CS292F StatRL Lecture/
Exploration in Bandits

Instructor: Yu-Xiang Wang
Spring 2021
UC Santa Barbara



Notes / reminders

* Project proposal due today
* Please submit on Gradescope.

e Start HW1 quickly.
* It will be more time-consuming than HWO.
* It will help you with the rest of the class.

* HW2 is to be released this week (hopefully by
tomorrow)



Recap: Lecture 6

* Policy gradient methods
* Policy gradient theorem

* Unbiased Monte Carlo estimate of the gradient
(REINFORCE)

* Bootstrapping in policy gradient estimates
* Function approximation and Actor-Critic

* Bandits problem setup
* Regret definition
* The need for exploration



Recap: Multi-arm bandits:
Problem setup

* No state. k-actions ( & A — {1, 2, ooy k}

* You decide which arm to pull in every iteration
Ala A27 e AT

* You collect a cumulative payoff of Z R;

* For MAB, the regret is defined as follow
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“No regret” means sublinear scaling
in T. “Linear regret” is very bad.

* “No regret online learning”

e Aregret (upper) bound needs to apply to all problem
Instances

* |t suffices to identify one example to get a regret lower
bound for a given algorithm.

* E.g., “Greedy strategy” has linear regret in MAB.

e Minimax lower bounds are information-theoretical
* They apply to all algorithms.



Recap: “Exploration first” strategy

* Let’s spend the first N step exploring.
 Play each action for N/ k times.

_ Zf;i R; - ]]‘Ai:a
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* Fort=N+1, N+2, ..., T:

At = arginax Qt (CL),



This lecture

* Regret analysis for multi-armed bandits
* Exploration first
e epsilon-greedy
e Upper Confidence Bound algorithm (AJKS 5.1)

e Linear bandits. (AJKS 5.2 — 5.3)
* LinUCB algorithm
* Regret analysis



Recap: Concentration inequalities ---
finite-sample bounds of LLN and CL

* Hoeffding’s inequality: Assume X4, ..., X, are
independent and their support bounded:

Sn.:Xl —+—+sz

2t
P(S,, — E[.S',,} > t) < exp| —— ol K
Zx‘—l(bi - a.,-)-

* Easy version, if 0<X<B, with probability 1-6:

X —E[X \/— log(2/6)



Regret analysis of Exploration First



Regret analysis of Exploration First



e-Greedy strategy: one way to
balance exploration and exploitation

* You choose with probability 1- €

Ay = argmax Q¢(a),

* With probability €, choose an action uniformly at
random!
* Including the argmax.

e Carefully choose € parameter.



A sketch of the analysis for e-greedy

* In expectation, each arm is chosen for at least €t
times.

e Condition on the number of times, apply
Hoeffding’s inequality / union bound for all t and a

* Regret bound is

o Tk
t=1



Optimism-in-the-face of uncertainty:
Upper Confidence Bound algorithm



Martingale

* We say that a sequence of r.v. X4,...,X,,... is a
Martingale if for any n

E(|X,[) < oo

* Example:

e Random-walk: Total number of heads minus tails in n
coin tosses



Azuma-Hoeffding’s inequality

* Azuma-Hoeffding’s inequality: Assume X4, ..., X,
are Martingale differences

S, =X;1+ ...+ X,

* Apply Azuma-Hoeffding’s inequality to our problem



Regret analysis of UCB



Regret analysis of UCB



Summary of Exploration in Multi-
Armed Bandits

* Explore-First
e eps-greedy

* UCB



Notes on MAB

* We considered “stochastic setting”
* Adversarial setting (“a rigged casino”)

* Reward sequence is arbitrary / no expectation in the
regret.

* Exponential weight algorithm for Explore-Exploit.
(Exp3) achieves the same regret.

* Read Auer et al. (2001) The Nonstochastic Multiarmed
Bandit Problem



Linear bandits: MAB with an
infinite number of actions

* Each action is determined by a “feature vector”

Features of action 1: Features of action 2:
[Noodles, Tom Yum Soup, Poor service] [Burger, Fries, Onion Ring, Fried Chicken]

20



Linear bandits: problem setup

* Action space is a compact set
 Reward is linear + noise.
* Agent chooses a sequence of actions

* The regret is defined similarly



The LinUCB algorithm: Optimism
in the Face of Uncertainty.

* Consider the ridge regression at each time t.

* Construct high probability confidence set of the
parameter vector

 Choose actions that maximize the UCB.



Regret bound of LinUCB

Sublinear regret: Rt < O*(dV/'T)
poly dependence on d , no dependence on the cardinality |D].

Theorem 5.3 (AJKS)

Suppose: bounded noise |n:| < o, that ||p*|| < W, and that || x|| < B
forall x € D. Set A\ = 02/ W? and

2 |N/2
By i=0° (2+4d|og (1 + TBdW ) +8|0g(4/5)).

With probability greater than 1 — ¢, that for all t > 0,

211/2
Rr < coV'T (dlog (1 + TZUZV ) + |og(4/5))

where c is an absolute constant.

(Dani, Hayes & Kakde, 2009)

(From this slide onwards mostly taken from Sham Kakade)
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Two components of the regret analysis

* Uniform (over all t) confidence bound

Proposition 5.5 (AJKS)

(Confidence) Let § > 0. We have that

Pr(Vt, u* € BALL;) > 1 — 6.

