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Plan for the remaining sessions

• Two lectures next week
• Q&A session for me to help you guys with your HWs and

projects
• Will not be recorded

• Jun 2 lecture will be made into a 4-hour-long mini-
symposium of project presentations. 
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Recap: Offline Reinforcement 
Learning, aka. Batch RL
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Offline Trajectory 
data 𝐷

Collected by 
running 𝝻

Evaluate fixed Target 
Policy 𝝅

Task: design OPE 
methods

• Task 1: Offline Policy Evaluation. (OPE)

• Task 2: Offline Policy Learning. (OPL)

Offline Trajectory 
data 𝐷

Collected by 
running 𝝻

Find near optimal 
Policy $𝝅∗

Task: design OPO 
methods

Via 
Uniform 
OPE



Recap: Offline Policy Learning

• Model-based approach
• ERM to maximize the model-based OPE
• Possible extensions: Optimism and Pessimism

• Model-free approaches
• Variance-Reduced Value Iteration
• Fitted Q-Learning. (We will talk about this today!)
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In the tabular setting, the problem is 
(almost) completely solved.

H-horizon, 
Stationary

H-Horizon, 
Nonstationary

Infinite horizon
γ-discounted

Upper bound 𝐻"

𝑛 𝑑#
𝐻$

𝑛 𝑑#
1 − 𝛾 %$

𝑁 𝑑#

Lower bound 𝐻"

𝑛 𝑑#
𝐻$

𝑛 𝑑#
1 − 𝛾 %$

𝑁 𝑑#
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Offline Policy Learning

Remaining open research threads: 
- More adaptive bounds: More explicit dependence on importance weights.
- Reward free / Task-Agnostic settings
- Function approximation settings



This lecture

• Function approximation in RL in general

• Theoretical analysis of Fitted Q Iteration for offline 
RL in function approximation setting
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Borrowed some ideas  / materials from Nan Jiang.
FQI analysis from AJKS Ch 15.



Recap: Large MDPs 

• State space can be exponentially large

• Planning horizon H is large

• Typical solutions: 
• use features to denote state (or state-action pairs)
• use function approximation  of various quantities 
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Ideally, if we have access to the 
MDP exactly then we could solve
• We could run value iterations

• The issue is that is the updated function still within 
the function class?
• Add a projection
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Bellman error minimization

• Standard VI:   ft  ← T ft-1  

• FQI keeps things tractable by: ft ←∏F  T ft-1 

• We know T is γ-contraction. 

• If ∏F  is non-expansion, we are good — not always true though 
(You should have seen an example of non-expansion ∏F. Which one?) 

• Still an iterated algorithm for fixed point eq. => optimization 
objective changes as current f changes! 

• Alternative: minimize || f - T f || over f ∈ F 

• Is it equivalent to minimizing:                                               ?
r~R(s,a)
s’~P(s,a)

(omitted in the 
rest of slides)
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Chapter 15

Offline Reinforcement Learning

Offline reinforcement learning broadly refers to reinforcement learning problems in which the learner does not get to
interact with the environment. Instead, the learner is simply presented with a batch of experience collected by some
decision-making policy, and the goal is to use this data to learn a near-optimal (or at the very least) better policy. This
setting is quite important for high-stakes decision-making scenarios which might arise in precision medicine or where
safety is a serious concern. On the other hand, one significant challenge is that exploration is not controlled by the
learner. Thus we will either (a) require some assumptions that ensure that the data-collection policy effectively covers
the state-action space, or (b) not be able to find a global near-optimal policy.

The fitted Q-iteration sample complexity analysis which this chapter focusses on, is originally due to [Munos, 2003,
Munos and Szepesvári, 2008, Antos et al., 2008].

15.1 Setting

We consider infinite horizon discounted MDP M = {S,A, �, P, r, ⇢} where ⇢ is the initial state distribution. We
assume reward is bounded, i.e., sup

s,a
r(s, a) 2 [0, 1]. For any policy ⇡ : S 7! A, we denote V ⇡ and Q⇡ as the value

and Q function of ⇡, and we denote d⇡ 2 �(S ⇥ A) as the state-action visitation of ⇡. For notation simplicity, we
denote Vmax := 1/(1� �).

