
CS292F StatRL Lecture7
Exploration in Bandits

Instructor: Yu-Xiang Wang
Spring 2021

UC Santa Barbara

1

Notes / reminders

• Project proposal due today
• Please submit on Gradescope.

• Start HW1 quickly.
• It will be more time-consuming than HW0.
• It will help you with the rest of the class.

• HW2 is to be released this week (hopefully by
tomorrow)

2

Recap: Lecture 6

• Policy gradient methods
• Policy gradient theorem
• Unbiased Monte Carlo estimate of the gradient

(REINFORCE)
• Bootstrapping in policy gradient estimates
• Function approximation and Actor-Critic

• Bandits problem setup
• Regret definition
• The need for exploration

3

Recap: Multi-arm bandits:
Problem setup
• No state. k-actions

• You decide which arm to pull in every iteration

• You collect a cumulative payoff of

• For MAB, the regret is defined as follow

4

a 2 A = {1, 2, ..., k}
<latexit sha1_base64="Pgd6Bi1XtRX/xI8rK2a2CZi9uYo=">AAACCnicbZDNSsNAFIVv6l+tf1GXbkaL4KKEpAi6EapuXFawrdCEMplO26GTSZiZCCV07cZXceNCEbc+gTvfxknbhbYeGPg4917m3hMmnCntut9WYWl5ZXWtuF7a2Nza3rF395oqTiWhDRLzWN6HWFHOBG1opjm9TyTFUchpKxxe5/XWA5WKxeJOjxIaRLgvWI8RrI3VsQ8x8plAfoT1gGCeXY7RBfIzr1KtOI5TGfrjjl12HXcitAjeDMowU71jf/ndmKQRFZpwrFTbcxMdZFhqRjgdl/xU0QSTIe7TtkGBI6qCbHLKGB0bp4t6sTRPaDRxf09kOFJqFIWmM19Zzddy879aO9W98yBjIkk1FWT6US/lSMcozwV1maRE85EBTCQzuyIywBITbdIrmRC8+ZMXoVl1PMO3p+Xa1SyOIhzAEZyAB2dQgxuoQwMIPMIzvMKb9WS9WO/Wx7S1YM1m9uGPrM8flR6YQQ==</latexit><latexit sha1_base64="Pgd6Bi1XtRX/xI8rK2a2CZi9uYo=">AAACCnicbZDNSsNAFIVv6l+tf1GXbkaL4KKEpAi6EapuXFawrdCEMplO26GTSZiZCCV07cZXceNCEbc+gTvfxknbhbYeGPg4917m3hMmnCntut9WYWl5ZXWtuF7a2Nza3rF395oqTiWhDRLzWN6HWFHOBG1opjm9TyTFUchpKxxe5/XWA5WKxeJOjxIaRLgvWI8RrI3VsQ8x8plAfoT1gGCeXY7RBfIzr1KtOI5TGfrjjl12HXcitAjeDMowU71jf/ndmKQRFZpwrFTbcxMdZFhqRjgdl/xU0QSTIe7TtkGBI6qCbHLKGB0bp4t6sTRPaDRxf09kOFJqFIWmM19Zzddy879aO9W98yBjIkk1FWT6US/lSMcozwV1maRE85EBTCQzuyIywBITbdIrmRC8+ZMXoVl1PMO3p+Xa1SyOIhzAEZyAB2dQgxuoQwMIPMIzvMKb9WS9WO/Wx7S1YM1m9uGPrM8flR6YQQ==</latexit><latexit sha1_base64="Pgd6Bi1XtRX/xI8rK2a2CZi9uYo=">AAACCnicbZDNSsNAFIVv6l+tf1GXbkaL4KKEpAi6EapuXFawrdCEMplO26GTSZiZCCV07cZXceNCEbc+gTvfxknbhbYeGPg4917m3hMmnCntut9WYWl5ZXWtuF7a2Nza3rF395oqTiWhDRLzWN6HWFHOBG1opjm9TyTFUchpKxxe5/XWA5WKxeJOjxIaRLgvWI8RrI3VsQ8x8plAfoT1gGCeXY7RBfIzr1KtOI5TGfrjjl12HXcitAjeDMowU71jf/ndmKQRFZpwrFTbcxMdZFhqRjgdl/xU0QSTIe7TtkGBI6qCbHLKGB0bp4t6sTRPaDRxf09kOFJqFIWmM19Zzddy879aO9W98yBjIkk1FWT6US/lSMcozwV1maRE85EBTCQzuyIywBITbdIrmRC8+ZMXoVl1PMO3p+Xa1SyOIhzAEZyAB2dQgxuoQwMIPMIzvMKb9WS9WO/Wx7S1YM1m9uGPrM8flR6YQQ==</latexit><latexit sha1_base64="Pgd6Bi1XtRX/xI8rK2a2CZi9uYo=">AAACCnicbZDNSsNAFIVv6l+tf1GXbkaL4KKEpAi6EapuXFawrdCEMplO26GTSZiZCCV07cZXceNCEbc+gTvfxknbhbYeGPg4917m3hMmnCntut9WYWl5ZXWtuF7a2Nza3rF395oqTiWhDRLzWN6HWFHOBG1opjm9TyTFUchpKxxe5/XWA5WKxeJOjxIaRLgvWI8RrI3VsQ8x8plAfoT1gGCeXY7RBfIzr1KtOI5TGfrjjl12HXcitAjeDMowU71jf/ndmKQRFZpwrFTbcxMdZFhqRjgdl/xU0QSTIe7TtkGBI6qCbHLKGB0bp4t6sTRPaDRxf09kOFJqFIWmM19Zzddy879aO9W98yBjIkk1FWT6US/lSMcozwV1maRE85EBTCQzuyIywBITbdIrmRC8+ZMXoVl1PMO3p+Xa1SyOIhzAEZyAB2dQgxuoQwMIPMIzvMKb9WS9WO/Wx7S1YM1m9uGPrM8flR6YQQ==</latexit>

A1, A2, ..., AT
<latexit sha1_base64="3nwYg5V/8/2poVMB58MrV1fD5fQ=">AAAB+HicbZDNTgIxFIXv4B/iD6Mu3TQSExdkMkNMdAm6cYkJIAlMJp3SgYZOZ9J2TJDwJG5caIxbH8Wdb2OBWSh4k6Zfzrk3vT1hypnSrvttFTY2t7Z3irulvf2Dw7J9dNxRSSYJbZOEJ7IbYkU5E7Stmea0m0qK45DTh3B8O/cfHqlULBEtPUmpH+OhYBEjWBspsMuNwKs2glrVcRxztwK74jruotA6eDlUIK9mYH/1BwnJYio04Vipnuem2p9iqRnhdFbqZ4qmmIzxkPYMChxT5U8Xi8/QuVEGKEqkOUKjhfp7YopjpSZxaDpjrEdq1ZuL/3m9TEfX/pSJNNNUkOVDUcaRTtA8BTRgkhLNJwYwkczsisgIS0y0yapkQvBWv7wOnZrjGb6/rNRv8jiKcApncAEeXEEd7qAJbSCQwTO8wpv1ZL1Y79bHsrVg5TMn8Keszx9NF5Dm</latexit><latexit sha1_base64="3nwYg5V/8/2poVMB58MrV1fD5fQ=">AAAB+HicbZDNTgIxFIXv4B/iD6Mu3TQSExdkMkNMdAm6cYkJIAlMJp3SgYZOZ9J2TJDwJG5caIxbH8Wdb2OBWSh4k6Zfzrk3vT1hypnSrvttFTY2t7Z3irulvf2Dw7J9dNxRSSYJbZOEJ7IbYkU5E7Stmea0m0qK45DTh3B8O/cfHqlULBEtPUmpH+OhYBEjWBspsMuNwKs2glrVcRxztwK74jruotA6eDlUIK9mYH/1BwnJYio04Vipnuem2p9iqRnhdFbqZ4qmmIzxkPYMChxT5U8Xi8/QuVEGKEqkOUKjhfp7YopjpSZxaDpjrEdq1ZuL/3m9TEfX/pSJNNNUkOVDUcaRTtA8BTRgkhLNJwYwkczsisgIS0y0yapkQvBWv7wOnZrjGb6/rNRv8jiKcApncAEeXEEd7qAJbSCQwTO8wpv1ZL1Y79bHsrVg5TMn8Keszx9NF5Dm</latexit><latexit sha1_base64="3nwYg5V/8/2poVMB58MrV1fD5fQ=">AAAB+HicbZDNTgIxFIXv4B/iD6Mu3TQSExdkMkNMdAm6cYkJIAlMJp3SgYZOZ9J2TJDwJG5caIxbH8Wdb2OBWSh4k6Zfzrk3vT1hypnSrvttFTY2t7Z3irulvf2Dw7J9dNxRSSYJbZOEJ7IbYkU5E7Stmea0m0qK45DTh3B8O/cfHqlULBEtPUmpH+OhYBEjWBspsMuNwKs2glrVcRxztwK74jruotA6eDlUIK9mYH/1BwnJYio04Vipnuem2p9iqRnhdFbqZ4qmmIzxkPYMChxT5U8Xi8/QuVEGKEqkOUKjhfp7YopjpSZxaDpjrEdq1ZuL/3m9TEfX/pSJNNNUkOVDUcaRTtA8BTRgkhLNJwYwkczsisgIS0y0yapkQvBWv7wOnZrjGb6/rNRv8jiKcApncAEeXEEd7qAJbSCQwTO8wpv1ZL1Y79bHsrVg5TMn8Keszx9NF5Dm</latexit><latexit sha1_base64="3nwYg5V/8/2poVMB58MrV1fD5fQ=">AAAB+HicbZDNTgIxFIXv4B/iD6Mu3TQSExdkMkNMdAm6cYkJIAlMJp3SgYZOZ9J2TJDwJG5caIxbH8Wdb2OBWSh4k6Zfzrk3vT1hypnSrvttFTY2t7Z3irulvf2Dw7J9dNxRSSYJbZOEJ7IbYkU5E7Stmea0m0qK45DTh3B8O/cfHqlULBEtPUmpH+OhYBEjWBspsMuNwKs2glrVcRxztwK74jruotA6eDlUIK9mYH/1BwnJYio04Vipnuem2p9iqRnhdFbqZ4qmmIzxkPYMChxT5U8Xi8/QuVEGKEqkOUKjhfp7YopjpSZxaDpjrEdq1ZuL/3m9TEfX/pSJNNNUkOVDUcaRTtA8BTRgkhLNJwYwkczsisgIS0y0yapkQvBWv7wOnZrjGb6/rNRv8jiKcApncAEeXEEd7qAJbSCQwTO8wpv1ZL1Y79bHsrVg5TMn8Keszx9NF5Dm</latexit> TX

