Lecture 7: Multi-Armed Bandits (April 19)

Lecturer: Yu-Xiang Wang

Note: LaTeX template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

7.1 Multi-arm bandits: Problem Setup

- No state or equivalently there's only one state and k-actions $a \in A=\{1,2, \ldots, k\}$
- Decide which arm to pull in every iteration, where we can think of the horizon to be 1
- Get reward $\sum_{t=1}^{T} R_{t}$
- $E\left[R_{t} \mid A_{t}=a\right]=\mu_{a}$ and $R_{t}=\mu_{a}+$ Noise, where $E[$ Noise $]=0$
- Define regret as $T \max _{a \in[k]} \mathbb{E}\left[R_{t} \mid a\right]-\sum_{t=1}^{t=T} \mathbb{E}_{a \sim \pi}\left[\mathbb{E}\left[R_{t} \mid a\right]\right]$
- No regret means sublinear scaling in T.

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \text { Regret }_{T}=0
$$

- The regret (upper) bound needs to apply to all problem instances

7.1.1 Exploration first

- Spend first N steps exploring, picking each action $\frac{N}{k}$ times, where k is the number of actions.
- Define

$$
\hat{Q}_{t}(a)=\frac{\sum_{t=1}^{t-1} R_{i} \cdot \mathbb{1}_{A_{i}=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_{i}=a}}
$$

- For $\mathrm{t}=\mathrm{N}+1, \mathrm{~N}+2, \ldots, \mathrm{~T}$:

$$
A_{t}=\underset{a}{\operatorname{argmax}} Q_{t}(a)
$$

Recall the concentration inequalities:

Hoeffding's inequality: Assume X_{1}, \ldots, X_{m} are independent and $P\left(a_{i} \leq x_{i} \leq b_{i}\right)=1$

$$
\begin{gathered}
S_{n}=X_{1}+\ldots+X_{n} \\
P\left(S_{n}-\mathbb{E}\left[S_{n}\right] \geq t\right) \leq e^{\frac{-2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}}
\end{gathered}
$$

Easier version, if $0<X_{i}<B$, with probability $1-\delta$

$$
|\bar{X}-\mathbb{E}[\bar{X}]| \leq \sqrt{\frac{B^{2} \log (2 / \delta)}{2 n}}
$$

Regret analysis of Exploration First

Since we take each action $\frac{N}{K}$ times, by Hoeffding's, with probability $\geq 1-\frac{\delta}{k}$

$$
\left\lvert\, \hat{Q}(a)-Q(a) \leq \sqrt{\frac{k \log (2 k / \delta)}{2 N}}\right.
$$

for all $a \in A$, using union bound

$$
\sup _{a \in A}|\hat{Q}(a)-Q(a)| \leq \sqrt{\frac{K}{2 N} \log \frac{2 k}{\delta}}=\epsilon
$$

Regret for Exploration Phase:

$$
\frac{N}{K} \sum_{a} \max _{a^{\prime}} Q\left(a^{\prime}\right)-Q(a) \leq N
$$

since $0 \leq Q(a) \leq 1$

Regret for Exploitation Phase:

Define $\hat{a}^{*}=\operatorname{argmax}_{a} \hat{Q}(a)$

$$
\begin{gathered}
(T-N)\left(Q\left(a^{*}\right)-Q\left(\hat{a^{*}}\right)\right. \\
=(T-N)\left[Q\left(a^{*}\right)-\hat{Q}\left(a^{*}\right)+\hat{Q}\left(a^{*}\right)-\hat{Q}\left(\hat{a^{*}}\right)+\hat{Q}\left(\hat{a^{*}}\right)-Q\left(\hat{a^{*}}\right)\right] \\
\leq(T-N) \cdot 2 \epsilon
\end{gathered}
$$

since $Q\left(a^{*}\right)-\hat{Q}\left(a^{*}\right) \leq \epsilon, \hat{Q}\left(a^{*}\right)-\hat{Q}\left(\hat{a^{*}}\right) \leq 0, \hat{Q}\left(\hat{a^{*}}\right)-Q\left(\hat{a^{*}}\right) \leq \epsilon$

$$
\leq 2 T \sqrt{\frac{K}{2 N} \log \frac{2 K}{\delta}}
$$

Total Regret:

$$
\text { Regret } \left.=N+2 T \sqrt{\frac{K}{2 N} \log \frac{2 k}{\delta}}=O\left(T^{\frac{2}{3}} K^{\frac{1}{3}}\left(\log \frac{2 k}{\delta}\right)^{\frac{1}{3}}\right)\right)
$$

where we chose $N=T^{\frac{2}{3}} k^{\frac{1}{3}}\left(\log \frac{2 k}{\delta}\right)^{\frac{1}{3}}$

7.1.2 ϵ-greedy strategy

- With probability 1- ϵ choose

$$
A_{t}=\underset{a}{\operatorname{argmax}} Q_{t}(a)
$$

- With probability ϵ choose an action uniformly at random.