Given any f : S ⇥A 7! R, we denote the Bellman operator T f : S ⇥A 7! R as follows. For all s, a 2 S ⇥A,

T f(s, a) := r(s, a) + Es0⇠P (·|s,a) max
a02A

f(s0, a0).

In batch RL, rather than interact with the environment to collect data, we will be presented with n tuples (s, a, r, s0)
where (s, a) ⇠ µ, r = r(s, a) and s0 ⇠ P (· | s, a). Here µ is an approximation of the data collection policy, and
it is only an approximation because we think of the tuples as iid. This is primarily to simplify the analysis, and it
is possible to obtain results when we replace the iid dataset with one actually collected by a policy, which involves
dealing with temporal correlations. See Section 15.4 for further discussion.

Given the dataset D := {(si, ai, ri, s0i)}ni=1 our goal is to output a near optimal policy for the MDP, that is we would
like our algorithm to produce a policy ⇡̂ such that, with probability at least 1 � �, V (⇡̂) � V ? � ✏, for some (✏, �)
pair. As usual, the number of samples n will depend on the accuracy parameters (✏, �) and we would like n to scale
favorably with these.

Denote a function class F = {f : S ⇥A 7! [0, Vmax]}. We assume F is discrete and also contains Q?.
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Fitted Q-Iteration

• Stochastic semigradient updates

9
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ft = argmin
f2F

X

(s,a,r,s0)2D

✓
f(s, a)�

✓
r + �max

a02A
ft�1(s

0, a0)
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Fitted Q-Iteration (FQI):  
[Ernst et al’05]; see also [Gordon’95]

The argmin step plays two roles: 
1. Denoise the emp update r + γVf (s’) to (T f)(s, a) (w/ inf data) 

• This happens even in tabular setting
2. T f  may not be manageable => find the closest approximation in F 

(i.e., projection) 

• Denote ∏F  as the projection. Dependence on weights over state-
action pairs omitted—determined by data distribution 

• With infinite data, FQI becomes: ft ←∏F  T ft-1
7

Asynchronous update + stochastic approximation? 
• Assume parameterized & differentiable function:  
• Online regression: randomly pick a data point and do a stochastic 

gradient update:  
 
 
 
 

• If fθ is the tabular function, it’s (tabular) Q-learning 
• If fθ is a neural net, it’s (almost) DQN (Mnih et al.’15) 

• Using a target network is even more similar to FQI

F = {f✓ : ✓ 2 ⇥}
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Fitted Q-Iteration (FQI):  
[Ernst et al’05]; see also [Gordon’95]

Same as Q-learning in tabular / linear function approximation case.

Very similar to DQN if we use a neural network function approximation



Questions about convergence? 

• If realizable,  then we know that Q* is a fixed point.

• But convergence guarantee is not guaranteed in 
general. 
• Even if it is a linear function approximation.
• Even if it is realizable.
• Even it is we know the MDP

10
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2.1 Counter-example for least-square regression [Tsitsiklis and van Roy, 1996]

An MDP with two states x1, x2, 1-d features for the two states: fx1 = 1, fx2 = 2. Linear Function approximation
with Ṽ✓(x) = ✓fx.

✓k := argmin
✓

1

2
(✓ � target1)

2 + (2✓ � target2)
2

= argmin
✓

1

2
(✓ � �✓k�1fx2)

2 + (2✓ � �✓k�1fx2)
2

= argmin
✓

1

2
(✓ � �2✓k�1)2 + (2✓ � �2✓k�1)2

(✓ � �2✓k�1) + 2(2✓ � �2✓k�1) = 0 ) 5✓ = 6�✓k�1

✓k =
6

5
�✓k�1

This diverges if � � 5/6.

2.2 Convergence of non-expansive approximations

Operator view of Fitted value-iteration. A more general way to interpret fitted value iteration is that you have an

operator MA that takes a value vector vi and projects it into the function space formed by functions of form Ṽ✓.

1. Start with an arbitrary initialization V 0, Ṽ✓0 := MA(V 0).

2. Repeat for k = 1, 2, 3, . . .:

• Ṽ✓i = MA � LṼ✓i�1 .