t=1

Rt

<latexit sha1_base64="YIoivBJth6KmUEL1hovQIgmRNeY=">AAAB+XicbZDLSgMxFIYz9VbrbdSlm2ARXJUZEXQjFN24rNIbtOOQSdM2NMkMyZlCGfomblwo4tY3cefbmLaz0NYfAh//OYdz8keJ4AY879sprK1vbG4Vt0s7u3v7B+7hUdPEqaasQWMR63ZEDBNcsQZwEKydaEZkJFgrGt3N6q0x04bHqg6ThAWSDBTvc0rAWqHrdk0qwwxu/OlTHT+GELplr+LNhVfBz6GMctVC96vbi2kqmQIqiDEd30sgyIgGTgWblrqpYQmhIzJgHYuKSGaCbH75FJ9Zp4f7sbZPAZ67vycyIo2ZyMh2SgJDs1ybmf/VOin0r4OMqyQFpuhiUT8VGGI8iwH3uGYUxMQCoZrbWzEdEk0o2LBKNgR/+cur0Lyo+JYfLsvV2zyOIjpBp+gc+egKVdE9qqEGomiMntErenMy58V5dz4WrQUnnzlGf+R8/gDqbpMs</latexit><latexit sha1_base64="YIoivBJth6KmUEL1hovQIgmRNeY=">AAAB+XicbZDLSgMxFIYz9VbrbdSlm2ARXJUZEXQjFN24rNIbtOOQSdM2NMkMyZlCGfomblwo4tY3cefbmLaz0NYfAh//OYdz8keJ4AY879sprK1vbG4Vt0s7u3v7B+7hUdPEqaasQWMR63ZEDBNcsQZwEKydaEZkJFgrGt3N6q0x04bHqg6ThAWSDBTvc0rAWqHrdk0qwwxu/OlTHT+GELplr+LNhVfBz6GMctVC96vbi2kqmQIqiDEd30sgyIgGTgWblrqpYQmhIzJgHYuKSGaCbH75FJ9Zp4f7sbZPAZ67vycyIo2ZyMh2SgJDs1ybmf/VOin0r4OMqyQFpuhiUT8VGGI8iwH3uGYUxMQCoZrbWzEdEk0o2LBKNgR/+cur0Lyo+JYfLsvV2zyOIjpBp+gc+egKVdE9qqEGomiMntErenMy58V5dz4WrQUnnzlGf+R8/gDqbpMs</latexit><latexit sha1_base64="YIoivBJth6KmUEL1hovQIgmRNeY=">AAAB+XicbZDLSgMxFIYz9VbrbdSlm2ARXJUZEXQjFN24rNIbtOOQSdM2NMkMyZlCGfomblwo4tY3cefbmLaz0NYfAh//OYdz8keJ4AY879sprK1vbG4Vt0s7u3v7B+7hUdPEqaasQWMR63ZEDBNcsQZwEKydaEZkJFgrGt3N6q0x04bHqg6ThAWSDBTvc0rAWqHrdk0qwwxu/OlTHT+GELplr+LNhVfBz6GMctVC96vbi2kqmQIqiDEd30sgyIgGTgWblrqpYQmhIzJgHYuKSGaCbH75FJ9Zp4f7sbZPAZ67vycyIo2ZyMh2SgJDs1ybmf/VOin0r4OMqyQFpuhiUT8VGGI8iwH3uGYUxMQCoZrbWzEdEk0o2LBKNgR/+cur0Lyo+JYfLsvV2zyOIjpBp+gc+egKVdE9qqEGomiMntErenMy58V5dz4WrQUnnzlGf+R8/gDqbpMs</latexit><latexit sha1_base64="YIoivBJth6KmUEL1hovQIgmRNeY=">AAAB+XicbZDLSgMxFIYz9VbrbdSlm2ARXJUZEXQjFN24rNIbtOOQSdM2NMkMyZlCGfomblwo4tY3cefbmLaz0NYfAh//OYdz8keJ4AY879sprK1vbG4Vt0s7u3v7B+7hUdPEqaasQWMR63ZEDBNcsQZwEKydaEZkJFgrGt3N6q0x04bHqg6ThAWSDBTvc0rAWqHrdk0qwwxu/OlTHT+GELplr+LNhVfBz6GMctVC96vbi2kqmQIqiDEd30sgyIgGTgWblrqpYQmhIzJgHYuKSGaCbH75FJ9Zp4f7sbZPAZ67vycyIo2ZyMh2SgJDs1ybmf/VOin0r4OMqyQFpuhiUT8VGGI8iwH3uGYUxMQCoZrbWzEdEk0o2LBKNgR/+cur0Lyo+JYfLsvV2zyOIjpBp+gc+egKVdE9qqEGomiMntErenMy58V5dz4WrQUnnzlGf+R8/gDqbpMs</latexit>

T max
a2[k]

E[Rt|a]�
TX

t=1

Ea⇠⇡ [E[Rt|a]]
<latexit sha1_base64="JQCYv8AV15V4Bxv4/26ZC0Vdkug=">AAACWHicbVFda9swFJXdrzTrujR97MulYbCXFnsUupdBWSn0sStJW7A9IytyIiLJRroeC67/ZKEP7V/py+Q0sPXjguDonHukq6OslMJiEDx4/srq2vpGZ7P7Yevj9qfeTv/KFpVhfMQKWZibjFouheYjFCj5TWk4VZnk19nstNWvf3NjRaGHOC95ouhEi1wwio5Ke8UQYkX/pDWNhY5mSdNucZpl9VkTXaYIt0ATgAOA2FYqrfF72Pwa/utpjVYoiEvhrJLnGL17AMRGTKaYpL1BcBgsCt6CcAkGZFkXae8uHhesUlwjk9TaKAxKTGpqUDDJm25cWV5SNqMTHjmoqeI2qRfBNPDZMWPIC+OWRliw/ztqqqydq8x1tkPb11pLvqdFFebfklroskKu2fNFeSUBC2hThrEwnKGcO0CZEW5WYFNqKEP3F10XQvj6yW/B1dfD0OGfR4OTH8s4OmSP7JMvJCTH5ISckwsyIozckydv1VvzHn3ib/ibz62+t/Tskhfl9/8CQ8qzCA==</latexit><latexit sha1_base64="JQCYv8AV15V4Bxv4/26ZC0Vdkug=">AAACWHicbVFda9swFJXdrzTrujR97MulYbCXFnsUupdBWSn0sStJW7A9IytyIiLJRroeC67/ZKEP7V/py+Q0sPXjguDonHukq6OslMJiEDx4/srq2vpGZ7P7Yevj9qfeTv/KFpVhfMQKWZibjFouheYjFCj5TWk4VZnk19nstNWvf3NjRaGHOC95ouhEi1wwio5Ke8UQYkX/pDWNhY5mSdNucZpl9VkTXaYIt0ATgAOA2FYqrfF72Pwa/utpjVYoiEvhrJLnGL17AMRGTKaYpL1BcBgsCt6CcAkGZFkXae8uHhesUlwjk9TaKAxKTGpqUDDJm25cWV5SNqMTHjmoqeI2qRfBNPDZMWPIC+OWRliw/ztqqqydq8x1tkPb11pLvqdFFebfklroskKu2fNFeSUBC2hThrEwnKGcO0CZEW5WYFNqKEP3F10XQvj6yW/B1dfD0OGfR4OTH8s4OmSP7JMvJCTH5ISckwsyIozckydv1VvzHn3ib/ibz62+t/Tskhfl9/8CQ8qzCA==</latexit><latexit sha1_base64="JQCYv8AV15V4Bxv4/26ZC0Vdkug=">AAACWHicbVFda9swFJXdrzTrujR97MulYbCXFnsUupdBWSn0sStJW7A9IytyIiLJRroeC67/ZKEP7V/py+Q0sPXjguDonHukq6OslMJiEDx4/srq2vpGZ7P7Yevj9qfeTv/KFpVhfMQKWZibjFouheYjFCj5TWk4VZnk19nstNWvf3NjRaGHOC95ouhEi1wwio5Ke8UQYkX/pDWNhY5mSdNucZpl9VkTXaYIt0ATgAOA2FYqrfF72Pwa/utpjVYoiEvhrJLnGL17AMRGTKaYpL1BcBgsCt6CcAkGZFkXae8uHhesUlwjk9TaKAxKTGpqUDDJm25cWV5SNqMTHjmoqeI2qRfBNPDZMWPIC+OWRliw/ztqqqydq8x1tkPb11pLvqdFFebfklroskKu2fNFeSUBC2hThrEwnKGcO0CZEW5WYFNqKEP3F10XQvj6yW/B1dfD0OGfR4OTH8s4OmSP7JMvJCTH5ISckwsyIozckydv1VvzHn3ib/ibz62+t/Tskhfl9/8CQ8qzCA==</latexit><latexit sha1_base64="JQCYv8AV15V4Bxv4/26ZC0Vdkug=">AAACWHicbVFda9swFJXdrzTrujR97MulYbCXFnsUupdBWSn0sStJW7A9IytyIiLJRroeC67/ZKEP7V/py+Q0sPXjguDonHukq6OslMJiEDx4/srq2vpGZ7P7Yevj9qfeTv/KFpVhfMQKWZibjFouheYjFCj5TWk4VZnk19nstNWvf3NjRaGHOC95ouhEi1wwio5Ke8UQYkX/pDWNhY5mSdNucZpl9VkTXaYIt0ATgAOA2FYqrfF72Pwa/utpjVYoiEvhrJLnGL17AMRGTKaYpL1BcBgsCt6CcAkGZFkXae8uHhesUlwjk9TaKAxKTGpqUDDJm25cWV5SNqMTHjmoqeI2qRfBNPDZMWPIC+OWRliw/ztqqqydq8x1tkPb11pLvqdFFebfklroskKu2fNFeSUBC2hThrEwnKGcO0CZEW5WYFNqKEP3F10XQvj6yW/B1dfD0OGfR4OTH8s4OmSP7JMvJCTH5ISckwsyIozckydv1VvzHn3ib/ibz62+t/Tskhfl9/8CQ8qzCA==</latexit>

