CS292F StatRL Lecture7 Exploration in Bandits

Instructor: Yu-Xiang Wang
Spring 2021
UC Santa Barbara

Notes / reminders

- Project proposal due today
- Please submit on Gradescope.
- Start HW1 quickly.
- It will be more time-consuming than HWO.
- It will help you with the rest of the class.
- HW2 is to be released this week (hopefully by tomorrow)

Recap: Lecture 6

- Policy gradient methods
- Policy gradient theorem
- Unbiased Monte Carlo estimate of the gradient (REINFORCE)
- Bootstrapping in policy gradient estimates
- Function approximation and Actor-Critic
- Bandits problem setup
- Regret definition
- The need for exploration

Recap: Multi-arm bandits: Problem setup

- No state. k-actions

$$
a \in \mathcal{A}=\{1,2, \ldots, k\}
$$

- You decide which arm to pull in every iteration

$$
A_{1}, A_{2}, \ldots, A_{T}
$$

- You collect a cumulative payoff of

$$
\sum_{t=1}^{T} R_{t}
$$

- For MAB, the regret is defined as follow

$$
T \max _{a \in[k]} \mathbb{E}\left[R_{t} \mid a\right]-\sum_{t=1}^{T} \mathbb{E}_{a \sim \pi}\left[\mathbb{E}\left[R_{t} \mid a\right]\right]
$$

"No regret" means sublinear scaling

 in T. "Linear regret" is very bad.- "No regret online learning"
- A regret (upper) bound needs to apply to all problem instances
- It suffices to identify one example to get a regret lower bound for a given algorithm.
- E.g., "Greedy strategy" has linear regret in MAB.
- Minimax lower bounds are information-theoretical
- They apply to all algorithms.

Recap: "Exploration first" strategy

- Let's spend the first N step exploring.
- Play each action for N / k times.

$$
Q_{t}(a)=\frac{\sum_{i=1}^{t-1} R_{i} \cdot \mathbb{1}_{A_{i}=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_{i}=a}}
$$

- For $t=N+1, N+2, \ldots, T$:

$$
A_{t} \doteq \underset{a}{\arg \max } Q_{t}(a)
$$

This lecture

- Regret analysis for multi-armed bandits
- Exploration first
- epsilon-greedy
- Upper Confidence Bound algorithm (AJKS 5.1)
- Linear bandits. (AJKS 5.2-5.3)
- LinUCB algorithm
- Regret analysis

Recap: Concentration inequalities ---

 finite-sample bounds of LLN and CLT- Hoeffding's inequality: Assume X_{1}, \ldots, X_{n} are independent and their support bounded:

$$
\begin{gathered}
S_{n}=X_{1}+\cdots+X_{n} \\
\mathrm{P}\left(S_{n}-\mathrm{E}\left[S_{n}\right] \geq t\right) \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right),
\end{gathered}
$$

- Easy version, if $0<\mathrm{X}_{\mathrm{i}}<\mathrm{B}$, with probability 1- δ :

$$
|\bar{X}-\mathbb{E}[\bar{X}]| \leq \sqrt{\frac{B^{2}}{2 n} \log (2 / \delta)}
$$

Regret analysis of Exploration First

Regret analysis of Exploration First

ε-Greedy strategy: one way to balance exploration and exploitation

- You choose with probability 1- ε

$$
A_{t} \doteq \underset{a}{\arg \max } Q_{t}(a)
$$

- With probability ε, choose an action uniformly at random!
- Including the argmax.
- Carefully choose ε parameter.