Now, to match the description earlier, consider operator MA defined as follows: Fit a Ṽ✓ to LṼ✓i�1 by comparing
its values on a subset S0 of states, using a regression technique. And, then return this Ṽ✓ as new function Ṽ✓i in
the output space of MA. Thus, MA is e↵ectively an approximation operator.

Equivalently,

1. Start with an arbitrary initialization v0.

2. Repeat for k = 1, 2, 3, . . .:

• vi = (L �MA)vi�1.

(In an e�cient implementation, ui�1 = MAvi�1 probably has a more compact representation, so the first view may
be better for implementation)

The above view allows us to view fitted value iteration as just value iteration with a di↵erent operator: vi =
Lvi�1 is replaced by Ṽ i = (MA � L)Ṽ i�1. Therefore, as long as the new operator (MA � L) is also �-contraction,

3

credit: course notes  
from Shipra Agrawal



Direct Bellman Residual 
Minimization

• We do not have access to the transition kernel
• So what we can minimize is the following

12
11

Bellman error minimization

• Standard VI:   ft  ← T ft-1  

• FQI keeps things tractable by: ft ←∏F  T ft-1 

• We know T is γ-contraction. 

• If ∏F  is non-expansion, we are good — not always true though 
(You should have seen an example of non-expansion ∏F. Which one?) 

• Still an iterated algorithm for fixed point eq. => optimization 
objective changes as current f changes! 

• Alternative: minimize || f - T f || over f ∈ F 

• Is it equivalent to minimizing:                                               ?
r~R(s,a)
s’~P(s,a)

(omitted in the 
rest of slides)

<latexit sha1_base64="8/3x40epC7yQtV1h2KoCpxSmSjk="></latexit>

E(s,a)⇠µ

⇣
f(s, a)� (r + �max

a0
f(s0, a0))

⌘2
�
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Are they equivalent, as the dataset goes to infinity?



Double sampling issue

• Workaround #1: If you can get two samples from 
the same s,a then you could do stochastic 
approximation for both.

13
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Bellman error minimization

This part is what we want: 
|| f - T f ||, with a weighted 
2-norm defined w/ ν

This part is annoying! 
• Prefer “flat” f 
• Q* is not necessarily flat! 
• 0 for deterministic transitions. Issue is 

only serious when env highly stochastic 

Workaround #1 
• For (s, a)~μ, if we can obtain 2 i.i.d. copies of (r, s’) (copy A & B): 

 

• Only doable in simulators w/ resetting functionality…

✓
f(s, a)�

✓
rA + �max

a02A
f(s0A, a

0)

◆◆✓
f(s, a)�

✓
rB + �max

a02A
f(s0B , a

0)

◆◆

<latexit sha1_base64="XzckcGgycMqWCg1NTK+abbrSymU="></latexit><latexit sha1_base64="XzckcGgycMqWCg1NTK+abbrSymU="></latexit><latexit sha1_base64="XzckcGgycMqWCg1NTK+abbrSymU="></latexit><latexit sha1_base64="XzckcGgycMqWCg1NTK+abbrSymU="></latexit>

Unbiased estimate 
“double sampling”

<latexit sha1_base64="8/3x40epC7yQtV1h2KoCpxSmSjk="></latexit>

E(s,a)⇠µ

⇣
f(s, a)� (r + �max

a0
f(s0, a0))

⌘2
�

<latexit sha1_base64="duGluEqAPuShnFFLwJcY7Hypaww="></latexit>

= E(s,a)⇠µ

h
(f(s, a)� (T f)(s, a))2

i
+ E(s,a)⇠µ

⇣
(T f)(s, a)� (r + �max

a0
f(s0, a0))

⌘2
�
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Workaround #2: Solve a saddle 
point problem instead
• Idea: let us estimate the second term and subtract 

it away.

• If function class G is sufficiently expressive, then it 
can make the second term 0 for all f.