“No regret” means sublinear scaling
in T. “Linear regret” is very bad.
• “No regret online learning”

• A regret (upper) bound needs to apply to all problem
instances

• It suffices to identify one example to get a regret lower
bound for a given algorithm.
• E.g., “Greedy strategy” has linear regret in MAB.

• Minimax lower bounds are information-theoretical
• They apply to all algorithms.

5

Recap: “Exploration first” strategy

• Let’s spend the first N step exploring.
• Play each action for N / k times.

• For t = N +1, N+2, …, T:

6

2.2. Action-value Methods 27

However, most of these methods make strong assumptions about stationarity and prior
knowledge that are either violated or impossible to verify in applications and in the full
reinforcement learning problem that we consider in subsequent chapters. The guarantees
of optimality or bounded loss for these methods are of little comfort when the assumptions
of their theory do not apply.

In this book we do not worry about balancing exploration and exploitation in a
sophisticated way; we worry only about balancing them at all. In this chapter we present
several simple balancing methods for the k-armed bandit problem and show that they
work much better than methods that always exploit. The need to balance exploration
and exploitation is a distinctive challenge that arises in reinforcement learning; the
simplicity of our version of the k-armed bandit problem enables us to show this in a
particularly clear form.

2.2 Action-value Methods

We begin by looking more closely at methods for estimating the values of actions and
for using the estimates to make action selection decisions, which we collectively call
action-value methods. Recall that the true value of an action is the mean reward when
that action is selected. One natural way to estimate this is by averaging the rewards
actually received:

Qt(a)
.
=

sum of rewards when a taken prior to t

number of times a taken prior to t
=

P
t�1

i=1
Ri · Ai=aP

t�1

i=1 Ai=a

, (2.1)

where predicate denotes the random variable that is 1 if predicate is true and 0 if it is not.
If the denominator is zero, then we instead define Qt(a) as some default value, such as
0. As the denominator goes to infinity, by the law of large numbers, Qt(a) converges to
q⇤(a). We call this the sample-average method for estimating action values because each
estimate is an average of the sample of relevant rewards. Of course this is just one way
to estimate action values, and not necessarily the best one. Nevertheless, for now let us
stay with this simple estimation method and turn to the question of how the estimates
might be used to select actions.

The simplest action selection rule is to select one of the actions with the highest
estimated value, that is, one of the greedy actions as defined in the previous section.
If there is more than one greedy action, then a selection is made among them in some
arbitrary way, perhaps randomly. We write this greedy action selection method as

At

.
= argmax

a

Qt(a), (2.2)

where argmax
a

denotes the action a for which the expression that follows is maximized
(again, with ties broken arbitrarily). Greedy action selection always exploits current
knowledge to maximize immediate reward; it spends no time at all sampling apparently
inferior actions to see if they might really be better. A simple alternative is to behave
greedily most of the time, but every once in a while, say with small probability ", instead

2.2. Action-value Methods 27

However, most of these methods make strong assumptions about stationarity and prior
knowledge that are either violated or impossible to verify in applications and in the full
reinforcement learning problem that we consider in subsequent chapters. The guarantees
of optimality or bounded loss for these methods are of little comfort when the assumptions
of their theory do not apply.

In this book we do not worry about balancing exploration and exploitation in a
sophisticated way; we worry only about balancing them at all. In this chapter we present
several simple balancing methods for the k-armed bandit problem and show that they
work much better than methods that always exploit. The need to balance exploration
and exploitation is a distinctive challenge that arises in reinforcement learning; the
simplicity of our version of the k-armed bandit problem enables us to show this in a
particularly clear form.

2.2 Action-value Methods

We begin by looking more closely at methods for estimating the values of actions and
for using the estimates to make action selection decisions, which we collectively call
action-value methods. Recall that the true value of an action is the mean reward when
that action is selected. One natural way to estimate this is by averaging the rewards
actually received:

Qt(a)
.
=

sum of rewards when a taken prior to t

number of times a taken prior to t
=

P
t�1

i=1
Ri · Ai=aP

t�1

i=1 Ai=a

, (2.1)

where predicate denotes the random variable that is 1 if predicate is true and 0 if it is not.
If the denominator is zero, then we instead define Qt(a) as some default value, such as
0. As the denominator goes to infinity, by the law of large numbers, Qt(a) converges to
q⇤(a). We call this the sample-average method for estimating action values because each
estimate is an average of the sample of relevant rewards. Of course this is just one way
to estimate action values, and not necessarily the best one. Nevertheless, for now let us
stay with this simple estimation method and turn to the question of how the estimates
might be used to select actions.

The simplest action selection rule is to select one of the actions with the highest
estimated value, that is, one of the greedy actions as defined in the previous section.
If there is more than one greedy action, then a selection is made among them in some
arbitrary way, perhaps randomly. We write this greedy action selection method as

At

.
= argmax

a

Qt(a), (2.2)

where argmax
a

denotes the action a for which the expression that follows is maximized
(again, with ties broken arbitrarily). Greedy action selection always exploits current
knowledge to maximize immediate reward; it spends no time at all sampling apparently
inferior actions to see if they might really be better. A simple alternative is to behave
greedily most of the time, but every once in a while, say with small probability ", instead

2.2. Action-value Methods 27

However, most of these methods make strong assumptions about stationarity and prior
knowledge that are either violated or impossible to verify in applications and in the full
reinforcement learning problem that we consider in subsequent chapters. The guarantees
of optimality or bounded loss for these methods are of little comfort when the assumptions
of their theory do not apply.

In this book we do not worry about balancing exploration and exploitation in a
sophisticated way; we worry only about balancing them at all. In this chapter we present
several simple balancing methods for the k-armed bandit problem and show that they
work much better than methods that always exploit. The need to balance exploration
and exploitation is a distinctive challenge that arises in reinforcement learning; the
simplicity of our version of the k-armed bandit problem enables us to show this in a
particularly clear form.

2.2 Action-value Methods

We begin by looking more closely at methods for estimating the values of actions and
for using the estimates to make action selection decisions, which we collectively call
action-value methods. Recall that the true value of an action is the mean reward when
that action is selected. One natural way to estimate this is by averaging the rewards
actually received:

Qt(a)
.
=

sum of rewards when a taken prior to t

number of times a taken prior to t
=

P
t�1

i=1
Ri · Ai=aP

t�1

i=1 Ai=a

, (2.1)

where predicate denotes the random variable that is 1 if predicate is true and 0 if it is not.
If the denominator is zero, then we instead define Qt(a) as some default value, such as
0. As the denominator goes to infinity, by the law of large numbers, Qt(a) converges to
q⇤(a). We call this the sample-average method for estimating action values because each
estimate is an average of the sample of relevant rewards. Of course this is just one way
to estimate action values, and not necessarily the best one. Nevertheless, for now let us
stay with this simple estimation method and turn to the question of how the estimates
might be used to select actions.