A sketch of the analysis for ε-greedy

- In expectation, each arm is chosen for at least εt times.
- Condition on the number of times, apply Hoeffding's inequality / union bound for all t and a
- Regret bound is

$$
\epsilon T+\sum_{t=1}^{T} C \sqrt{\frac{k}{\epsilon t}}
$$

Optimism-in-the-face of uncertainty: Upper Confidence Bound algorithm

Martingale

- We say that a sequence of r.v. $X_{1}, \ldots, X_{n}, \ldots$ is a Martingale if for any n

$$
\begin{aligned}
& \mathbf{E}\left(\left|X_{n}\right|\right)<\infty \\
& \mathbf{E}\left(X_{n+1} \mid X_{1}, \ldots, X_{n}\right)=X_{n} .
\end{aligned}
$$

- Example:
- Random-walk: Total number of heads minus tails in n coin tosses

Azuma-Hoeffding's inequality

- Azuma-Hoeffding's inequality: Assume X_{1}, \ldots, X_{n} are Martingale differences

$$
\begin{gathered}
S_{n}=X_{1}+\ldots+X_{n} \\
\mathbb{P}\left[S_{n} \geq \epsilon\right] \leq e^{-\frac{2 \epsilon^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}}
\end{gathered}
$$

- Apply Azuma-Hoeffding's inequality to our problem

Regret analysis of UCB

Regret analysis of UCB

Summary of Exploration in MultiArmed Bandits

- Explore-First
- eps-greedy
- UCB

Notes on MAB

- We considered "stochastic setting"
- Adversarial setting ("a rigged casino")
- Reward sequence is arbitrary / no expectation in the regret.
- Exponential weight algorithm for Explore-Exploit. (Exp3) achieves the same regret.
- Read Auer et al. (2001) The Nonstochastic Multiarmed Bandit Problem

Linear bandits: MAB with an infinite number of actions

- Each action is determined by a "feature vector"

Features of action 1:
[Noodles, Tom Yum Soup, Poor service]

Features of action 2:
[Burger, Fries, Onion Ring, Fried Chicken]

Linear bandits: problem setup

- Action space is a compact set
- Reward is linear + noise.
- Agent chooses a sequence of actions
- The regret is defined similarly

The LinUCB algorithm: Optimism in the Face of Uncertainty.

- Consider the ridge regression at each time t.
- Construct high probability confidence set of the parameter vector
- Choose actions that maximize the UCB.

Regret bound of LinUCB

Sublinear regret: $R_{T} \leq O^{\star}(d \sqrt{T})$ poly dependence on d, no dependence on the cardinality $|D|$.

Theorem 5.3 (AJKS)

Suppose: bounded noise $\left|\eta_{t}\right| \leq \sigma$, that $\left\|\mu^{\star}\right\| \leq W$, and that $\|x\| \leq B$ for all $x \in D$. Set $\lambda=\sigma^{2} / W^{2}$ and

$$
\beta_{t}:=\sigma^{2}\left(2+4 d \log \left(1+\frac{T B^{2} W^{2}}{d}\right)+8 \log (4 / \delta)\right) .
$$

With probability greater than $1-\delta$, that for all $t \geq 0$,

$$
R_{T} \leq c \sigma \sqrt{T}\left(d \log \left(1+\frac{T B^{2} W^{2}}{d \sigma^{2}}\right)+\log (4 / \delta)\right)
$$

where c is an absolute constant.
(Dani, Hayes \& Kakde, 2009)

Two components of the regret analysis

- Uniform (over all t) confidence bound

Proposition 5.5 (AJKS)

(Confidence) Let $\delta>0$. We have that

$$
\operatorname{Pr}\left(\forall t, \mu^{\star} \in \mathrm{BALL}_{t}\right) \geq 1-\delta .
$$

- Sum of Squares Regret bound

Proposition 5.6 (AJKS)

(Sum of Squares Regret Bound) Define:

$$
\text { regret }_{t}=\mu^{\star} \cdot x^{*}-\mu^{\star} \cdot x_{t}
$$

Suppose $\|x\| \leq B$ for $x \in D$. Suppose β_{t} is increasing and larger than 1. Suppose $\mu^{\star} \in$ BALL $_{t}$ for all t, then

$$
\sum_{t=0}^{T-1} \operatorname{regret}_{t}^{2} \leq 4 \beta_{T} d \log \left(1+\frac{T B^{2}}{d \lambda}\right)
$$

Proof of the main regret bound

- By Cauchy-Schwarz

$$
\sum_{t=0}^{T-1} \operatorname{regret}_{t} \leq \sqrt{T \sum_{t=0}^{T-1} \operatorname{regret}_{t}^{2}} \leq \sqrt{4 T \beta_{T} d \log \left(1+\frac{T B^{2}}{d \lambda}\right)} .
$$

Plan of the proof

1. First prove the Proposition that bounds the sum of square regret

- By bounding instantaneous regret
- And then bounding the sum of squares with "Information Gain"

2. Prove the uniform confidence bound

- Basically show that the choice of β_{t} "works".

