CS292F StatRL Lecture 13 OPE in Reinforcement Learning

Instructor: Yu-Xiang Wang

Spring 2021

UC Santa Barbara

Recap: Offline Reinforcement Learning, aka. Batch RL

• Task 1: Offline Policy Evaluation. (OPE)

Task 2: Offline Policy Learning. (OPL)

Recap: Lecture 12

- OPE algorithms in (Contextual) Bandits
 - DM, IS, WIS, DR, SWITCH

- Comparing DM and IS in Multi-armed Bandits:
 - DM is asymptotically more efficient
 - IS is better.

- More generally:
 - DM is asymptotically more efficient if we assume realizability
 - IS cannot be improved when we don't

Recap: Two standard approaches

Direct method / regression estimator

$$\hat{v}_{\text{DM}}^{\pi} = \frac{1}{n} \sum_{i=1}^{n} \sum_{a \in \mathcal{A}} \hat{r}(x_i, a) \pi(a|x_i)$$

Importance sampling / Inverse Propensity Score /

$$\hat{v}_{\text{IPS}}^{\pi} = \frac{1}{n} \sum_{i=1}^{n} \frac{\pi(a_i|x_i)}{\mu(a_i|x_i)} r_i$$

Recap: Combining DM and IS

Doubly Robust Estimation

Remains unbiased, but limited benefits to the variance

SWITCH

Introduce bias, but drastically reduce variance

This lecture

Generalizing the bandits OPE idea to RL

Curse of Horizon

Marginalized Importance Sampling

Finite Du Hovizin MDPs finite State finite Action

• (Per-Step) Importance Sampling

$$V_{S} = \begin{cases} \frac{h}{N} & \frac{N}{N} & \frac{N}{N} \\ \frac{N}{N} & \frac{N}{N} & \frac{N}{N} \end{cases}$$

Exercise:

- Infinite horizon discounted version?
- Weighted Importance Sampling Extension?

Doubly Robust OPE in Reinforcement Learning

An alternative form for the Per-Step IS

$$V_{\text{step-IS}}^{0} := 0, \text{ and for } t = 1, \dots, H,$$

$$V_{\text{step-IS}}^{H+1-t} := \rho_t \left(r_t + \gamma V_{\text{step-IS}}^{H-t} \right).$$

Given a value function approximator

$$V_{\mathrm{DR}}^{0} := 0, \text{ and for } t = 1, \dots, H,$$

$$V_{\mathrm{DR}}^{H+1-t} := \widehat{V}(s_{t}) + \rho_{t} \left(r_{t} + \gamma V_{\mathrm{DR}}^{H-t} - \widehat{Q}(s_{t}, a_{t}) \right).$$

Jiang, N., & Li, L. Doubly robust off-policy value evaluation for reinforcement learning. In ICML 2016.

Mean and Variance of Doubly Robust OPE in RL

Doubly Robust OPE in RL is unbiased

Variance

Theorem 1. V_{DR} is an unbiased estimator of $v^{\pi_1,H}$, whose variance is given recursively as follows: $\forall t = 1, ..., H$,

$$\mathbb{V}_{t}\left[V_{DR}^{H+1-t}\right] = \mathbb{V}_{t}\left[V(s_{t})\right] + \mathbb{E}_{t}\left[\mathbb{V}_{t}\left[\rho_{t}\Delta(s_{t}, a_{t}) \mid s_{t}\right]\right] + \mathbb{E}_{t}\left[\rho_{t}^{2}\mathbb{V}_{t+1}\left[r_{t}\right]\right] + \mathbb{E}_{t}\left[\gamma^{2}\rho_{t}^{2}\mathbb{V}_{t+1}\left[V_{DR}^{H-t}\right]\right], \quad (11)$$

where
$$\Delta(s_t, a_t) := \widehat{Q}(s_t, a_t) - Q(s_t, a_t)$$
 and $\mathbb{V}_{H+1}[V_{DR}^0 \mid s_H, a_H] = 0.$

 $\frac{-0.}{\sqrt{(v_{pr})}} = \frac{1}{h^{2}} \frac{(s_{g}) \sqrt{h}}{(\sqrt{(s')} + r) s_{g}}$

Main challenge of OPE in RL: The curse of Horizon

$$\widehat{v}_{IS}^{\pi} = \frac{1}{n} \sum_{i=1}^{n} \sum_{h=1}^{H} \left[\prod_{t=1}^{h} \frac{\pi(a_{t}^{(i)}|s_{t}^{(i)})}{\mu(a_{t}^{(i)}|s_{t}^{(i)})} \right] r_{h}^{(i)}.$$
 The curse of horizon. (Liu et al, 2018 NeurIPS)

• The variance is exponential in H!

