CS292F StatRL Lecture 13 OPE in Reinforcement Learning

Instructor: Yu-Xiang Wang
Spring 2021
UC Santa Barbara

Recap: Offline Reinforcement Learning, aka. Batch RL

- Task 1: Offline Policy Evaluation. (OPE)

- Task 2: Offline Policy Learning. (OPL)

Recap: Lecture 12

- OPE algorithms in (Contextual) Bandits
- DM, IS, WIS, DR, SWITCH $\{[(G)]$ R
- Comparing DM and IS in Multi-armed Bandits:
- DM is asymptotically more efficient
- IS is better.
- More generally:
- DM is asymptotically more efficient if we assume realizability
- IS cannot be improved when we don't

Recap: Two standard approaches

- Direct method / regression estimator

$$
\hat{v}_{\mathrm{DM}}^{\pi}=\frac{1}{n} \sum_{i=1}^{n} \sum_{a \in \mathcal{A}} \hat{r}\left(x_{i}, a\right) \pi\left(a \mid x_{i}\right)
$$

- Importance sampling / Inverse Propensity Score /

$$
\hat{v}_{\mathrm{IPS}}^{\pi}=\frac{1}{n} \sum_{i=1}^{n} \frac{\pi\left(a_{i} \mid x_{i}\right)}{\mu\left(a_{i} \mid x_{i}\right)} r_{i}
$$

Recap: Combining DM and IS

- Doubly Robust Estimation
- Remains unbiased, but limited benefits to the variance
- SWITCH
- Introduce bias, but drastically reduce variance

This lecture

- Generalizing the bandits OPE idea to RL
- Curse of Horizon

- Marginalized Importance Sampling

OPE in Reinforcement Learning

- Importance sampling on the entire trajectory
- (Per-Step) Importance Sampling

$$
\frac{1}{G} \sum_{i=1}^{n} \frac{H}{l_{n=1}} P_{h}^{(i)} \sum\left(r_{n}^{(i)}\right)
$$

- Exercise:
- Infinite horizon discounted version?
- Weighted Importance Sampling Extension?

Doubly Robust OPE in Reinforcement Learning

- An alternative form for the Per-Step IS

$$
\begin{aligned}
& V_{\text {step-IS }}^{0}:=0, \text { and for } t=1, \ldots, H, \\
& V_{\text {step-IS }}^{H+1-t}:=\rho_{t}\left(r_{t}+\gamma V_{\text {step-IS }}^{H-t}\right) .
\end{aligned}
$$

$$
\leftrightarrow=2
$$

$$
V_{1 s}^{d}=\frac{\rho_{1} r_{1}+\rho_{1}\left(\rho_{2} r_{2}\right)}{}
$$

- Given a value function approximator

$$
\begin{aligned}
& V_{\mathrm{DR}}^{0}:=0, \text { and for } t=1, \ldots, H, \quad V\left(S_{t}\right)=2 \\
& V_{\mathrm{DR}}^{H+1-t}:=\widehat{V}\left(s_{t}\right)+\rho_{t}\left(r_{t}+\gamma V_{\mathrm{DR}}^{H-t}-\widehat{Q}\left(s_{t}, a_{t}\right)\right) .
\end{aligned}
$$

$$
\hat{V}\left(S_{x}\right)=\sum \pi\left(a_{2} \mid s_{1}\right) \hat{\theta}_{\left(s_{2}+1\right)}
$$

Jiang, N., \& Li, L. Doubly robust off-policy value evaluation for reinforcement learning. In ICML 2016.

Mean and Variance of Doubly Robust OPE in RL

- Doubly Robust OPE in RL is unbiased
- Variance

Theorem 1. $V_{D R}$ is an unbiased estimator of $v^{\pi_{1}, H}$, whose variance is given recursively as follows: $\forall t=1, \ldots, H$,

$$
\begin{align*}
& \mathbb{V}_{t}\left[V_{D R}^{H+1-t}\right]=\mathbb{V}_{t}\left[V\left(s_{t}\right)\right]+\mathbb{E}_{t}\left[\mathbb{V}_{t}\left[\rho_{t} \Delta\left(s_{t}, a_{t}\right) \mid s_{t}\right]\right] \\
& \quad+\mathbb{E}_{t}\left[\rho_{t}^{2} \mathbb{V}_{t+1}\left[r_{t}\right]\right]+\mathbb{E}_{t}\left[\gamma^{2} \rho_{t}^{2} \mathbb{V}_{t+1}\left[V_{D R}^{H-t}\right]\right] \tag{11}
\end{align*}
$$

where $\Delta\left(s_{t}, a_{t}\right):=\widehat{Q}\left(s_{t}, a_{t}\right)-Q\left(s_{t}, a_{t}\right)$ and $\mathbb{V}_{H+1}\left[V_{D R}^{0} \mid s_{H}, a_{H}\right]=0$.