"Width" of Confidence Ball

Lemma

Let $x \in D$. If $\mu \in \mathrm{BALL}_{t}$ and $x \in D$. Then

$$
\left|\left(\mu-\widehat{\mu}_{t}\right)^{\top} x\right| \leq \sqrt{\beta_{t} x^{\top} \Sigma_{t}^{-1} x}
$$

Proof: By Cauchy-Schwarz, we have:

$$
\begin{aligned}
& \left|\left(\mu-\widehat{\mu}_{t}\right)^{\top} x\right|=\left|\left(\mu-\widehat{\mu}_{t}\right)^{\top} \Sigma_{t}^{1 / 2} \Sigma_{t}^{-1 / 2} x\right|=\left|\left(\Sigma_{t}^{1 / 2}\left(\mu-\widehat{\mu}_{t}\right)\right)^{\top} \Sigma_{t}^{-1 / 2} x\right| \\
& \leq\left\|\Sigma_{t}^{1 / 2}\left(\mu-\widehat{\mu}_{t}\right)\right\|\left\|\Sigma_{t}^{-1 / 2} x\right\|=\left\|\Sigma_{t}^{1 / 2}\left(\mu-\widehat{\mu}_{t}\right)\right\| \sqrt{x^{\top} \Sigma_{t}^{-1} x} \leq \sqrt{\beta_{t} x^{\top} \Sigma_{t}^{-1} x}
\end{aligned}
$$

where the last inequality holds since $\mu \in \mathrm{BALL}_{t}$.

Instantaneous Regret is bounded by the width of the ellipsoid.

Define

$$
w_{t}:=\sqrt{x_{t}^{\top} \Sigma_{t}^{-1} x_{t}}
$$

which is the "normalized width" at time t in the direction of our decision.

Lemma

Fix $t \leq T$. If $\mu^{\star} \in \mathrm{BALL}_{t}$, then

$$
\text { regret }_{t} \leq 2 \min \left(\sqrt{\beta_{t}} w_{t}, 1\right) \leq 2 \sqrt{\beta_{T}} \min \left(w_{t}, 1\right)
$$

Proof: Let $\widetilde{\mu} \in \mathrm{BALL}_{t}$ denote the vector which minimizes the dot product $\widetilde{\mu}^{\top} x_{t}$. By choice of x_{t}, we have

$$
\widetilde{\mu}^{\top} x_{t}=\max _{\mu \in \mathrm{BALL}_{t}} \max _{x \in D} \mu^{\top} x \geq\left(\mu^{\star}\right)^{\top} x^{*}
$$

where the inequality used the hypothesis $\mu^{\star} \in \operatorname{BALL}_{t}$. Hence,

$$
\begin{aligned}
\text { regret }_{t} & =\left(\mu^{\star}\right)^{\top} x^{*}-\left(\mu^{\star}\right)^{\top} x_{t} \leq\left(\widetilde{\mu}-\mu^{\star}\right)^{\top} x_{t} \\
& =\left(\widetilde{\mu}-\widehat{\mu}_{t}\right)^{\top} x_{t}+\left(\widehat{\mu}_{t}-\mu^{\star}\right)^{\top} x_{t} \leq 2 \sqrt{\beta_{t}} w_{t}
\end{aligned}
$$

"Geometric potential" argument: Converting summation to product

Lemma 5.9 (AJKS)

We have:

$$
\operatorname{det} \Sigma_{T}=\operatorname{det} \Sigma_{0} \prod_{t=0}^{T-1}\left(1+w_{t}^{2}\right)
$$