Example on Curse of Horizon

From Importance Sampling to Marginalized Importance Sampling

$$\widehat{v}_{IS}^{\pi} = \frac{1}{n} \sum_{i=1}^{n} \sum_{h=1}^{H} \left[\prod_{t=1}^{h} \frac{\pi(a_{t}^{(i)}|s_{t}^{(i)})}{\mu(a_{t}^{(i)}|s_{t}^{(i)})} \right] r_{h}^{(i)}.$$

$$\widehat{v}_{MIS}^{\pi} = \frac{1}{n} \sum_{i=1}^{n} \sum_{t=1}^{H} \frac{\widehat{d}_{t}^{\pi}(s_{t}^{(i)})}{\widehat{d}_{t}^{\mu}(s_{t}^{(i)})} \widehat{r}_{t}^{\pi}(s_{t}^{(i)}).$$

Xie, W., and Ma. (2019): Towards Optimal OPE for RL using Marginalized Importance Sampling. NeurIPS 2019.

What are some ideas for estimating the marginalized importance weight?

$$\widehat{v}_{MIS}^{\pi} = \frac{1}{n} \sum_{i=1}^{n} \sum_{t=1}^{H} \frac{\widehat{d}_{t}^{\pi}(s_{t}^{(i)})}{\widehat{d}_{t}^{\mu}(s_{t}^{(i)})} \widehat{r}_{t}^{\pi}(s_{t}^{(i)}).$$

• Idea 1: averaging over multiple visits to the same state.

$$\frac{\mathcal{L}_{t}(s)}{\mathcal{L}_{t}(s)} = \frac{1}{N} \frac{\mathcal{L}_{t}(s)}{\mathcal{L}_{t}(s)} \frac{\mathcal{L}_{t}(s)}{\mathcal{L$$

Idea 2: Recursive estimation

$$d_{t}^{\pi}(s_{t}) = \sum_{s_{t-1}} P_{t}^{\pi}(s_{t}|s_{t-1}) d_{t-1}^{\pi}(s_{t-1}), \qquad \qquad \text{Total played } d_{s}^{\pi}(s_{t}) = \hat{Q}_{t}^{\pi}(s_{t}|s_{t-1}), \qquad \qquad \text{Total played } d_{s}^{\pi}(s_{t}) = \hat{Q}_{t}^{\pi}(s_{t}|s_{t-1}), \qquad \qquad \text{Total played } d_{s}^{\pi}(s_{t}|s_{t-1}), \qquad \qquad \text{Total played } d_{s}^{\pi}(s_{t}|s_{t-$$

$$\widehat{r}_{t}^{\pi}(s_{t}) = \frac{1}{n_{s_{t}}} \sum_{i=1}^{n} \frac{\pi(a_{t}^{(i)}|s_{t})}{\mu(a_{t}^{(i)}|s_{t})} r_{t}^{(i)} \mathbf{1}(s_{t}^{(i)} = s_{t}),$$
We (5)

Xie, W., and Ma. (2019): Towards Optimal OPE for RL using Marginalized Importance Sampling. NeurIPS 2019.

Results: OPE error bound of MIS

 The MSE of MIS estimator obeys: $\frac{\pi_t(a_t|s_t)}{u_t(a_t|s_t)} \left(V_{t+1}^{\pi}(s_{t+1}) + r_t \right) \left| s_t \right| + \tilde{O}(n^{-1.5})$ 1 1-1 TS Tal-12 H3 TS Ta2

Xie, W., and Ma. (2019): Towards Optimal OPE for RL using Marginalized Importance Sampling. NeurIPS 2019.