14
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Bellman error minimization

• Fix any f , the first squared error is constant; second square is a 
regression problem w/ Bayes optimal being T f 

• So, if G is rich enough to contain T f  for all f, this works! 
• and w/ a consistent optimization objective, unlike FQI 

• If G is not rich enough, may under-estimate the Bellman error of 
some f (subtracting too much) 

• FQI: Use G=F; has poly sample complexity guarantee under this 
assumption

<latexit sha1_base64="+DHJzoi6HBDCAaWbt76lapOLTpw="></latexit>

argmin
f2F

max
g2G

 
E(s,a)⇠µ

"✓
f(s, a)�

✓
r + �max

a02A
f(s0, a0)

◆◆2

�
✓
g(s, a)�

✓
r + �max

a02A
f(s0, a0)

◆◆2
#!

(Antos et al. 08) 



Quick checkpoint

• Idea: Approximate Q* function
• Minimize the best approximation error by
• Value iterations?
• Direct Bellman Residual Minimization?

• Still an active area of research in both theory and 
practice

• Standard techniques seem to work (especially when 
you have a simulator and can restart..)

15



Function approximations of other 
quantities
• Approximating the occupancy measure of logging 

policy

• Approximation the occupancy measure of target 
policy

• Approximation of the importance weights 

16



Remaining part of the lecture

• A theoretical analysis of Fitted Q-Iterations

• Under a number of additional conditions to make it 
tractable

17



Fitted Q Iterations: Problem Setup

• Infinite Horizon Discounted MDP

• Goal: find nearly optimal policy

18

Chapter 15

Offline Reinforcement Learning

Offline reinforcement learning broadly refers to reinforcement learning problems in which the learner does not get to
interact with the environment. Instead, the learner is simply presented with a batch of experience collected by some
decision-making policy, and the goal is to use this data to learn a near-optimal (or at the very least) better policy. This
setting is quite important for high-stakes decision-making scenarios which might arise in precision medicine or where
safety is a serious concern. On the other hand, one significant challenge is that exploration is not controlled by the
learner. Thus we will either (a) require some assumptions that ensure that the data-collection policy effectively covers
the state-action space, or (b) not be able to find a global near-optimal policy.

The fitted Q-iteration sample complexity analysis which this chapter focusses on, is originally due to [Munos, 2003,
Munos and Szepesvári, 2008, Antos et al., 2008].

15.1 Setting

We consider infinite horizon discounted MDP M = {S,A, �, P, r, ⇢} where ⇢ is the initial state distribution. We
assume reward is bounded, i.e., sup

s,a
r(s, a) 2 [0, 1]. For any policy ⇡ : S 7! A, we denote V ⇡ and Q⇡ as the value

and Q function of ⇡, and we denote d⇡ 2 �(S ⇥ A) as the state-action visitation of ⇡. For notation simplicity, we
denote Vmax := 1/(1� �).

Given any f : S ⇥A 7! R, we denote the Bellman operator T f : S ⇥A 7! R as follows. For all s, a 2 S ⇥A,

T f(s, a) := r(s, a) + Es0⇠P (·|s,a) max
a02A

f(s0, a0).

In batch RL, rather than interact with the environment to collect data, we will be presented with n tuples (s, a, r, s0)
where (s, a) ⇠ µ, r = r(s, a) and s0 ⇠ P (· | s, a). Here µ is an approximation of the data collection policy, and
it is only an approximation because we think of the tuples as iid. This is primarily to simplify the analysis, and it
is possible to obtain results when we replace the iid dataset with one actually collected by a policy, which involves
dealing with temporal correlations. See Section 15.4 for further discussion.

Given the dataset D := {(si, ai, ri, s0i)}ni=1 our goal is to output a near optimal policy for the MDP, that is we would
like our algorithm to produce a policy ⇡̂ such that, with probability at least 1 � �, V (⇡̂) � V ? � ✏, for some (✏, �)
pair. As usual, the number of samples n will depend on the accuracy parameters (✏, �) and we would like n to scale
favorably with these.

Denote a function class F = {f : S ⇥A 7! [0, Vmax]}. We assume F is discrete and also contains Q?.
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Munos and Szepesvári, 2008, Antos et al., 2008].

15.1 Setting

We consider infinite horizon discounted MDP M = {S,A, �, P, r, ⇢} where ⇢ is the initial state distribution. We
assume reward is bounded, i.e., sup

s,a
r(s, a) 2 [0, 1]. For any policy ⇡ : S 7! A, we denote V ⇡ and Q⇡ as the value

and Q function of ⇡, and we denote d⇡ 2 �(S ⇥ A) as the state-action visitation of ⇡. For notation simplicity, we
denote Vmax := 1/(1� �).

