Given the dataset D := {(si, ai, ri, s0i)}ni=1 our goal is to output a near optimal policy for the MDP, that is we would
like our algorithm to produce a policy ⇡̂ such that, with probability at least 1 � �, V (⇡̂) � V ? � ✏, for some (✏, �)
pair. As usual, the number of samples n will depend on the accuracy parameters (✏, �) and we would like n to scale
favorably with these.

Denote a function class F = {f : S ⇥A 7! [0, Vmax]}. We assume F is discrete and also contains Q?.
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Assumption 15.1 (Realizability). We assume F is rich enough such that Q? 2 F .

We require the sample complexity of the learning algorithm scales polynomially with respect to ln (|F|).

Since in offline RL, the learner cannot interact with the environment at all, we require the data distribution ⌫ is
exploratory enough.

Assumption 15.2 (Concentrability). There exists a constant C such that for any policy ⇡ (including non-stationary
policies), we have:

8⇡, h, x, a :
d⇡(s, a)

µ(s, a)
 C.

Note that concentrability does not require that the state space is finite, but it does place some constraints on the system
dynamics. Note that the above assumption requires that µ to cover all possible policies’s state-action distribution, even
including non-stationary policies. Recall the concentrability assumptions in Approximate Policy Iteration (Chapter 3)
and Conservative Policy Iteration (Chapter 12). The concentrability assumption here is the strongest as it requires µ
to cover even non-stationary policies’ state-action distributions.

In additional to the above two assumptions, we need an assumption on the representational condition of class F .

Assumption 15.3 (Bellman Completion). We assume that for any f 2 F , T f 2 F .

Note that this implies that Q? 2 F (as Q? is the convergence point of Value Iteration), which is the weaker assumption
we would hope is sufficient. However, as we discuss in Section 15.4, the Bellman completion assumption is necessary
in order to learn in polynomial sample complexity.

15.2 Algorithm: Fitted Q Iteration (FQI)

Fitted Q Iteration (FQI) simply performs the following iteration. Start with some f0 2 F , FQI iterates:

FQI: ft 2 argmin
f2F

nX

i=1

✓
f(s0

i
, ai)� ri � �max

a02A

ft�1(si, ai)

◆2

. (0.1)

After k many iterations, we output a policy ⇡k(s) := argmax
a
fk(s, a), 8s.

Note that the Bayes optimal solution is T ft�1. Due to the Bellman completion assumption, the Bayes optimal solution
T ft�1 2 F . Thus, we should expect that ft is close to the Bayes optimal T ft�1 under the distribution µ, i.e., with a
uniform convergence argument, for the generalization bound, we should expect that:

Es,a⇠µ (ft(s, a)� T ft�1(s, a))
2 ⇡

p
1/n.

Indeed, as we demonstrate in Lemma 15.5, for square loss, under the realizability assumption, i.e., the Bayes optimal
belongs to F (T ft�1 2 F), we can have a sharper generalization error scaling in the order of 1/n. Thus in high level,
ft ⇡ T ft�1 as our data distribution µ is exploratory, and we know that based on value iteration, T fk�1 is a better
approximation of Q? than fk, i.e., kT ft�1�Q?k1  �kft�1�Q?k1, we can expect FQI to converge to the optimal
solution when n ! 1, t ! 1. We formalize the above intuition below.
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• Recall Bellman equation for a fixed policy

• Given offline transition data and a function class
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where ah ⇠ ⇡(· | sh), sh+1 ⇠ p(· | sh, ah), E⇡ denotes expectation over the sample path generated under policy ⇡.

Let D={(sn, an, s0n, r0n)}Nn=1 be a set of sample transitions, where each s0
n

is sampled from distribution p(· | sn, an). The
sample transitions may be collected from multiple trajectories and under a possibly unknown behavior policy denoted as ⇡.
Our goal is to estimate v⇡ from D.

Given a target policy ⇡ and a reward function r, the state-action value functions, also known as Q functions, are defined as,
for h = 0, 1, . . . , H ,

Q⇡

h
(s, a) := E⇡

"
HX

h0=h

r(sh0 , ah0)

����� sh = s, ah = a

#
, (2)

where ah0 ⇠ ⇡(· | sh0), sh0+1 ⇠ p(· | sh0 , ah0). Let X := S⇥A. Define the conditional transition operator P⇡ : RX ! RX

as
P⇡f(s, a) := E⇡

⇥
f(s0, a0)

�� s, a
⇤

for any f : X ! R,

where s0 ⇠ p(· | s, a) and a0 ⇠ ⇡(· | s0). Throughout the paper, we suppose that P⇡ operates in a function class Q, such that
we can approximate unknown Q functions within this family. Assume without loss of generality that 1 2 Q.

Assumption 1 (Function class). For any f 2 Q, P⇡f 2 Q, and r2Q. It follows that Q⇡

0 , . . . , Q
⇡

H
2Q, where Q✓RX .

In most parts of the paper, we assume that the transition data are collected from multiple independent episodes.

Assumption 2 (Data generating process). The dataset D consists of samples from K i.i.d. episodes ⌧ 1, ⌧ 2, . . . , ⌧K .
Each ⌧ k has H consecutive sample transitions generated by some policy on a single sample path, i.e., ⌧ k =
(sk,0, ak,0, r0k,0, sk,1, ak,1, r

0
k,1, . . . , sk,H , ak,H , r0

k,H
). We also denote s0

k,h
= sk,h+1.