The simplest action selection rule is to select one of the actions with the highest
estimated value, that is, one of the greedy actions as defined in the previous section.
If there is more than one greedy action, then a selection is made among them in some
arbitrary way, perhaps randomly. We write this greedy action selection method as

At

.
= argmax

a

Qt(a), (2.2)

where argmax
a

denotes the action a for which the expression that follows is maximized
(again, with ties broken arbitrarily). Greedy action selection always exploits current
knowledge to maximize immediate reward; it spends no time at all sampling apparently
inferior actions to see if they might really be better. A simple alternative is to behave
greedily most of the time, but every once in a while, say with small probability ", instead

This lecture

• Regret analysis for multi-armed bandits
• Exploration first
• epsilon-greedy
• Upper Confidence Bound algorithm (AJKS 5.1)

• Linear bandits. (AJKS 5.2 – 5.3)
• LinUCB algorithm
• Regret analysis

7

Recap: Concentration inequalities ---
finite-sample bounds of LLN and CLT
• Hoeffding’s inequality: Assume X1, …, Xn are

independent and their support bounded:

• Easy version, if 0<Xi<B, with probability 1-δ:

8

Regret analysis of Exploration First

9

Regret analysis of Exploration First

10

ε-Greedy strategy: one way to
balance exploration and exploitation
• You choose with probability 1- ε

• With probability ε, choose an action uniformly at
random!
• Including the argmax.

• Carefully choose ε parameter.

11

2.2. Action-value Methods 27

However, most of these methods make strong assumptions about stationarity and prior
knowledge that are either violated or impossible to verify in applications and in the full
reinforcement learning problem that we consider in subsequent chapters. The guarantees
of optimality or bounded loss for these methods are of little comfort when the assumptions
of their theory do not apply.

In this book we do not worry about balancing exploration and exploitation in a
sophisticated way; we worry only about balancing them at all. In this chapter we present
several simple balancing methods for the k-armed bandit problem and show that they
work much better than methods that always exploit. The need to balance exploration
and exploitation is a distinctive challenge that arises in reinforcement learning; the
simplicity of our version of the k-armed bandit problem enables us to show this in a
particularly clear form.

2.2 Action-value Methods

We begin by looking more closely at methods for estimating the values of actions and
for using the estimates to make action selection decisions, which we collectively call
action-value methods. Recall that the true value of an action is the mean reward when
that action is selected. One natural way to estimate this is by averaging the rewards
actually received:

Qt(a)
.
=

sum of rewards when a taken prior to t

number of times a taken prior to t
=

P
t�1

i=1
Ri · Ai=aP

t�1

i=1 Ai=a

, (2.1)

where predicate denotes the random variable that is 1 if predicate is true and 0 if it is not.
If the denominator is zero, then we instead define Qt(a) as some default value, such as
0. As the denominator goes to infinity, by the law of large numbers, Qt(a) converges to
q⇤(a). We call this the sample-average method for estimating action values because each
estimate is an average of the sample of relevant rewards. Of course this is just one way
to estimate action values, and not necessarily the best one. Nevertheless, for now let us
stay with this simple estimation method and turn to the question of how the estimates
might be used to select actions.

The simplest action selection rule is to select one of the actions with the highest
estimated value, that is, one of the greedy actions as defined in the previous section.
If there is more than one greedy action, then a selection is made among them in some
arbitrary way, perhaps randomly. We write this greedy action selection method as

At

.
= argmax

a

Qt(a), (2.2)

where argmax
a

denotes the action a for which the expression that follows is maximized
(again, with ties broken arbitrarily). Greedy action selection always exploits current
knowledge to maximize immediate reward; it spends no time at all sampling apparently
inferior actions to see if they might really be better. A simple alternative is to behave
greedily most of the time, but every once in a while, say with small probability ", instead

A sketch of the analysis for ε-greedy

• In expectation, each arm is chosen for at least εt
times.

• Condition on the number of times, apply
Hoeffding’s inequality / union bound for all t and a

• Regret bound is

12

✏T
<latexit sha1_base64="TYPYkkmWa+iKHkgeHAvtH6LGPUw=">AAAB8XicbZBNSwMxEIZn/az1q+rRS7AInsquCHosevFYoV/YLiWbzrah2WRJskIp/RdePCji1X/jzX9j2u5BW18IPLwzQ2beKBXcWN//9tbWNza3tgs7xd29/YPD0tFx06hMM2wwJZRuR9Sg4BIblluB7VQjTSKBrWh0N6u3nlAbrmTdjlMMEzqQPOaMWmc9djE1XChJ6r1S2a/4c5FVCHIoQ65ar/TV7SuWJSgtE9SYTuCnNpxQbTkTOC12M4MpZSM6wI5DSRM04WS+8ZScO6dPYqXdk5bM3d8TE5oYM04i15lQOzTLtZn5X62T2fgmnHCZZhYlW3wUZ4JYRWbnkz7XyKwYO6BMc7crYUOqKbMupKILIVg+eRWal5XA8cNVuXqbx1GAUziDCwjgGqpwDzVoAAMJz/AKb57xXrx372PRuublMyfwR97nD01kkKg=</latexit><latexit sha1_base64="TYPYkkmWa+iKHkgeHAvtH6LGPUw=">AAAB8XicbZBNSwMxEIZn/az1q+rRS7AInsquCHosevFYoV/YLiWbzrah2WRJskIp/RdePCji1X/jzX9j2u5BW18IPLwzQ2beKBXcWN//9tbWNza3tgs7xd29/YPD0tFx06hMM2wwJZRuR9Sg4BIblluB7VQjTSKBrWh0N6u3nlAbrmTdjlMMEzqQPOaMWmc9djE1XChJ6r1S2a/4c5FVCHIoQ65ar/TV7SuWJSgtE9SYTuCnNpxQbTkTOC12M4MpZSM6wI5DSRM04WS+8ZScO6dPYqXdk5bM3d8TE5oYM04i15lQOzTLtZn5X62T2fgmnHCZZhYlW3wUZ4JYRWbnkz7XyKwYO6BMc7crYUOqKbMupKILIVg+eRWal5XA8cNVuXqbx1GAUziDCwjgGqpwDzVoAAMJz/AKb57xXrx372PRuublMyfwR97nD01kkKg=</latexit><latexit sha1_base64="TYPYkkmWa+iKHkgeHAvtH6LGPUw=">AAAB8XicbZBNSwMxEIZn/az1q+rRS7AInsquCHosevFYoV/YLiWbzrah2WRJskIp/RdePCji1X/jzX9j2u5BW18IPLwzQ2beKBXcWN//9tbWNza3tgs7xd29/YPD0tFx06hMM2wwJZRuR9Sg4BIblluB7VQjTSKBrWh0N6u3nlAbrmTdjlMMEzqQPOaMWmc9djE1XChJ6r1S2a/4c5FVCHIoQ65ar/TV7SuWJSgtE9SYTuCnNpxQbTkTOC12M4MpZSM6wI5DSRM04WS+8ZScO6dPYqXdk5bM3d8TE5oYM04i15lQOzTLtZn5X62T2fgmnHCZZhYlW3wUZ4JYRWbnkz7XyKwYO6BMc7crYUOqKbMupKILIVg+eRWal5XA8cNVuXqbx1GAUziDCwjgGqpwDzVoAAMJz/AKb57xXrx372PRuublMyfwR97nD01kkKg=</latexit><latexit sha1_base64="TYPYkkmWa+iKHkgeHAvtH6LGPUw=">AAAB8XicbZBNSwMxEIZn/az1q+rRS7AInsquCHosevFYoV/YLiWbzrah2WRJskIp/RdePCji1X/jzX9j2u5BW18IPLwzQ2beKBXcWN//9tbWNza3tgs7xd29/YPD0tFx06hMM2wwJZRuR9Sg4BIblluB7VQjTSKBrWh0N6u3nlAbrmTdjlMMEzqQPOaMWmc9djE1XChJ6r1S2a/4c5FVCHIoQ65ar/TV7SuWJSgtE9SYTuCnNpxQbTkTOC12M4MpZSM6wI5DSRM04WS+8ZScO6dPYqXdk5bM3d8TE5oYM04i15lQOzTLtZn5X62T2fgmnHCZZhYlW3wUZ4JYRWbnkz7XyKwYO6BMc7crYUOqKbMupKILIVg+eRWal5XA8cNVuXqbx1GAUziDCwjgGqpwDzVoAAMJz/AKb57xXrx372PRuublMyfwR97nD01kkKg=</latexit>