Proof: By the definition of Σ_{t+1}, we have

$$
\begin{aligned}
& \operatorname{det} \Sigma_{t+1}=\operatorname{det}\left(\Sigma_{t}+x_{t} x_{t}^{\top}\right)=\operatorname{det}\left(\Sigma_{t}^{1 / 2}\left(I+\Sigma_{t}^{-1 / 2} x_{t} x_{t}^{\top} \Sigma_{t}^{-1 / 2}\right) \Sigma_{t}^{1 / 2}\right) \\
& \quad=\operatorname{det}\left(\Sigma_{t}\right) \operatorname{det}\left(I+\Sigma_{t}^{-1 / 2} x_{t}\left(\Sigma_{t}^{-1 / 2} x_{t}\right)^{\top}\right)=\operatorname{det}\left(\Sigma_{t}\right) \operatorname{det}\left(I+v_{t} v_{t}^{\top}\right),
\end{aligned}
$$

where $v_{t}:=\Sigma_{t}^{-1 / 2} x_{t}$. Now observe that $v_{t}^{\top} v_{t}=w_{t}^{2}$ and \ldots

Taking logarithm (get information gain), then bounding it with data-independent terms.

Lemma

For any sequence $x_{0}, \ldots x_{T-1}$ such that, for $t<T,\left\|x_{t}\right\|_{2} \leq B$, we have:

$$
\log \left(\operatorname{det} \Sigma_{T-1} / \operatorname{det} \Sigma_{0}\right)=\log \operatorname{det}\left(I+\frac{1}{\lambda} \sum_{t=0}^{T-1} x_{t} x_{t}^{\top}\right) \leq d \log \left(1+\frac{T B^{2}}{d \lambda}\right)
$$

Proof: Denote the eigenvalues of $\sum_{t=0}^{T-1} x_{t} x_{t}^{\top}$ as $\sigma_{1}, \ldots \sigma_{d}$, and note:

$$
\sum_{i=1}^{d} \sigma_{i}=\operatorname{Trace}\left(\sum_{t=0}^{T-1} x_{t} x_{t}^{\top}\right)=\sum_{t=0}^{T-1}\left\|x_{t}\right\|^{2} \leq T B^{2}
$$

Using the AM-GM inequality,

$$
\begin{aligned}
& \log \operatorname{det}\left(I+\frac{1}{\lambda} \sum_{t=0}^{T-1} x_{t} x_{t}^{\top}\right)=\log \left(\prod_{i=1}^{d}\left(1+\sigma_{i} / \lambda\right)\right) \\
& =d \log \left(\prod_{i=1}^{d}\left(1+\sigma_{i} / \lambda\right)\right)^{1 / d} \leq d \log \left(\frac{1}{d} \sum_{i=1}^{d}\left(1+\sigma_{i} / \lambda\right)\right) \leq d \log \left(1+\frac{T B^{2}}{d \lambda}\right)
\end{aligned}
$$

Bounding the Sum of Square Instantaneous Regret

$$
\sum_{t=0}^{T-1} \operatorname{regret}_{t}^{2} \leq \sum_{t=0}^{T-1} 4 \beta_{t} \min \left(w_{t}^{2}, 1\right) \leq 4 \beta_{T} \sum_{t=0}^{T-1} \min \left(w_{t}^{2}, 1\right)
$$

Plan of the proof

1. First prove the Proposition that bounds the sum of square regret

- By bounding instantaneous regret
- And then bounding the sum of squares with "Information Gain"

2. Prove the uniform confidence bound

- Basically show that the choice of β_{t} "works".

We need to prove that the true parameter is in the version space w.h.p.