Main challenge of OPE in RL: The

 curse of Horizon

- The variance is exponential in H !

$$
\operatorname{Var}\left(V_{s}^{\pi}\right)=\frac{1}{n} \operatorname{Var}(J)
$$

Example on Curse of Horizon

(Linctal. 2018)
$a=0$
$a=1$

$$
H=200
$$

From Importance Sampling to Marginalized Importance Sampling

$$
\begin{aligned}
& \widehat{v}_{I S}^{\pi}=\frac{1}{n} \sum_{i=1}^{n} \sum_{h=1}^{H}\left[\prod_{t=1}^{h} \frac{\pi\left(a_{t}^{(i)} \mid s_{t}^{(i)}\right)}{\mu\left(a_{t}^{(i)} \mid s_{t}^{(i)}\right)}\right] r_{h}^{(i)} . \\
& \hat{d}_{t}^{\pi}(s) \rightarrow d_{t}^{\pi}(s) \\
& \hat{d}_{t}^{\mu}(s) \rightarrow \hat{d}_{t}^{d(s)} \hat{r}_{t}^{\pi}(s) \rightarrow r_{t}^{\pi}\left(\frac{s u d_{t}^{(t s)}}{}\right. \\
& \widehat{v}_{M I S}^{\pi}=\frac{1}{n} \sum_{i=1}^{n} \sum_{t=1}^{H} \frac{\widehat{d}_{t}^{\pi}\left(s_{t}^{(i)}\right)}{\widehat{d}_{t}^{\mu}\left(s_{t}^{(i)}\right)} \widehat{r}_{t}^{\pi}\left(s_{t}^{(i)}\right) .
\end{aligned}
$$

Xie, W., and Ma. (2019): Towards Optimal OPE for RL using Marginalized Importance Sampling. NeurIPS 2019.

What are some ideas for estimating the marginalized importance weight?

$$
\widehat{v}_{M I S}^{\pi}=\frac{1}{n} \sum_{i=1}^{n} \sum_{t=1}^{H} \frac{\widehat{d}_{t}^{\pi}\left(s_{t}^{(i)}\right)}{\widehat{d}_{t}^{\mu}\left(s_{t}^{(i)}\right)} \widehat{r}_{t}^{\pi}\left(s_{t}^{(i)}\right) .
$$

- Idea 1: averaging over multiple visits to the same state.

$\frac{\sqrt{11\left(a_{4}\right)}}{\sqrt{\left(a^{\prime \prime}\right)}}$

Idea 2: Recursive estimation

$$
\begin{aligned}
& d_{t}^{\pi}\left(s_{t}\right)=\sum_{s_{t-1}} P_{t}^{\pi}\left(s_{t} \mid s_{t-1}\right) d_{t-1}^{\pi}\left(s_{t-1}\right), \leftarrow \\
& \widehat{d}_{t}^{\pi}=\widehat{P}_{t}^{\pi} \widehat{d}_{t-1}^{\pi}, \\
& \hat{d}_{5}^{(s)}=\frac{1}{9} \sum \mathbb{I}\left(s_{1}^{(1)}=s\right)
\end{aligned}
$$

$$
\begin{aligned}
& \underline{\underline{r_{t}}\left(s_{t}\right)}=\frac{1}{n_{s_{t}}} \sum_{i=1}^{n} \frac{\pi\left(a_{t}^{(i)} \mid s_{t}\right)}{\mu\left(a_{t}^{(i)} \mid s_{t}\right)} r_{t}^{(i)} \mathbf{1}\left(s_{t}^{(i)}=s_{t}\right), \\
& \text { Labels }
\end{aligned}
$$

Xie, W., and Ma. (2019): Towards Optimal OPE for RL using Marginalized Importance Sampling. NeurIPS 2019.

Results: OPE error bound of MIS

- The MSE of MIS estimator obeys:

Xie, W., and Ma. (2019): Towards Optimal OPE for RL using Marginalized Importance Sampling. NeurIPS 2019.