+
TX

t=1

C

r
k

✏t
<latexit sha1_base64="bOUolOMNiFXTQyNTFPMofzJrEkg=">AAACFXicbZDLSsNAFIYn9VbrLerSzWARBKUkIuhGKHbjskJv0NQymU7aoZNJnDkRSshLuPFV3LhQxK3gzrdxello6w8DH/85hzPn92PBNTjOt5VbWl5ZXcuvFzY2t7Z37N29ho4SRVmdRiJSLZ9oJrhkdeAgWCtWjIS+YE1/WBnXmw9MaR7JGoxi1glJX/KAUwLG6tqnJxh7Ogm7KVy52V0NVzx9ryD1AkVoOsxSj8Wai0hiyLKuXXRKzkR4EdwZFNFM1a795fUimoRMAhVE67brxNBJiQJOBcsKXqJZTOiQ9FnboCQh0510clWGj4zTw0GkzJOAJ+7viZSEWo9C33SGBAZ6vjY2/6u1EwguOymXcQJM0umiIBEYIjyOCPe4YhTEyAChipu/YjogJg8wQRZMCO78yYvQOCu5hm/Pi+XrWRx5dIAO0TFy0QUqoxtURXVE0SN6Rq/ozXqyXqx362PamrNmM/voj6zPH6Jjnyg=</latexit><latexit sha1_base64="bOUolOMNiFXTQyNTFPMofzJrEkg=">AAACFXicbZDLSsNAFIYn9VbrLerSzWARBKUkIuhGKHbjskJv0NQymU7aoZNJnDkRSshLuPFV3LhQxK3gzrdxello6w8DH/85hzPn92PBNTjOt5VbWl5ZXcuvFzY2t7Z37N29ho4SRVmdRiJSLZ9oJrhkdeAgWCtWjIS+YE1/WBnXmw9MaR7JGoxi1glJX/KAUwLG6tqnJxh7Ogm7KVy52V0NVzx9ryD1AkVoOsxSj8Wai0hiyLKuXXRKzkR4EdwZFNFM1a795fUimoRMAhVE67brxNBJiQJOBcsKXqJZTOiQ9FnboCQh0510clWGj4zTw0GkzJOAJ+7viZSEWo9C33SGBAZ6vjY2/6u1EwguOymXcQJM0umiIBEYIjyOCPe4YhTEyAChipu/YjogJg8wQRZMCO78yYvQOCu5hm/Pi+XrWRx5dIAO0TFy0QUqoxtURXVE0SN6Rq/ozXqyXqx362PamrNmM/voj6zPH6Jjnyg=</latexit><latexit sha1_base64="bOUolOMNiFXTQyNTFPMofzJrEkg=">AAACFXicbZDLSsNAFIYn9VbrLerSzWARBKUkIuhGKHbjskJv0NQymU7aoZNJnDkRSshLuPFV3LhQxK3gzrdxello6w8DH/85hzPn92PBNTjOt5VbWl5ZXcuvFzY2t7Z37N29ho4SRVmdRiJSLZ9oJrhkdeAgWCtWjIS+YE1/WBnXmw9MaR7JGoxi1glJX/KAUwLG6tqnJxh7Ogm7KVy52V0NVzx9ryD1AkVoOsxSj8Wai0hiyLKuXXRKzkR4EdwZFNFM1a795fUimoRMAhVE67brxNBJiQJOBcsKXqJZTOiQ9FnboCQh0510clWGj4zTw0GkzJOAJ+7viZSEWo9C33SGBAZ6vjY2/6u1EwguOymXcQJM0umiIBEYIjyOCPe4YhTEyAChipu/YjogJg8wQRZMCO78yYvQOCu5hm/Pi+XrWRx5dIAO0TFy0QUqoxtURXVE0SN6Rq/ozXqyXqx362PamrNmM/voj6zPH6Jjnyg=</latexit><latexit sha1_base64="bOUolOMNiFXTQyNTFPMofzJrEkg=">AAACFXicbZDLSsNAFIYn9VbrLerSzWARBKUkIuhGKHbjskJv0NQymU7aoZNJnDkRSshLuPFV3LhQxK3gzrdxello6w8DH/85hzPn92PBNTjOt5VbWl5ZXcuvFzY2t7Z37N29ho4SRVmdRiJSLZ9oJrhkdeAgWCtWjIS+YE1/WBnXmw9MaR7JGoxi1glJX/KAUwLG6tqnJxh7Ogm7KVy52V0NVzx9ryD1AkVoOsxSj8Wai0hiyLKuXXRKzkR4EdwZFNFM1a795fUimoRMAhVE67brxNBJiQJOBcsKXqJZTOiQ9FnboCQh0510clWGj4zTw0GkzJOAJ+7viZSEWo9C33SGBAZ6vjY2/6u1EwguOymXcQJM0umiIBEYIjyOCPe4YhTEyAChipu/YjogJg8wQRZMCO78yYvQOCu5hm/Pi+XrWRx5dIAO0TFy0QUqoxtURXVE0SN6Rq/ozXqyXqx362PamrNmM/voj6zPH6Jjnyg=</latexit>

Optimism-in-the-face of uncertainty:
Upper Confidence Bound algorithm

13

Martingale

• We say that a sequence of r.v. X1,…,Xn,… is a
Martingale if for any n

• Example:
• Random-walk: Total number of heads minus tails in n

coin tosses

14

Azuma-Hoeffding’s inequality

• Azuma-Hoeffding’s inequality: Assume X1, …, Xn
are Martingale differences

• Apply Azuma-Hoeffding’s inequality to our problem

15

P [Sn � ✏]  e
� 2✏2Pn

i=1(bi�ai)
2

<latexit sha1_base64="0SRGwh883G0+OHyG3Np95sm0zog=">AAACSnicbVDLahsxFNW4ebp5uM0yGxFTSBYJMyaQbAqh3XTpkNgJeMaDRr5ji2g0E+lOwYj5vm666q4fkU0WCSGbyI9AXgcER+eci3RPUkhh0Pf/e7VPC4tLyyur9c9r6xubjS9fuyYvNYcOz2WuLxNmQAoFHRQo4bLQwLJEwkVy9XPiX/wGbUSuznFcQJSxoRKp4AydFDdYmDEcJYltV6GEFHv0LFY0HMI1DaEwQubupsVwhBF1gWsKfbsfpppx23oO9FuVDU2ZxVZ8D6q+ortJLPZZLPacU8WNpn/gT0Hfk2BOmmSOdtz4Fw5yXmagkEtmTC/wC4ws0yi4hKoelgYKxq/YEHqOKpaBiey0iop+c8qAprl2RyGdqi8nLMuMGWeJS04WN2+9ifiR1ysxPY6sUEWJoPjsobSUFHM66ZUOhAaOcuwI41q4v1I+Yq4ndO3XXQnB25Xfk27rIHD89LB58mNexwrZJjtklwTkiJyQX6RNOoSTP+SG3JF776936z14j7NozZvPbJFXqC08Abwos0I=</latexit><latexit sha1_base64="0SRGwh883G0+OHyG3Np95sm0zog=">AAACSnicbVDLahsxFNW4ebp5uM0yGxFTSBYJMyaQbAqh3XTpkNgJeMaDRr5ji2g0E+lOwYj5vm666q4fkU0WCSGbyI9AXgcER+eci3RPUkhh0Pf/e7VPC4tLyyur9c9r6xubjS9fuyYvNYcOz2WuLxNmQAoFHRQo4bLQwLJEwkVy9XPiX/wGbUSuznFcQJSxoRKp4AydFDdYmDEcJYltV6GEFHv0LFY0HMI1DaEwQubupsVwhBF1gWsKfbsfpppx23oO9FuVDU2ZxVZ8D6q+ortJLPZZLPacU8WNpn/gT0Hfk2BOmmSOdtz4Fw5yXmagkEtmTC/wC4ws0yi4hKoelgYKxq/YEHqOKpaBiey0iop+c8qAprl2RyGdqi8nLMuMGWeJS04WN2+9ifiR1ysxPY6sUEWJoPjsobSUFHM66ZUOhAaOcuwI41q4v1I+Yq4ndO3XXQnB25Xfk27rIHD89LB58mNexwrZJjtklwTkiJyQX6RNOoSTP+SG3JF776936z14j7NozZvPbJFXqC08Abwos0I=</latexit><latexit sha1_base64="0SRGwh883G0+OHyG3Np95sm0zog=">AAACSnicbVDLahsxFNW4ebp5uM0yGxFTSBYJMyaQbAqh3XTpkNgJeMaDRr5ji2g0E+lOwYj5vm666q4fkU0WCSGbyI9AXgcER+eci3RPUkhh0Pf/e7VPC4tLyyur9c9r6xubjS9fuyYvNYcOz2WuLxNmQAoFHRQo4bLQwLJEwkVy9XPiX/wGbUSuznFcQJSxoRKp4AydFDdYmDEcJYltV6GEFHv0LFY0HMI1DaEwQubupsVwhBF1gWsKfbsfpppx23oO9FuVDU2ZxVZ8D6q+ortJLPZZLPacU8WNpn/gT0Hfk2BOmmSOdtz4Fw5yXmagkEtmTC/wC4ws0yi4hKoelgYKxq/YEHqOKpaBiey0iop+c8qAprl2RyGdqi8nLMuMGWeJS04WN2+9ifiR1ysxPY6sUEWJoPjsobSUFHM66ZUOhAaOcuwI41q4v1I+Yq4ndO3XXQnB25Xfk27rIHD89LB58mNexwrZJjtklwTkiJyQX6RNOoSTP+SG3JF776936z14j7NozZvPbJFXqC08Abwos0I=</latexit><latexit sha1_base64="0SRGwh883G0+OHyG3Np95sm0zog=">AAACSnicbVDLahsxFNW4ebp5uM0yGxFTSBYJMyaQbAqh3XTpkNgJeMaDRr5ji2g0E+lOwYj5vm666q4fkU0WCSGbyI9AXgcER+eci3RPUkhh0Pf/e7VPC4tLyyur9c9r6xubjS9fuyYvNYcOz2WuLxNmQAoFHRQo4bLQwLJEwkVy9XPiX/wGbUSuznFcQJSxoRKp4AydFDdYmDEcJYltV6GEFHv0LFY0HMI1DaEwQubupsVwhBF1gWsKfbsfpppx23oO9FuVDU2ZxVZ8D6q+ortJLPZZLPacU8WNpn/gT0Hfk2BOmmSOdtz4Fw5yXmagkEtmTC/wC4ws0yi4hKoelgYKxq/YEHqOKpaBiey0iop+c8qAprl2RyGdqi8nLMuMGWeJS04WN2+9ifiR1ysxPY6sUEWJoPjsobSUFHM66ZUOhAaOcuwI41q4v1I+Yq4ndO3XXQnB25Xfk27rIHD89LB58mNexwrZJjtklwTkiJyQX6RNOoSTP+SG3JF776936z14j7NozZvPbJFXqC08Abwos0I=</latexit>