- Recall the version space is:

Proof: Since $r_{\tau}=x_{\tau} \cdot \mu^{\star}+\eta_{\tau}$, we have:

$$
\begin{aligned}
& \widehat{\mu}_{t}-\mu^{\star}=\Sigma_{t}^{-1} \sum_{\tau=0}^{t-1} r_{\tau} x_{\tau}-\mu^{\star}=\Sigma_{t}^{-1} \sum_{\tau=0}^{t-1} x_{\tau}\left(x_{\tau} \cdot \mu^{\star}+\eta_{\tau}\right)-\mu^{\star} \\
& =\Sigma_{t}^{-1}\left(\sum_{\tau=0}^{t-1} x_{\tau}\left(x_{\tau}\right)^{\top}\right) \mu^{\star}-\mu^{\star}+\Sigma_{t}^{-1} \sum_{\tau=0}^{t-1} \eta_{\tau} x_{\tau} \\
& =\lambda \Sigma_{t}^{-1} \mu^{\star}+\Sigma_{t}^{-1} \sum_{\tau=0}^{t-1} \eta_{\tau} x_{\tau}
\end{aligned}
$$

By the triangle inequality,

$$
\begin{aligned}
\sqrt{\left(\widehat{\mu}_{t}-\mu^{\star}\right)^{\top} \Sigma_{t}\left(\widehat{\mu}_{t}-\mu^{\star}\right)} & \leq\left\|\lambda \Sigma_{t}^{-1 / 2} \mu^{\star}\right\|+\left\|\Sigma_{t}^{-1 / 2} \sum_{\tau=0}^{t-1} \eta_{\tau} x_{\tau}\right\| \\
\leq \sqrt{\lambda}\left\|\mu^{\star}\right\| & +\quad ? ?
\end{aligned}
$$

How can we bound "??" To be continued...

Self-normalized Martingale concentration bound.

Lemma (Self-Normalized Bound for Vector-Valued Martingales)

(Abassi et. al '11) Suppose $\left\{\varepsilon_{i}\right\}_{i=1}^{\infty}$ are mean zero random variables (can be generalized to martingales), and ε_{i} is bounded by σ. Let $\left\{X_{i}\right\}_{i=1}^{\infty}$ be a stochastic process. Define $\Sigma_{t}=\Sigma_{0}+\sum_{i=1}^{t} X_{i} X_{i}^{\top}$. With probability at least $1-\delta$, we have for all $t \geq 1$:

$$
\left\|\sum_{i=1}^{t} X_{i \varepsilon i}\right\|_{\Sigma_{t}^{-1}}^{2} \leq \sigma^{2} \log \left(\frac{\operatorname{det}\left(\Sigma_{t}\right) \operatorname{det}\left(\Sigma_{0}\right)^{-1}}{\delta^{2}}\right) .
$$

Continue the proof by applying concentration, and the bound for information-gain

$$
\begin{aligned}
& \sqrt{\left(\widehat{\mu}_{t}-\mu^{\star}\right)^{\top} \Sigma_{t}\left(\widehat{\mu}_{t}-\mu^{\star}\right)}=\left\|\left(\Sigma_{t}\right)^{1 / 2}\left(\widehat{\mu}_{t}-\mu^{\star}\right)\right\| \\
& \leq\left\|\lambda \Sigma_{t}^{-1 / 2} \mu^{\star}\right\|+\left\|\Sigma_{t}^{-1 / 2} \sum_{\tau=0}^{t-1} \eta_{\tau} x_{\tau}\right\| \\
& \leq \sqrt{\lambda}\left\|\mu^{\star}\right\|+\sqrt{2 \sigma^{2} \log \left(\operatorname{det}\left(\Sigma_{t}\right) \operatorname{det}\left(\Sigma^{0}\right)^{-1} / \delta_{t}\right)} \\
& \delta_{t}=\left(3 / \pi^{2}\right) / t^{2} \\
& 1-\operatorname{Pr}\left(\forall t, \mu^{\star} \in \operatorname{BALL}_{t}\right)=\operatorname{Pr}\left(\exists t, \mu^{\star} \notin \operatorname{BALL}_{t}\right) \leq \sum_{t=1}^{\infty} \operatorname{Pr}\left(\mu^{\star} \notin \operatorname{BALL}_{t}\right)<\sum_{t=1}^{\infty}\left(1 / t^{2}\right)\left(3 / \pi^{2}\right)=1 / 2 .
\end{aligned}
$$

Final remarks on Linear Bandits

- The regret of LinUCB is optimal up to
- Strong assumption on realizability.
- Agnostic linear bandits?
- Contextual version: a finite list of available actions are given at each t.