Given any f : S ⇥A 7! R, we denote the Bellman operator T f : S ⇥A 7! R as follows. For all s, a 2 S ⇥A,

T f(s, a) := r(s, a) + Es0⇠P (·|s,a) max
a02A

f(s0, a0).

In batch RL, rather than interact with the environment to collect data, we will be presented with n tuples (s, a, r, s0)
where (s, a) ⇠ µ, r = r(s, a) and s0 ⇠ P (· | s, a). Here µ is an approximation of the data collection policy, and
it is only an approximation because we think of the tuples as iid. This is primarily to simplify the analysis, and it
is possible to obtain results when we replace the iid dataset with one actually collected by a policy, which involves
dealing with temporal correlations. See Section 15.4 for further discussion.

Given the dataset D := {(si, ai, ri, s0i)}ni=1 our goal is to output a near optimal policy for the MDP, that is we would
like our algorithm to produce a policy ⇡̂ such that, with probability at least 1 � �, V (⇡̂) � V ? � ✏, for some (✏, �)
pair. As usual, the number of samples n will depend on the accuracy parameters (✏, �) and we would like n to scale
favorably with these.

Denote a function class F = {f : S ⇥A 7! [0, Vmax]}. We assume F is discrete and also contains Q?.

147

Chapter 15

Offline Reinforcement Learning

Offline reinforcement learning broadly refers to reinforcement learning problems in which the learner does not get to
interact with the environment. Instead, the learner is simply presented with a batch of experience collected by some
decision-making policy, and the goal is to use this data to learn a near-optimal (or at the very least) better policy. This
setting is quite important for high-stakes decision-making scenarios which might arise in precision medicine or where
safety is a serious concern. On the other hand, one significant challenge is that exploration is not controlled by the
learner. Thus we will either (a) require some assumptions that ensure that the data-collection policy effectively covers
the state-action space, or (b) not be able to find a global near-optimal policy.

The fitted Q-iteration sample complexity analysis which this chapter focusses on, is originally due to [Munos, 2003,
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Assumptions

1. Realizability

2. Uniform concentrability

3. Bellman completeness

19

Assumption 15.1 (Realizability). We assume F is rich enough such that Q? 2 F .

We require the sample complexity of the learning algorithm scales polynomially with respect to ln (|F|).

Since in offline RL, the learner cannot interact with the environment at all, we require the data distribution ⌫ is
exploratory enough.

Assumption 15.2 (Concentrability). There exists a constant C such that for any policy ⇡ (including non-stationary
policies), we have:

8⇡, h, x, a :
d⇡(s, a)

µ(s, a)
 C.

Note that concentrability does not require that the state space is finite, but it does place some constraints on the system
dynamics. Note that the above assumption requires that µ to cover all possible policies’s state-action distribution, even
including non-stationary policies. Recall the concentrability assumptions in Approximate Policy Iteration (Chapter 3)
and Conservative Policy Iteration (Chapter 12). The concentrability assumption here is the strongest as it requires µ
to cover even non-stationary policies’ state-action distributions.

In additional to the above two assumptions, we need an assumption on the representational condition of class F .

Assumption 15.3 (Bellman Completion). We assume that for any f 2 F , T f 2 F .

Note that this implies that Q? 2 F (as Q? is the convergence point of Value Iteration), which is the weaker assumption
we would hope is sufficient. However, as we discuss in Section 15.4, the Bellman completion assumption is necessary
in order to learn in polynomial sample complexity.

15.2 Algorithm: Fitted Q Iteration (FQI)

Fitted Q Iteration (FQI) simply performs the following iteration. Start with some f0 2 F , FQI iterates:

FQI: ft 2 argmin
f2F

nX

i=1

✓
f(s0

i
, ai)� ri � �max

a02A

ft�1(si, ai)

◆2

. (0.1)

After k many iterations, we output a policy ⇡k(s) := argmax
a
fk(s, a), 8s.