Sn = X1 + ...+Xn
<latexit sha1_base64="cFE8SO7LrW0REG9nlGFeenDdHK8=">AAAB/nicbZBPS8MwGMbfzn9z/puKJy/BIQhCaUXQizD04nGi2wpbKWmWbmFpWpJUGGXgV/HiQRGvfg5vfhuzrQfdfCHhx/O8L3nzhClnSjvOt1VaWl5ZXSuvVzY2t7Z3qrt7LZVkktAmSXgivRArypmgTc00p14qKY5DTtvh8Gbitx+pVCwRD3qUUj/GfcEiRrA2UlA9uA8EukJe4KJTZNu2ub3A6DXHdqaFFsEtoAZFNYLqV7eXkCymQhOOleq4Tqr9HEvNCKfjSjdTNMVkiPu0Y1DgmCo/n64/RsdG6aEokeYIjabq74kcx0qN4tB0xlgP1Lw3Ef/zOpmOLv2ciTTTVJDZQ1HGkU7QJAvUY5ISzUcGMJHM7IrIAEtMtEmsYkJw57+8CK0z2zV8d16rXxdxlOEQjuAEXLiAOtxCA5pAIIdneIU368l6sd6tj1lrySpm9uFPWZ8/Y5aShw==</latexit><latexit sha1_base64="cFE8SO7LrW0REG9nlGFeenDdHK8=">AAAB/nicbZBPS8MwGMbfzn9z/puKJy/BIQhCaUXQizD04nGi2wpbKWmWbmFpWpJUGGXgV/HiQRGvfg5vfhuzrQfdfCHhx/O8L3nzhClnSjvOt1VaWl5ZXSuvVzY2t7Z3qrt7LZVkktAmSXgivRArypmgTc00p14qKY5DTtvh8Gbitx+pVCwRD3qUUj/GfcEiRrA2UlA9uA8EukJe4KJTZNu2ub3A6DXHdqaFFsEtoAZFNYLqV7eXkCymQhOOleq4Tqr9HEvNCKfjSjdTNMVkiPu0Y1DgmCo/n64/RsdG6aEokeYIjabq74kcx0qN4tB0xlgP1Lw3Ef/zOpmOLv2ciTTTVJDZQ1HGkU7QJAvUY5ISzUcGMJHM7IrIAEtMtEmsYkJw57+8CK0z2zV8d16rXxdxlOEQjuAEXLiAOtxCA5pAIIdneIU368l6sd6tj1lrySpm9uFPWZ8/Y5aShw==</latexit><latexit sha1_base64="cFE8SO7LrW0REG9nlGFeenDdHK8=">AAAB/nicbZBPS8MwGMbfzn9z/puKJy/BIQhCaUXQizD04nGi2wpbKWmWbmFpWpJUGGXgV/HiQRGvfg5vfhuzrQfdfCHhx/O8L3nzhClnSjvOt1VaWl5ZXSuvVzY2t7Z3qrt7LZVkktAmSXgivRArypmgTc00p14qKY5DTtvh8Gbitx+pVCwRD3qUUj/GfcEiRrA2UlA9uA8EukJe4KJTZNu2ub3A6DXHdqaFFsEtoAZFNYLqV7eXkCymQhOOleq4Tqr9HEvNCKfjSjdTNMVkiPu0Y1DgmCo/n64/RsdG6aEokeYIjabq74kcx0qN4tB0xlgP1Lw3Ef/zOpmOLv2ciTTTVJDZQ1HGkU7QJAvUY5ISzUcGMJHM7IrIAEtMtEmsYkJw57+8CK0z2zV8d16rXxdxlOEQjuAEXLiAOtxCA5pAIIdneIU368l6sd6tj1lrySpm9uFPWZ8/Y5aShw==</latexit><latexit sha1_base64="cFE8SO7LrW0REG9nlGFeenDdHK8=">AAAB/nicbZBPS8MwGMbfzn9z/puKJy/BIQhCaUXQizD04nGi2wpbKWmWbmFpWpJUGGXgV/HiQRGvfg5vfhuzrQfdfCHhx/O8L3nzhClnSjvOt1VaWl5ZXSuvVzY2t7Z3qrt7LZVkktAmSXgivRArypmgTc00p14qKY5DTtvh8Gbitx+pVCwRD3qUUj/GfcEiRrA2UlA9uA8EukJe4KJTZNu2ub3A6DXHdqaFFsEtoAZFNYLqV7eXkCymQhOOleq4Tqr9HEvNCKfjSjdTNMVkiPu0Y1DgmCo/n64/RsdG6aEokeYIjabq74kcx0qN4tB0xlgP1Lw3Ef/zOpmOLv2ciTTTVJDZQ1HGkU7QJAvUY5ISzUcGMJHM7IrIAEtMtEmsYkJw57+8CK0z2zV8d16rXxdxlOEQjuAEXLiAOtxCA5pAIIdneIU368l6sd6tj1lrySpm9uFPWZ8/Y5aShw==</latexit>

Regret analysis of UCB

16

Regret analysis of UCB

17

Summary of Exploration in Multi-
Armed Bandits
• Explore-First

• eps-greedy

• UCB

18

Notes on MAB

• We considered “stochastic setting”
• Adversarial setting (“a rigged casino”)
• Reward sequence is arbitrary / no expectation in the

regret.

• Exponential weight algorithm for Explore-Exploit.
(Exp3) achieves the same regret.
• Read Auer et al. (2001) The Nonstochastic Multiarmed

Bandit Problem

19

Linear bandits: MAB with an
infinite number of actions
• Each action is determined by a “feature vector”

20

Features of action 2:
[Burger, Fries, Onion Ring, Fried Chicken]

Features of action 1:
[Noodles, Tom Yum Soup, Poor service]

Linear bandits: problem setup

• Action space is a compact set

• Reward is linear + noise.

• Agent chooses a sequence of actions

• The regret is defined similarly

21

The LinUCB algorithm: Optimism
in the Face of Uncertainty.
• Consider the ridge regression at each time t.

• Construct high probability confidence set of the
parameter vector

• Choose actions that maximize the UCB.

22

Regret bound of LinUCB

23(From this slide onwards mostly taken from Sham Kakade)

LinUCB Regret Bound

Sublinear regret: RT  O?(d
p

T)
poly dependence on d , no dependence on the cardinality |D|.

Theorem
Suppose: bounded noise |⌘t |  �, that kµ?k  W, and that kxk  B

for all x 2 D. Set � = �2/W 2 and

�t := �2
⇣

2 + 4d log

✓
1 +

TB2W 2

d

◆
+ 8 log(4/�)

⌘
.

With probability greater than 1 � �, that for all t � 0,

RT  c�
p

T
✓

d log

✓
1 +

TB2W 2

d�2

◆
+ log(4/�)

◆

where c is an absolute constant.

due to Dani, Hayes, K. ’09
S. M. Kakade RL 10 / 21

(Dani, Hayes & Kakde, 2009)

5.3 (AJKS)

Two components of the regret analysis

• Uniform (over all t) confidence bound

• Sum of Squares Regret bound

24

Confidence

In establishing the upper bounds there are two main propositions from
which the upper bounds follow. The first is in showing that the
confidence region is valid.

Proposition

(Confidence) Let � > 0. We have that

Pr(8t , µ? 2 BALLt) � 1 � �.

S. M. Kakade RL 11 / 21

Sum of Squares Regret Bound

Assuming the confidence event holds, the following controls on the
growth of the regret.