* Sum of Squares Regret bound

Proposition 5.6 (AJKS)

(Sum of Squares Regret Bound) Define:
regret, = p* - X* — p* - X

Suppose ||x|| < B for x € D. Suppose S; is increasing and larger than
1. Suppose u* € BALL; for all t, then

T

TB?
Z regret? < 4p7dlog (1 + W)
t=0
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Proof of the main regret bound

* By Cauchy-Schwarz

T—1 T—1 ——
Z regret; < \ T Z regret? < 4/4TB7rdlog <1 + dA)
t=0

t=0




Plan of the proof

1. First prove the Proposition that bounds the sum
of square regret

* By bounding instantaneous regret

* And then bounding the sum of squares with
“Information Gain”

2. Prove the uniform confidence bound
* Basically show that the choice of B, “works".



“Width” of Confidence Ball

Letx € D. If u € BALL; and x € D. Then

(1 — 1ie) " x| < \/ﬁthZ,T1x

Proof: By Cauchy-Schwarz, we have:

(1 — i) x| = |(n — i) TE )25, V2x VR — 1)) T x|

1/2 —~ —1/2 1 ~ — —
< =120 — aIIE Xl = 151200 — i)/ XTI x <y B TE

where the last inequality holds since u € BALL;. |

x| =[x

27



nstantaneous Regret is bounded
oy the width of the ellipsoid.

Define

we = /X X, X
which is the “normalized width” at time t in the direction of our decision
Lemma

Fixt < T. If v~ € BALL, then

regret; < 2min (£/BiWi, 1) < 24/ 87 min (w, 1

Proof: Let i1 € BALL; denote the vector which minimizes the dot
product 12" x;. By choice of x;, we have

o' xr= max maxp' x> (u*) x*¥,
pneEBALL; xeD

where the inequality used the hypothesis p* € BALL;. Hence,
regret; = (u*) ' x* — (u*) ' x < (1 —p*) " x
= (i — i) xe + (e — 1) ' xe < 24/ Bews
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III

“Geometric potential” argument:
Converting summation to product

Lemma 5.9 (AJKS)

We have:
T—1

detX7 =detTo | [ (1+ wf).
t=0

Proof: By the definition of ¥, 1, we have

det Ty 1 = det(X; + XX/ ) = det(S)/2(1+ =, V2xx £, /%))/?)
= det(Z) det(/ + X; 2x(; 2x) T) = det(S) det(/ + vevy),

where v; :== ¥, 172 x,. Now observe that v vi =w?and ... m
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Taking logarithm (get information gain), then
bounding it with data-independent terms.

Lemma

For any sequence Xg, ... Xx7t_1 such that, fort < T, ||x¢||2 < B, we have:

1 B2
log (det Y7 _4/det Zo) — log det (l—l— X Z XtXtT> < dlog (1 + H) :
t=0

v

Proof: Denote the eigenvalues of Z,T:_(f xfxtT as o4, ...04, and note:
T—1 T—1

d
Za,- = Trace( ZXtXtT) = Z x| < TB?.
i=1

t=0 t=0
Using the AM-GM inequality,
T—1

log det (l—i— % ZXtXtT> = log (ﬁ(1 —i—a,-/A))
t=0

=1

— dlog (H (1 +a,~/)\))1/d < dlog (%iﬁ +a//>\)) < dlog (1 + Z—B)\Z)
i=1

=1
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Bounding the Sum of Square
Instantaneous Regret

T-1 T-1

Z regret? < Z 4/3; min(w?, 1) < 4By Z min(w;, 1)

t=0 t=0



Plan of the proof

1. First prove the Proposition that bounds the sum
of square regret

* By bounding instantaneous regret

* And then bounding the sum of squares with
“Information Gain”

2. Prove the uniform confidence bound
* Basically show that the choice of B, “works".
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We need to prove that the true
parameter is in the version space w.h.p.

e Recall the version space is:

Proof: Since r. = x. - u* + n,, we have:
t—1 t—1
A= =57 rXe =t =50 X (Xt A1) — it
=0 7=0
t—1

t—1
=3, (Z XT(XT)T> S W
=0 7=0
t—1

=AY nexs
=0

By the triangle inequality,
t—1

= 2N nex

T=

\/(ﬁt — ) T2 (e — p*) < H)\Zt_vz/ﬁ* +

< V|| + 277,

How can we bound “??” To be continued... u



Selt-normalized Martingale
concentration bound.

Lemma (Self-Normalized Bound for Vector-Valued Martingales)

(Abassi et. al '11) Suppose {¢;}°, are mean zero random variables
(can be generalized to martingales), and ¢; is bounded by o. Let
{X;}2°, be a stochastic process. Define L1 = Lo+ > +_4 X;X;". With
probability at least1 — §, we have for all t > 1:

t
E Xiei
i=1

2

—1
< o2 log ( ek j:t‘m ) |

» T
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Continue the proof by applying
concentration, and the bound for
information-gain

V= i) TS @~ ) = 1802 (@ — )

t—1
—1/2
SIS
7=0

< V||| + /202 1og (det(S;) det(29)=1/5,).

= HAZZWM* +

= (3/7*)/t*

1 — Pr(Vt, u* € BALL;) = Pr(3¢, u* ¢ BALL,)

||M8

r(u* ¢ BALL,) < i 1/t%)(3/7%) = 1/2.



Final remarks on Linear Bandits

* The regret of LinUCB is optimal up to

* Strong assumption on realizability.
e Agnostic linear bandits?

e Contextual version: a finite list of available actions
are given at each t.