We will focus mainly on the case where Q is a linear space spanned by d feature functions �1, . . . ,�d. Also note that the
behavior policy ⇡ is not known.

Notations Denote X = S ⇥ A. Let RX be the collection of all functions f : X ! R. For any f 2 RX , define
f⇡ : S ! R by f⇡(s) =

R
A f(s, a)⇡(a | s)da. If A is a positive symmetric semidefinite matrix, let �min(A) denote its

smallest eigenvalue, and let A1/2 denote the positive symmetric semidefinite matrix that A1/2A1/2 = A. For nonnegative
{an}1n=1 and {bn}1n=1, we denote an . bn if there exists c > 0 such that an  cbn for n = 1, 2, . . .. Let {Xn}1n=1 be a
sequence of random variables and {an}1n=1 ✓ R be deterministic. We write Xn = OP(an) if for any � > 0 there exists
M > 0 such that P(|Xn| > anM)  � for all n. If a distribution p is absolutely continuous with respect to a distribution q,
the Pearson �2-divergence is defined by �2(p, q) := Eq

⇥
(dpdq � 1)2

⇤
.

3. Regression-Based Off-Policy Evaluation
We consider a fitted Q-iteration method for new policy evaluation using linear function approximation. We show that it is
equivalent to a model-based method that estimates a conditional mean operator and embeds the unknown p into the feature
space. They admit a simple matrix-vector implementation when Q is a linear model with finite dimension.

3.1. Fitted Q-iteration (FQI)

The Q-functions satisfy the Bellman equation

Q⇡

h�1(s, a) = r(s, a) + E
⇥
V ⇡

h
(s0)

�� s, a
⇤

(3)

for h=1, 2, . . . , H , where s0⇠ p(· | s, a), V ⇡

h
: S!R is the value function defined as V ⇡

h
(s) :=

R
A Q⇡

h
(s, a)⇡(a | s)da.

For the given target policy ⇡, we apply regression recursively by letting bQ⇡

H+1 := 0 and for h = H,H � 1, . . . , 0,

bQ⇡

h
:= argmin

f2Q

(
NX

n=1

✓
f(sn, an)� r0

n
�

Z

A
bQ⇡

h+1(s
0
n
, a)⇡(a | s0

n
)da

◆2

+ �⇢(f)

)
, (4)

where � � 0 and ⇢(·) is a regularization function. The scheme above provides a recursive way to evaluate
bQ⇡

H
, bQ⇡

H�1, . . . , bQ⇡

0 and v⇡ by regression using empirical data. It is essentially a fitted Q-iteration. The full algorithm is
summarized in Algorithm 1.
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Q̂⇡
h = arg min

fh2F

nX

i=1

 
fh(s

(i)
h , a(i)h )� r(i)h �

X

a02A
⇡(a0|s(i)h+1)fh+1(s

(i)
h+1, a

0)

!2
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• Let’s work out the optimal solution!
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In conclusion, in the tabular MDP 
case, they are all equivalent.

• TMIS

• Model-based Plugin 

• Fitted Q Iteration
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and it is finite by the Assumption 2.2; similarly, ⌧a < 1 is also automatically satisfied if
mint,st,at µ(at|st) > 0. Finally, as we will see in the results, explicit dependence on ⌧s, ⌧a
and dm only appear in the low-order terms of the error bound.

2.2 Tabular-MIS estimator

To overcome the barrier caused by cumulative importance weights in IS type estimators,
marginalized importance sampling directly estimates the marginalized state visitation
distribution bdt and defines the MIS estimator:

bv⇡MIS =
1

n

nX

i=1

HX

t=1

bd⇡t (s
(i)
t
)

bdµ
t
(s(i)

t
)
br⇡t (s(i)). (1)

and bdµ
t
(·) is directly estimated using the empirical mean, i.e. bdµ

t
(st) :=

1
n

P
i
1(s(i)

t
= st) :=

nst

n
whenever nst > 0 and bd⇡t (st)/bd

µ

t
(st) = 0 when nst = 0. Then the MIS estimator (1)

becomes:

bv⇡MIS =
HX

t=1

X

st

bd⇡t (st)br⇡t (st) (2)

Construction of State-MIS estimator. Based on the estimated marginal state tran-
sition bd⇡t = bP ⇡

t
bd⇡
t�1, State-MIS estimatorin Xie et al. (2019) directly estimates the state

transition P ⇡
t (st|st�1) and state reward r⇡t (st) as:

bP ⇡

t (st|st�1) =
1

nst�1

nX

i=1

⇡(a(i)
t�1|st�1)

µ(a(i)
t�1|st�1)

· 1((s(i)
t�1, s

(i)
t
, a(i)

t
) = (st�1, st, at));

br⇡t (st) =
1

nst

nX

i=1

⇡(a(i)
t
|st)

µ(a(i)
t
|st)

r(i)
t

· 1(s(i)
t

= st).

State-MIS estimator directly constructs state transitions bP ⇡
t (st|st�1) without explicitly

modeling actions. Therefore, it is still valid when action space A is unbounded. However,
importance weights must be explicitly utilized for compensating the discrepancy between µ
and ⇡ and the knowledge of µ(a|s) at each state-action pair (s, a) is required.

8

v̂⇡DM =
HX

h=1

X

s2S
d̂⇡
h
(s)r̂⇡

h
(s)
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v̂⇡FQI =
X

s2S

X

a2A
d̂1(s)⇡(a|s)Q̂1(s, a)
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