Experiment on mountain car

$\cdots \because \cdots$	DM	$-\infty$	IS	$-\infty-$	WIS	$\cdots \cdots$

Number of Episodes. n

Challenges of the analysis

1. Dependent data: The data within each trajectory are not independent
2. An annoying bias: there is a non-zero probability that some states are not visited at all. And it affects all future estimates
3. Error propagation from recursive estimation

Addressing Challenge 1: Define an appropriate martingale

- Consider the data collection in parallel
- Group all datal for time h together

- Conditioning on the number of times states are visited

Addressing Challenge 2: Fictitious estimator technique

$$
\begin{aligned}
& \widetilde{v}^{\pi}:=\sum_{t=1}^{H} \sum_{s_{t}} \widetilde{d}_{t}^{\pi}\left(s_{t}\right) \widetilde{r}_{t}^{\pi}\left(s_{t}\right) \quad \text { where } \widetilde{d_{t}^{\pi}}=\widetilde{\mathbb{P}}_{t, t-1}^{\pi} \widetilde{d}_{t-1}^{\pi} \\
& \underline{\widetilde{r}_{t}^{\pi}\left(s_{t}\right)}= \begin{cases}\begin{array}{ll}
\stackrel{r}{t}_{\pi}^{r_{t}}\left(s_{t}\right) & \text { if } n_{s_{t}} \geq n d_{t}^{\mu}\left(s_{t}\right)(1-\delta) \\
\underbrace{\pi}_{\text {TMue value }}\left(s_{t}\right) & \text { otherwise } ;<
\end{array}\end{cases} \\
& \xlongequal{\widetilde{\mathbb{P}}_{t, t-1}^{\pi}\left(\cdot \mid s_{t-1}\right)}= \begin{cases}\widehat{\mathbb{P}}_{t, t-1}^{\pi} & \text { if } n_{s_{t-1}} \geq n d_{t}^{\mu}\left(s_{t-1}\right)(1-\delta) \\
\underline{\mathbb{P}_{t, t-1}^{\pi}} & \text { otherwise. } \epsilon\end{cases} \\
& E\left[\tilde{v}^{\pi}\right]=V^{\pi}
\end{aligned}
$$

Multiplicative Chernoff Bound

Lemma A. 1 (Multiplicative Chernoff bound [Chernoff et al., 1952]).
Let X be a Binomial random variable with parameter p, n.
For any $\delta>0$, we have that

$$
\mathbb{P}[\underline{X}<(1-\delta) p n]<e^{-\frac{\delta^{2} p n}{2}}
$$

- Apply to our problem

$$
\begin{aligned}
& n_{s, t} \text { by } n m y \text { for } n \text { trogis, } \\
& u \operatorname{Bin}\left(d_{t}^{\mu}(\sin , n)\right. \\
& P\left(n_{s, t}<n d_{t}^{-1 /(s)}(\mid \delta)\right) \leqslant e^{\frac{-\delta^{2} n \cdot d_{1}^{-1}(s)}{2}} \\
& \text { nim bard for all } t=1, \cdots(H \text {, gl } S \in S
\end{aligned}
$$

Address Challenge 3: Empirical /
Offline version of Bellman equation of variance

Bounding error propagation

$$
\begin{gathered}
\mathbb{E}\left[\frac{\widetilde{d}_{h}^{\pi}\left(s_{h}\right)^{2}}{n_{s_{h}}} \mathbf{1}\left(n_{s_{h} \geq} \frac{n d_{h}^{\mu}\left(s_{h}\right)}{(1-\delta)^{-1}}\right)\right] \leq \frac{(1-\delta)^{-1}}{n}(\frac{d_{h}^{\pi}\left(s_{h}\right)^{2}}{d_{h}^{\mu}\left(s_{h}\right)}+\underbrace{\operatorname{Var}\left[\widetilde{d}_{h}^{\pi}\left(s_{h}\right)\right]}), \\
\left.E x^{2}=\operatorname{Var}^{(1)}\right)+(E x)^{2}
\end{gathered}
$$

- Bounding the variance of is somewhat tedious
- Requires use to bound the covariance

$$
\begin{aligned}
& \underline{\operatorname{Var}\left[\tilde{d}_{h}^{\pi}\left(s_{h}\right)\right] \leq \frac{2(1-\delta)^{-1} h_{h}^{\pi}\left(s_{h}\right)}{n}} . \\
& \frac{\operatorname{Cov}\left(\tilde{d}_{h}^{\pi}(\cdot)\right)}{\epsilon_{R}^{S}}=E\left[\operatorname{Cov}_{\uparrow}\right)+\operatorname{Cov}[E]
\end{aligned}
$$

Is MIS optimal for OPE in RL?