Proposition

(Sum of Squares Regret Bound) Define:

regrett = µ? · x⇤ � µ? · xt

Suppose kxk  B for x 2 D. Suppose �t is increasing and larger than
1. Suppose µ? 2 BALLt for all t , then

T�1X

t=0

regret2t  4�T d log

✓
1 +

TB2

d�

◆

S. M. Kakade RL 12 / 21

5.5 (AJKS)

5.6 (AJKS)

Proof of the main regret bound

• By Cauchy-Schwarz

25

Completing the Proof

Proof:[Proof of Theorem 1] With the two previous Propositions, along
with the Cauchy-Schwarz inequality, we have, with probability at least
1 � �,

RT =
T�1X

t=0

regrett 

vuutT
T�1X

t=0

regret2t 

s

4T�T d log

✓
1 +

TB2

d�

◆
.

The remainder of the proof follows from using our chosen value of �T
and algebraic manipulations.

S. M. Kakade RL 13 / 21

Plan of the proof

1. First prove the Proposition that bounds the sum
of square regret
• By bounding instantaneous regret
• And then bounding the sum of squares with

“Information Gain”

2. Prove the uniform confidence bound
• Basically show that the choice of βt “works".

26

“Width” of Confidence Ball

27

“Width” of Confidence Ball

Lemma

Let x 2 D. If µ 2 BALLt and x 2 D. Then

|(µ� bµt)
>x | 

q
�t x>⌃�1

t x

Proof: By Cauchy-Schwarz, we have:

|(µ� bµt)
>x | = |(µ� bµt)

>⌃1/2
t ⌃�1/2

t x | = |(⌃1/2
t (µ� bµt))

>⌃�1/2
t x |

 k⌃1/2
t (µ� bµt)kk⌃�1/2

t xk = k⌃1/2
t (µ� bµt)k

q
x>⌃�1

t x 
q
�t x>⌃�1

t x

where the last inequality holds since µ 2 BALLt .

S. M. Kakade RL 14 / 21

Instantaneous Regret is bounded
by the width of the ellipsoid.

28

Instantaneous Regret Lemma
Define

wt :=
q

x>
t ⌃�1

t xt

which is the “normalized width” at time t in the direction of our decision.
Lemma

Fix t  T . If µ? 2 BALLt , then

regrett  2min (
p

�twt , 1)  2
p
�T min (wt , 1)

Proof: Let eµ 2 BALLt denote the vector which minimizes the dot
product eµ>xt . By choice of xt , we have

eµ>xt = max
µ2BALLt

max
x2D

µ>x � (µ?)>x⇤,

where the inequality used the hypothesis µ? 2 BALLt . Hence,

regrett = (µ?)>x⇤ � (µ?)>xt  (eµ� µ?)>xt

= (eµ� bµt)
>xt + (bµt � µ?)>xt  2

p
�twt

where the last step follows from Lemma 4 since eµ and µ? are in BALLt .
Since rt 2 [�1, 1], regrett is always at most 2 and the first inequality
follows. The final inequality is due to that �t is increasing and larger
than 1.

S. M. Kakade RL 15 / 21

“Geometric potential” argument:
Converting summation to product

29

Geometric Argument: Part 1

The next two lemmas give us ’geometric’ potential function argument,
where can bound the sum of widths independently of the choices
made by the algorithm.

Lemma

We have:

det⌃T = det⌃0

T�1Y

t=0

(1 + w2
t).

Proof: By the definition of ⌃t+1, we have

det⌃t+1 = det(⌃t + xtx>
t) = det(⌃1/2

t (I + ⌃�1/2
t xtx>

t ⌃�1/2
t)⌃1/2

t)

= det(⌃t) det(I + ⌃�1/2
t xt(⌃

�1/2
t xt)

>) = det(⌃t) det(I + vtv>
t),

where vt := ⌃�1/2
t xt . Now observe that v>

t vt = w2
t and . . .

S. M. Kakade RL 16 / 21

5.9 (AJKS)

Taking logarithm (get information gain), then
bounding it with data-independent terms.

30

Geometric Argument: Part 2

Lemma

For any sequence x0, . . . xT�1 such that, for t < T , kxtk2  B, we have:

log
⇣
det⌃T�1/ det⌃0

⌘
= log det

I +

1
�

T�1X

t=0

xtx>
t

!
 d log

✓
1 +

TB2

d�

◆
.

Proof: Denote the eigenvalues of
PT�1

t=0 xtx>
t as �1, . . .�d , and note:

dX

i=1

�i = Trace
⇣ T�1X

t=0

xtx>
t

⌘
=

T�1X

t=0

kxtk2  TB2.

Using the AM-GM inequality,

log det
⇣

I +
1
�

T�1X

t=0

xtx>
t

⌘
= log

⇣ dY

i=1

(1 + �i/�)
⌘

= d log
⇣ dY

i=1

⇣
1 + �i/�

⌘⌘1/d
 d log

⇣ 1
d

dX

i=1

(1 + �i/�)
⌘
 d log

⇣
1 +

TB2

d�

⌘

which concludes the proof.S. M. Kakade RL 17 / 21

Bounding the Sum of Square
Instantaneous Regret

31

which concludes the proof.

Finally, we are ready to prove that if µ? always stays within the evolving confidence region, then our regret is under
control.

Proof:[Proof of Proposition 5.6] Assume that µ? 2 BALLt for all t. We have that:

T�1X

t=0

regret2
t


T�1X

t=0

4�t min(w2
t
, 1)  4�T

T�1X

t=0

min(w2
t
, 1)

 4�T

T�1X

t=0

ln(1 + w2
t
)  4�T log

⇣
det⌃T�1/ det⌃0

⌘
= 4�T d log

✓
1 +

TB2

d�

◆

where the first inequality follow from By Lemma 5.8; the second from that �t is an increasing function of t; the third
uses that for 0  y  1, ln(1 + y) � y/2; the final two inequalities follow by Lemmas 5.9 and 5.10.

5.3.2 Confidence Analysis

Proof:[Proof of Proposition 5.5] Since r⌧ = x⌧ · µ? + ⌘⌧ , we have:

bµt � µ? = ⌃�1
t

t�1X

⌧=0

r⌧x⌧ � µ? = ⌃�1
t

t�1X

⌧=0

x⌧ (x⌧ · µ? + ⌘⌧)� µ?

= ⌃�1
t

t�1X

⌧=0

x⌧ (x⌧)
>

!
µ? � µ? + ⌃�1

t

t�1X

⌧=0

⌘⌧x⌧ = �⌃�1
t

µ? + ⌃�1
t

t�1X

⌧=0

⌘⌧x⌧

For any 0 < �t < 1, using Lemma A.5, it holds with probability at least 1� �t,
q

(bµt � µ?)>⌃t(bµt � µ?) = k(⌃t)
1/2(bµt � µ?)k


����⌃�1/2

t
µ?

���+

�����⌃
�1/2
t

t�1X

⌧=0

⌘⌧x⌧

�����


p
�kµ?k+

p
2�2 log (det(⌃t) det(⌃0)�1/�t).

where we have also used the triangle inequality and that k⌃�1
t

k  1/�.

We seek to lower bound Pr(8t, µ? 2 BALLt). Note that at t = 0, by our choice of �, we have that BALL0 contains
W ?, so Pr(µ? /2 BALL0) = 0. For t � 1, let us assign failure probability �t = (3/⇡2)/t2 for the t-th event, which,
using the above, gives us an upper bound on the sum failure probability as

1� Pr(8t, µ? 2 BALLt) = Pr(9t, µ? /2 BALLt) 
1X

t=1

Pr(µ? /2 BALLt) <
1X

t=1

(1/t2)(3/⇡2) = 1/2.

This along with Lemma 5.10 completes the proof.

5.4 Bibliographic Remarks and Further Readings

The orignal multi-armed bandit model goes to back to [Robbins, 1952]. The linear bandit model was first introduced
in [Abe and Long, 1999]. Our analysis of the LinUCB algorithm follows from the original proof in [Dani et al., 2008],

52

Plan of the proof

1. First prove the Proposition that bounds the sum
of square regret
• By bounding instantaneous regret
• And then bounding the sum of squares with

“Information Gain”

2. Prove the uniform confidence bound
• Basically show that the choice of βt “works".

32

We need to prove that the true
parameter is in the version space w.h.p.
• Recall the version space is:

33

Confidence [Proof of Proposition 2]
Proof: Since r⌧ = x⌧ · µ? + ⌘⌧ , we have:

bµt � µ? = ⌃�1
t

t�1X

⌧=0

r⌧x⌧ � µ? = ⌃�1
t

t�1X

⌧=0

x⌧ (x⌧ · µ? + ⌘⌧)� µ?

= ⌃�1
t

 t�1X

⌧=0

x⌧ (x⌧)>
!
µ? � µ? + ⌃�1

t

t�1X

⌧=0

⌘⌧x⌧

= �⌃�1
t µ? + ⌃�1

t

t�1X

⌧=0

⌘⌧x⌧

By the triangle inequality,
q

(bµt � µ?)>⌃t(bµt � µ?) 
����⌃�1/2

t µ?
���+

�����⌃
�1/2
t

t�1X

⌧=0

⌘⌧x⌧

�����


p
�kµ?k + ??.