Note that the Bayes optimal solution is T ft�1. Due to the Bellman completion assumption, the Bayes optimal solution
T ft�1 2 F . Thus, we should expect that ft is close to the Bayes optimal T ft�1 under the distribution µ, i.e., with a
uniform convergence argument, for the generalization bound, we should expect that:

Es,a⇠µ (ft(s, a)� T ft�1(s, a))
2 ⇡

p
1/n.

Indeed, as we demonstrate in Lemma 15.5, for square loss, under the realizability assumption, i.e., the Bayes optimal
belongs to F (T ft�1 2 F), we can have a sharper generalization error scaling in the order of 1/n. Thus in high level,
ft ⇡ T ft�1 as our data distribution µ is exploratory, and we know that based on value iteration, T fk�1 is a better
approximation of Q? than fk, i.e., kT ft�1�Q?k1  �kft�1�Q?k1, we can expect FQI to converge to the optimal
solution when n ! 1, t ! 1. We formalize the above intuition below.
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Recap:  the FQI algorithm

• Initialize at any function f0 in the function class

• Natural policy of the approximate Q* function
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FQI “works” under these conditions

21

15.3 Analysis

With ft from FQI (Eq. 0.1), denote ⇡t(s) := argmax
a
ft(s, a) for all s 2 S .

We first state the performance guarantee of FQI.

Theorem 15.4 (FQI guarantee). The kth iterate of Fitted Q Iteration guarantees that with probability 1� �

V ? � V ⇡k  O
 

1

(1� �)3

r
C log(|F|/�)

n

!
+

2�k

(1� �)2
.

The first term is the estimation error term, which goes to 0 as we get more data. The second term is “optimization
error” term that goes to 0 as we do more iterations. This term can always be made arbitrarily small at the expense of
more computation.

We now prove the theorem. Given any distribution ⌫ 2 S ⇥ A, and any function f : S ⇥ A 7! R, we write
kfk22,⌫ := Es,a⇠⌫f2(s, a), and kfk1,⌫ := Es,a⇠⌫ |f(s, a)|. For any ⌫ 2 �(S) and a policy ⇡, we denote ⌫ � ⇡ as the
joint state-action distribution, i.e., s ⇠ ⌫, a ⇠ ⇡(·|s).

Proof: We start from the Performance Difference Lemma:

(1� �) (V ? � V ⇡k) = Es⇠d
⇡
k [�A?(s,⇡k(s))]

= Es⇠d
⇡
k [Q?(s,⇡?(s))�Q?(s,⇡k(s))]

 Es⇠d
⇡
k [Q?(s,⇡?(s))� fk(s,⇡
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k�⇡k

 kQ? � fkk2,d⇡
k�⇡? + kQ? � fkk2,d⇡

k�⇡k
,

where the first inequality comes from the fact that ⇡k is a greedy policy of fk, i.e., fk(s,⇡k(s)) � fk(s, a) for any
other a including ⇡?(s). Now we bound each term on the RHS of the above inequality. We do this by consider a
state-action distribution ⌫. We have:

kQ? � fkk2,⌫  kQ? � T fk�1k2,⌫ + kfk � T fk�1k2,⌫

 �

s
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r
Es,a⇠⌫,s0⇠P (·|s,a) max
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(Q?(s0, a)� fk�1(s0, a))
2 +

p
Ckfk � T fk�1k2,µ,

where in the last inequality, we use the fact that (E[x])2  E[x2], (maxx f(x)�maxx g(x))2  maxx(f(x)�g(x))2

for any two functions f and g, and assumption 15.2.

Denote ⌫0(s0, a0) =
P

s,a
⌫(s, a)P (s0|s, a)1{a0 = argmax

a
(Q?(s0, a)� fk�1(s0, a))

2}, the above inequality be-
comes:

kQ? � fkk2,⌫  �kQ? � fk�1k2,⌫0 +
p
Ckfk � T fk�1k2,µ.