- It depends on the settings.
- For finite-state / infinite action space, we conjecture that it is.
(Still an open problem now.)
- For fully tabular setting, it is not optimal, at least asymptotically.

Tabular MIS

$$
\widehat{v}_{\mathrm{MIS}}^{\pi}=\frac{1}{n} \sum_{i=1}^{n} \sum_{t=1}^{H} \frac{\widehat{d}_{t}^{\pi}\left(s_{t}^{(i)}\right)}{\widehat{d}_{t}^{\mu}\left(s_{t}^{(i)}\right)} \widehat{r}_{t}^{\pi}\left(s^{(i)}\right)
$$

- With a minor change to the following recursive estimation

$$
\begin{aligned}
& \widehat{P}_{t}^{\pi}\left(s_{t} \mid s_{t-1}\right)=\frac{1}{n_{s_{t-1}}} \sum_{i=1}^{n} \frac{\pi\left(a_{t-1}^{(i)} \mid s_{t-1}\right)}{\widehat{\mu}\left(a_{t-1}^{(i)} \mid s_{t-1}\right)} \cdot \mathbf{1}\left(\left(s_{t-1}^{(i)}, s_{t}^{(i)}, a_{t}^{(i)}\right)=\left(s_{t-1}, s_{t}, a_{t}\right)\right) \\
& \frac{\widehat{r}_{t}^{\pi}\left(s_{t}\right)}{}=\frac{1}{n_{s_{t}}} \sum_{i=1}^{n} \frac{\pi\left(a_{t}^{(i)} \mid s_{t}\right)}{\hat{\mu}\left(a_{t}^{(i)} \mid s_{t}\right)} r_{t}^{(i)} \cdot \mathbf{1}\left(s_{t}^{(i)}=s_{t}\right) \\
& \text { U. plugin Model basel approach }
\end{aligned}
$$

A short detour: How shall we do DM in RL?

- How would you do DM in this case?

1. Estimate MDP

2. Plug-in the target policy

Value itecom

$$
\begin{aligned}
\hat{V}^{\pi}\left(\hat{d}_{0}\right) & =E^{\pi}\left[r_{1}^{\prime \prime}+r_{2}^{\prime \prime}+\cdots+r_{(H)}^{(1)}(H)\right] \\
\hat{v}^{\prime} & =\hat{v}^{(} \hat{a}_{0}(s) \hat{V}_{1}^{\pi}(s) \\
& =\sum_{n=1}^{H} \hat{d}_{n}^{\pi}(s) \forall \hat{r}^{\pi}(s)
\end{aligned}
$$

TMIS is equivalent to DM --- a model-based approach

$$
\begin{aligned}
& =\hat{V}_{D_{M}} \\
& \tilde{d}_{1}(s)=\text { plog in } \\
& \left.d_{2}(s)=\sum_{s}^{n} p_{1}^{\pi}(s / s) \tilde{d}_{1}, s\right)
\end{aligned}
$$

an excoet transituen dyluanior in \hat{M}

MSE of the TMIS / model-based OPE estimator

- Theorem 3.1 (Yin and W., 2020)

$$
\begin{aligned}
& \mathbb{E}\left[\left(\hat{v}_{\text {ThIS }}^{\pi}-v^{\pi}\right)^{2}\right] \\
& \begin{aligned}
\leq \frac{1}{n} \sum_{h=0}^{H} \sum_{s_{h}, a_{h}} \frac{d_{h}^{\pi}\left(s_{h}\right)^{2}}{d_{h}^{\mu}\left(s_{h}\right)} \underbrace{\left.\frac{\pi\left(a_{h} \mid s_{h}\right)^{2}}{\mu\left(a_{h} \mid s_{h}\right)}\right)} \operatorname{var}\left[\left(V_{h+1}^{\pi}\left(s_{h+1}^{(1)}\right)+r_{h}^{(1)}\right) \mid s_{h}^{(1)}\right. & \left.=s_{h}, a_{h}^{(1)}=a_{h}\right] \\
& +O\left(n^{-1.5}\right)
\end{aligned}
\end{aligned}
$$

Yin \& W. (2020). Asymptotically efficient off-policy evaluation for tabular reinforcement learning. In AISTATS-2020

TMIS vs on-policy evaluation

Lemma 3.4. For any policy π and any MDP.

Combined with the previous observation:

1. TMIS has an error that is linear in H .

$$
{\frac{\left(t^{3}\right)}{n} \pi_{c} T_{s}}^{n}
$$

R

2. TMIS is better than MC even when we are doing on-policy evaluation