How can we bound “??” To be continued...
S. M. Kakade RL 19 / 21

Self-normalized Martingale
concentration bound.

34

Continue the proof by applying
concentration, and the bound for
information-gain

35

which concludes the proof.

Finally, we are ready to prove that if µ? always stays within the evolving confidence region, then our regret is under
control.

Proof:[Proof of Proposition 5.6] Assume that µ? 2 BALLt for all t. We have that:

T�1X

t=0

regret2
t


T�1X

t=0

4�t min(w2
t
, 1)  4�T

T�1X

t=0

min(w2
t
, 1)

 4�T

T�1X

t=0

ln(1 + w2
t
)  4�T log

⇣
det⌃T�1/ det⌃0

⌘
= 4�T d log

✓
1 +

TB2

d�

◆

where the first inequality follow from By Lemma 5.8; the second from that �t is an increasing function of t; the third
uses that for 0  y  1, ln(1 + y) � y/2; the final two inequalities follow by Lemmas 5.9 and 5.10.

5.3.2 Confidence Analysis

Proof:[Proof of Proposition 5.5] Since r⌧ = x⌧ · µ? + ⌘⌧ , we have:

bµt � µ? = ⌃�1
t

t�1X

⌧=0

r⌧x⌧ � µ? = ⌃�1
t

t�1X

⌧=0

x⌧ (x⌧ · µ? + ⌘⌧)� µ?

= ⌃�1
t

t�1X

⌧=0

x⌧ (x⌧)
>

!
µ? � µ? + ⌃�1

t

t�1X

⌧=0

⌘⌧x⌧ = �⌃�1
t

µ? + ⌃�1
t

t�1X

⌧=0

⌘⌧x⌧

For any 0 < �t < 1, using Lemma A.5, it holds with probability at least 1� �t,
q

(bµt � µ?)>⌃t(bµt � µ?) = k(⌃t)
1/2(bµt � µ?)k


����⌃�1/2

t
µ?

���+

�����⌃
�1/2
t

t�1X

⌧=0

⌘⌧x⌧

�����


p
�kµ?k+

p
2�2 log (det(⌃t) det(⌃0)�1/�t).

where we have also used the triangle inequality and that k⌃�1
t

k  1/�.

We seek to lower bound Pr(8t, µ? 2 BALLt). Note that at t = 0, by our choice of �, we have that BALL0 contains
W ?, so Pr(µ? /2 BALL0) = 0. For t � 1, let us assign failure probability �t = (3/⇡2)/t2 for the t-th event, which,
using the above, gives us an upper bound on the sum failure probability as

1� Pr(8t, µ? 2 BALLt) = Pr(9t, µ? /2 BALLt) 
1X

t=1

Pr(µ? /2 BALLt) <
1X

t=1

(1/t2)(3/⇡2) = 1/2.

This along with Lemma 5.10 completes the proof.

5.4 Bibliographic Remarks and Further Readings

The orignal multi-armed bandit model goes to back to [Robbins, 1952]. The linear bandit model was first introduced
in [Abe and Long, 1999]. Our analysis of the LinUCB algorithm follows from the original proof in [Dani et al., 2008],

52

which concludes the proof.

Finally, we are ready to prove that if µ? always stays within the evolving confidence region, then our regret is under
control.

Proof:[Proof of Proposition 5.6] Assume that µ? 2 BALLt for all t. We have that:

T�1X

t=0

regret2
t


T�1X

t=0

4�t min(w2
t
, 1)  4�T

T�1X

t=0

min(w2
t
, 1)

 4�T

T�1X

t=0

ln(1 + w2
t
)  4�T log

⇣
det⌃T�1/ det⌃0

⌘
= 4�T d log

✓
1 +

TB2

d�

◆

where the first inequality follow from By Lemma 5.8; the second from that �t is an increasing function of t; the third
uses that for 0  y  1, ln(1 + y) � y/2; the final two inequalities follow by Lemmas 5.9 and 5.10.

5.3.2 Confidence Analysis

Proof:[Proof of Proposition 5.5] Since r⌧ = x⌧ · µ? + ⌘⌧ , we have:

bµt � µ? = ⌃�1
t

t�1X

⌧=0

r⌧x⌧ � µ? = ⌃�1
t

t�1X

⌧=0

x⌧ (x⌧ · µ? + ⌘⌧)� µ?

= ⌃�1
t

t�1X

⌧=0

x⌧ (x⌧)
>

!
µ? � µ? + ⌃�1

t

t�1X

⌧=0

⌘⌧x⌧ = �⌃�1
t

µ? + ⌃�1
t

t�1X

⌧=0

⌘⌧x⌧

For any 0 < �t < 1, using Lemma A.5, it holds with probability at least 1� �t,
q

(bµt � µ?)>⌃t(bµt � µ?) = k(⌃t)
1/2(bµt � µ?)k


����⌃�1/2

t
µ?

���+

�����⌃
�1/2
t

t�1X

⌧=0

⌘⌧x⌧

�����


p
�kµ?k+

p
2�2 log (det(⌃t) det(⌃0)�1/�t).

where we have also used the triangle inequality and that k⌃�1
t

k  1/�.

We seek to lower bound Pr(8t, µ? 2 BALLt). Note that at t = 0, by our choice of �, we have that BALL0 contains
W ?, so Pr(µ? /2 BALL0) = 0. For t � 1, let us assign failure probability �t = (3/⇡2)/t2 for the t-th event, which,
using the above, gives us an upper bound on the sum failure probability as

1� Pr(8t, µ? 2 BALLt) = Pr(9t, µ? /2 BALLt) 
1X

t=1

Pr(µ? /2 BALLt) <
1X

t=1

(1/t2)(3/⇡2) = 1/2.

This along with Lemma 5.10 completes the proof.

5.4 Bibliographic Remarks and Further Readings

The orignal multi-armed bandit model goes to back to [Robbins, 1952]. The linear bandit model was first introduced
in [Abe and Long, 1999]. Our analysis of the LinUCB algorithm follows from the original proof in [Dani et al., 2008],

52

which concludes the proof.

Finally, we are ready to prove that if µ? always stays within the evolving confidence region, then our regret is under
control.

Proof:[Proof of Proposition 5.6] Assume that µ? 2 BALLt for all t. We have that:

T�1X

t=0

regret2
t


T�1X

t=0

4�t min(w2
t
, 1)  4�T

T�1X

t=0

min(w2
t
, 1)

 4�T

T�1X

t=0

ln(1 + w2
t
)  4�T log

⇣
det⌃T�1/ det⌃0

⌘
= 4�T d log

✓
1 +

TB2

d�

◆

where the first inequality follow from By Lemma 5.8; the second from that �t is an increasing function of t; the third
uses that for 0  y  1, ln(1 + y) � y/2; the final two inequalities follow by Lemmas 5.9 and 5.10.

5.3.2 Confidence Analysis

Proof:[Proof of Proposition 5.5] Since r⌧ = x⌧ · µ? + ⌘⌧ , we have:

bµt � µ? = ⌃�1
t

t�1X

⌧=0

r⌧x⌧ � µ? = ⌃�1
t

t�1X

⌧=0

x⌧ (x⌧ · µ? + ⌘⌧)� µ?

= ⌃�1
t

t�1X

⌧=0

x⌧ (x⌧)
>

!
µ? � µ? + ⌃�1

t

t�1X

⌧=0

⌘⌧x⌧ = �⌃�1
t

µ? + ⌃�1
t

t�1X

⌧=0

⌘⌧x⌧

For any 0 < �t < 1, using Lemma A.5, it holds with probability at least 1� �t,
q

(bµt � µ?)>⌃t(bµt � µ?) = k(⌃t)
1/2(bµt � µ?)k


����⌃�1/2

t
µ?

���+

�����⌃
�1/2
t

t�1X

⌧=0

⌘⌧x⌧

�����


p
�kµ?k+

p
2�2 log (det(⌃t) det(⌃0)�1/�t).

where we have also used the triangle inequality and that k⌃�1
t

k  1/�.

We seek to lower bound Pr(8t, µ? 2 BALLt). Note that at t = 0, by our choice of �, we have that BALL0 contains
W ?, so Pr(µ? /2 BALL0) = 0. For t � 1, let us assign failure probability �t = (3/⇡2)/t2 for the t-th event, which,
using the above, gives us an upper bound on the sum failure probability as

1� Pr(8t, µ? 2 BALLt) = Pr(9t, µ? /2 BALLt) 
1X

t=1

Pr(µ? /2 BALLt) <
1X

t=1

(1/t2)(3/⇡2) = 1/2.

This along with Lemma 5.10 completes the proof.

5.4 Bibliographic Remarks and Further Readings

The orignal multi-armed bandit model goes to back to [Robbins, 1952]. The linear bandit model was first introduced
in [Abe and Long, 1999]. Our analysis of the LinUCB algorithm follows from the original proof in [Dani et al., 2008],

52

Final remarks on Linear Bandits

• The regret of LinUCB is optimal up to

• Strong assumption on realizability.
• Agnostic linear bandits?

• Contextual version: a finite list of available actions
are given at each t.

36