Experiment on mountain car

16

Challenges of the analysis

 Dependent data: The data within each trajectory are not independent

2. An annoying bias: there is a non-zero probability that some states are not visited at all. And it affects all future estimates

3. Error propagation from recursive estimation

Addressing Challenge 1: Define an appropriate martingale

• Consider the data collection in parallel

• Group all data for time h together

Conditioning on the number of times states are visited

Addressing Challenge 2: Fictitious estimator technique

$$\widetilde{v}^{\pi} := \sum_{t=1}^{H} \sum_{s_{t}} \widetilde{d}_{t}^{\pi}(s_{t}) \widetilde{r}_{t}^{\pi}(s_{t}) \quad \text{where} \quad \widetilde{d}_{t}^{\pi} = \widetilde{\mathbb{P}}_{t,t-1}^{\pi} \widetilde{d}_{t-1}^{\pi}$$

$$\widetilde{r}_{t}^{\pi}(s_{t}) = \begin{cases} \widehat{r}_{t}^{\pi}(s_{t}) & \text{if } n_{s_{t}} \geq n d_{t}^{\mu}(s_{t})(1-\delta) \\ \widehat{r}_{t}^{\pi}(s_{t}) & \text{otherwise;} \end{cases}$$

$$\widetilde{\mathbb{P}}_{t,t-1}^{\pi}(\cdot|s_{t-1}) = \begin{cases} \widehat{\mathbb{P}}_{t,t-1}^{\pi} & \text{if } n_{s_{t-1}} \geq n d_{t}^{\mu}(s_{t-1})(1-\delta) \\ \widehat{\mathbb{P}}_{t,t-1}^{\pi} & \text{otherwise.} \end{cases}$$

$$\widetilde{\mathbb{P}}_{t,t-1}^{\pi}(\cdot|s_{t-1}) = \begin{cases} \widehat{\mathbb{P}}_{t,t-1}^{\pi} & \text{if } n_{s_{t-1}} \geq n d_{t}^{\mu}(s_{t-1})(1-\delta) \\ \widehat{\mathbb{P}}_{t,t-1}^{\pi} & \text{otherwise.} \end{cases}$$

Multiplicative Chernoff Bound

Lemma A.1 (Multiplicative Chernoff bound [Chernoff et al., 1952]).

Let X be a Binomial random variable with parameter p, n.

For any $\delta > 0$, we have that

$$\mathbb{P}[X < (1 - \delta)pn] < e^{-\frac{\delta^2 pn}{2}}$$

Apply to our problem

NSt by rung M for a trajs,

MBin (dt/s) n)

P (Nst < ndt/s) (18) < e = 82n dt/s;

Union bowl for all t = 1 ... (+, oll SES

Fictions Estrupor + M(s)

17/5. e say

Calley

A do-100 20

Address Challenge 3: Empirical / Offline version of Bellman equation

Bounding error propagation

$$\mathbb{E}\left[\frac{\widetilde{d}_{h}^{\pi}(s_{h})^{2}}{n_{s_{h}}}\mathbf{1}\left(n_{s_{h}} \geq \frac{nd_{h}^{\mu}(s_{h})}{(1-\delta)^{-1}}\right)\right] \leq \frac{(1-\delta)^{-1}}{n}\left(\frac{d_{h}^{\pi}(s_{h})^{2}}{d_{h}^{\mu}(s_{h})} + \operatorname{Var}\left[\widetilde{d}_{h}^{\pi}(s_{h})\right]\right),$$
• Bounding the variance of is somewhat tedious

- - Requires use to bound the covariance

$$\underbrace{\operatorname{Var}[\widetilde{d}_{h}^{\pi}(s_{h})]}_{\operatorname{Cov}(\widetilde{d}_{h}^{\pi}(s_{h}))} \leq \underbrace{\frac{2(1-\delta)^{-1}h\widetilde{d}_{h}^{\pi}(s_{h})}{n}}_{\operatorname{Cov}(\widetilde{d}_{h}^{\pi}(s_{h}))} = \underbrace{\frac{2(1-\delta)^{-1}h\widetilde{d}_{h}^{\pi}(s_{h})}{n}}_{\operatorname{Cov}(\widetilde{d}_{h}^{\pi}(s_{h}))} = \underbrace{\frac{2(1-\delta)^{-1}h\widetilde{d}_{h}^{\pi}(s_{h})}{n}}_{\operatorname{Cov}(\widetilde{d}_{h}^{\pi}(s_{h}))}.$$

Is MIS optimal for OPE in RL?