We can recursively repeat the same process for kQ? � fk�1k2,⌫0 till step k = 0:

kQ? � fkk2,⌫ 
p
C

k�1X

t=0

�tkfk�t � T fk�t�1k2,µ + �kkQ? � f0k2,e⌫ ,

where e⌫ is some valid state-action distribution.
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Theorem 15.4 (AJKS): Assume Assumptions 1--3, 
with probability at least 1- δ



Sketch of the proof 

• Use contraction of properties of Bellman updates

• Use uniform convergence 
• the approximate Bellman update using the offline

dataset is similar to the actual exact Bellman update 
• simultaneously for all functions within the function class
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Decomposing the error

• By Performance Difference Lemma
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Further decomposing the error
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Recursive application
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The first term is the estimation error term, which goes to 0 as we get more data. The second term is “optimization
error” term that goes to 0 as we do more iterations. This term can always be made arbitrarily small at the expense of
more computation.

We now prove the theorem. Given any distribution ⌫ 2 S ⇥ A, and any function f : S ⇥ A 7! R, we write
kfk22,⌫ := Es,a⇠⌫f2(s, a), and kfk1,⌫ := Es,a⇠⌫ |f(s, a)|. For any ⌫ 2 �(S) and a policy ⇡, we denote ⌫ � ⇡ as the
joint state-action distribution, i.e., s ⇠ ⌫, a ⇠ ⇡(·|s).

Proof: We start from the Performance Difference Lemma:
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where the first inequality comes from the fact that ⇡k is a greedy policy of fk, i.e., fk(s,⇡k(s)) � fk(s, a) for any
other a including ⇡?(s). Now we bound each term on the RHS of the above inequality. We do this by consider a
state-action distribution ⌫. We have:
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where in the last inequality, we use the fact that (E[x])2  E[x2], (maxx f(x)�maxx g(x))2  maxx(f(x)�g(x))2

for any two functions f and g, and assumption 15.2.
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2}, the above inequality be-
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We can recursively repeat the same process for kQ? � fk�1k2,⌫0 till step k = 0:

kQ? � fkk2,⌫ 
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�tkfk�t � T fk�t�1k2,µ + �kkQ? � f0k2,e⌫ ,

where e⌫ is some valid state-action distribution.
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Note that for the first term on the RHS of the above inequality, we can bound it using Lemma 15.5. With probability
at least 1� �, we have:
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For the second term, we have:
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for all ⌫, including ⌫ = d⇡k � ⇡?, and ⌫ = d⇡k � ⇡k. This concludes the proof.

The following lemma studies the generalization error for least square problems in FQI. Specifically, it leverages the fact
that for square loss, under the realizability assumption (Bayes optimal belongs to the function class), the generalization
error scales in the order of O(1/n).
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Note that the above lemma indicates that with probability at least 1� �, for any t = 1, 2, . . . , we must have:
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Proof: Let us consider a fixed function f 0 2 F first, and denote f̂ = argmin
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Note that f̂ is fully determined by f . At the end, we will apply a union bound over all f 0 2 F .
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Note that for the first term on the RHS of the above inequality, we can bound it using Lemma 15.5. With probability
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Note that the above result holds for a fixed f 0 2 F . Apply union bound over all f 0 2 F , we can conclude the proof.

Note that the above lemma and the proof show that more generally, we can obtain a O(1/n) generalization error (as
opposed to the common O(1/

p
n)) for square loss under the realizability assumption.

15.4 Bibliographic Remarks and Further Readings

The authors graciously acknowledge Akshay Krishnamurthy for sharing the lecture notes from which this chapter is
based on.

The fitted Q-iteration sample complexity analysis is originally due to [Munos, 2003, Munos and Szepesvári, 2008,
Antos et al., 2008], under the concentrability based assumptions. More generally, the offline RL literature [Munos,
2003, Szepesvári and Munos, 2005, Antos et al., 2008, Munos and Szepesvári, 2008, Tosatto et al., 2017, Chen and
Jiang, 2019, Xie and Jiang, 2020] largely analyzes the sample complexity of approximate dynamic programming-based
approaches under either of the following two categories of assumptions: (i) density based assumptions on the state-
action space, where it is assumed there is low distribution shift with regards to the offline data collection distribution
(e.g. concentrability based) (ii) representation conditions that assumes some given linear function class satisfies a
completion conditions (e.g. Assumption 15.3 considered here), along with with some coverage assumption over the
feature space (rather than coverage over the state-action space).
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2003, Szepesvári and Munos, 2005, Antos et al., 2008, Munos and Szepesvári, 2008, Tosatto et al., 2017, Chen and
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Thank you very much!
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