It depends on the settings.

• For finite-state / infinite action space, we conjecture that it is.

(Still an open problem now.)

• For fully tabular setting, it is not optimal, at least asymptotically.

Tabular MIS

$$\widehat{v}_{\text{MIS}}^{\pi} = \frac{1}{n} \sum_{i=1}^{n} \sum_{t=1}^{H} \frac{\widehat{d}_{t}^{\pi}(s_{t}^{(i)})}{\widehat{d}_{t}^{\mu}(s_{t}^{(i)})} \widehat{r}_{t}^{\pi}(s^{(i)}).$$

With a minor change to the following recursive estimation

$$\widehat{P}_{t}^{\pi}(s_{t}|s_{t-1}) = \frac{1}{n_{s_{t-1}}} \sum_{i=1}^{n} \frac{\pi(a_{t-1}^{(i)}|s_{t-1})}{\widehat{\mu}(a_{t-1}^{(i)}|s_{t-1})} \cdot \mathbf{1}((s_{t-1}^{(i)}, s_{t}^{(i)}, a_{t}^{(i)}) = (s_{t-1}, s_{t}, a_{t}));$$

$$\widehat{T}_{t}^{\pi}(s_{t}) = \frac{1}{n_{s_{t}}} \sum_{i=1}^{n} \frac{\pi(a_{t}^{(i)}|s_{t})}{\widehat{\mu}(a_{t}^{(i)}|s_{t})} r_{t}^{(i)} \cdot \mathbf{1}(s_{t}^{(i)} = s_{t}).$$

$$\widehat{p}_{t}(s_{t}) = \frac{1}{n_{s_{t}}} \sum_{i=1}^{n} \frac{\pi(a_{t}^{(i)}|s_{t})}{\widehat{\mu}(a_{t}^{(i)}|s_{t})} r_{t}^{(i)} \cdot \mathbf{1}(s_{t}^{(i)} = s_{t}).$$

A short detour: How shall we do DM in RL?

- How would you do DM in this case?
 - 1. Estimate MDP

$$M = (S,A,P,P,d.)$$

2. Plug-in the target policy

Usine iteration
$$\sqrt{(d_0)} = \left[\sum_{i=1}^{n} \left(\sum_{i=1}^{n} \sum_{i=1}^{n} \left(\sum_{i=1}^{n} \sum_{i$$

TMIS is equivalent to DM --- a

model-based approach
$$\int_{MS} = \int_{S_{-}}^{S_{-}} \int_{S_{-}}^{S_{-$$

$$J_{2}(s) = Plugin$$

$$J_{2}(s) = \sum_{s} P(s/s) J_{1s}$$
ar exact transition dynamics in M

MSE of the TMIS / model-based OPE estimator

Theorem 3.1 (Yin and W., 2020)

Yin & W. (2020). Asymptotically efficient off-policy evaluation for tabular reinforcement learning. In *AISTATS-2020*

TMIS vs on-policy evaluation

Lemma 3.4. For any policy π and any MDP. $\text{Var}_{\pi} \left[\sum_{t=1}^{H} r_{t}^{(1)} \right] = \sum_{t=1}^{H} \left(\mathbb{E}_{\pi} \left[\text{Var} \left[r_{t}^{(1)} + V_{t+1}^{\pi}(s_{t+1}^{(1)}) \middle| s_{t}^{(1)}, a_{t}^{(1)} \right] \right] + \mathbb{E}_{\pi} \left[\text{Var} \left[\mathbb{E} \left[r_{t}^{(1)} + V_{t+1}^{\pi}(s_{t+1}^{(1)}) \middle| s_{t}^{(1)}, a_{t}^{(1)} \right] \middle| s_{t}^{(1)} \right] \right] \right).$

Combined with the previous observation:

1. TMIS has an error that is linear in H.

2. TMIS is better than MC even when we are doing on-policy evaluation