Sketch of regret analysis for ϵ greedy:

- In expectation, each arm is chosen for at least ϵt times: By Hoeffding's, at time t :

$$
N_{t}(a) \geq \frac{\epsilon t}{k}-O\left(\sqrt{\frac{k}{t}}\right) \geq \frac{\epsilon t}{2 k}
$$

- Condition on the number of times, and then apply Hoeffding's inequality/union bound for all t and a

$$
\sup _{a}\left|\hat{Q}_{t}(a)-Q(a)\right| \leq O\left(\sqrt{\frac{k}{\epsilon t}}\right)
$$

- The regret bound is then:

$$
\epsilon T+\sum_{t=1}^{T} C \sqrt{\frac{k}{\epsilon t}}
$$

where the first term comes from the exploration part and the second from the exploitation part. Note that we can bound the second term by observing that $\sum_{t=1}^{T} \frac{1}{\sqrt{t}}$ is less than $\int_{1}^{T} \frac{1}{\sqrt{x}} d x=2 \sqrt{t}-2$

7.1.3 Upper Confidence Bound algorithm

- Play each action $a \in A$ once. Given that we have k actions this corresponds to k steps
- for $\mathrm{t}=\mathrm{k}+1, \ldots, \mathrm{~T}$

$$
A_{t}=\underset{a}{\operatorname{argmax}} \hat{Q}_{t}(a)+\sqrt{\frac{\log \left(\frac{2 T K}{\delta}\right)}{2 N_{t}(a)}}
$$

where

$$
\begin{gathered}
N_{t}(a)=\sum_{t=1}^{t-1} \mathbb{1}_{A_{t}=a} \\
\hat{Q}_{t}(a)=\frac{1}{N_{t}(a)}\left(R_{a}+\sum_{i=k+1}^{t-1} \mathbb{1}_{A_{i}=a} R_{i}\right)
\end{gathered}
$$

Introduce Martingale

- A sequence of random variables X_{1}, \ldots, X_{n} is a Martingale if for any n

$$
\begin{gathered}
\mathbb{E}\left[\left|X_{n}\right|\right]<\infty \\
\mathbb{E}\left[X_{n+1} \mid X_{1}, \ldots, X_{n}\right]=X_{n}
\end{gathered}
$$

Introduce Azuma-Hoeffding's inequality

- Assume X_{1}, \ldots, X_{n} are Martingale differences, then S_{n} is Martingale, where

$$
\begin{gathered}
S_{n}=X_{1}+\ldots+X_{n} \\
\mathbb{P}\left[S_{n} \geq \epsilon\right] \leq e^{-\frac{2 \epsilon^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}}
\end{gathered}
$$

Regret analysis of UCB

Recall that we want to bound

$$
\hat{Q}_{t}(a)=\frac{1}{N_{t}(a)}\left(R_{a}+\sum_{i=k+1}^{t-1} \mathbb{1}_{A_{i}=a} R_{i}\right)
$$

Let

$$
S_{t}=\left(R_{a}+\sum_{i=k+1}^{t-1} \mathbb{1}_{A_{i}=a} R_{i}\right)
$$

Subtract the mean to make it zero mean

$$
R_{a}-\mu_{a}+\sum_{i=k+1}^{t-1} \mathbb{1}_{A_{i}=a} R_{i}-\mathbb{E}\left[\mathbb{1}\left(A_{i}=a\right) R_{i} \mid \text { History }_{i-1}\right]
$$

We know from UCB that $\mathbb{1}\left(A_{i}=a\right)$ is fixed
Let $X_{i}=\mathbb{1}\left(A_{i}=a\right) R_{i}$ conditioned on $X_{1} \ldots X_{i-1}$
For those i where $A_{i}=a$ we set $b_{i}=1 a_{i}=0$.

$$
R_{a}-Q(a)+\sum_{i=k+1}^{t-1} \mathbb{1}\left(A_{i}=a\right)\left(R_{i}-Q(a)\right.
$$

is martingale and so with probability $1-\frac{\delta}{k T}$

$$
\left\lvert\, R_{a}-Q(a)+\sum_{i=k+1}^{t-1} \mathbb{1}\left(A_{i}=a\right)\left(R_{i}-Q(a) \left\lvert\, \leq \sqrt{2 N_{t}(a) \log \frac{k t}{\delta}}\right.\right.\right.
$$

Take union bound over all $a \in A$, all $\mathrm{t}, k+1 \leq t \leq T$, with probability $1-\delta$

$$
\sup _{t, a} \frac{1}{N_{t}(a)} \left\lvert\, R_{a}-Q(a)+\sum_{i=k+1}^{t-1} \mathbb{1}\left(A_{i}=a\right)\left(R_{i}-Q(a) \left\lvert\, \leq \sqrt{2 \log \frac{k T}{\delta}}\right.\right.\right.
$$

Let us define the UCB

$$
\bar{Q}_{t}(a)=\hat{Q}_{t}(a)+\sqrt{\frac{2 \log \frac{k T}{\delta}}{N_{t}(a)}}
$$

$$
Q(a *)-Q\left(A_{t}\right)=Q\left(a^{*}\right)-\bar{Q}_{t}\left(a^{*}\right)+\bar{Q}_{t}(a *)-\bar{Q}\left(A_{t}\right)+\bar{Q}\left(A_{t}\right)-Q\left(A_{t}\right)
$$

where the first term ≤ 0, the second ≤ 0 by UCB, and the last term, by concentration, $\leq 2 \cdot \epsilon$ Define

$$
\begin{gathered}
\Delta_{a}=Q\left(a^{*}\right)-Q\left(A_{t}\right) \\
\text { Regret }=\sum_{a=1}^{k} \Delta_{a}+\sum_{t=k+1}^{T} Q\left(a^{*}\right)-Q\left(A_{t}\right) \\
\leq K+\sum_{t=k+1}^{T} 2 \sqrt{\frac{2 \log \frac{2 T k}{\delta}}{N_{t}\left(A_{t}\right)}} \\
=K+2 \sqrt{2 \log \frac{2 T k}{\delta}} \sum_{a=1}^{k} \sum_{i=1}^{N_{t}(a)} \frac{1}{\sqrt{i}} \\
\leq K+4 \sqrt{2 \log \frac{2 T k}{\delta} \sum_{a=N}^{k} \sqrt{N_{t}(a)}} \\
\leq k+4 \sqrt{2 \log \frac{2 T k}{\delta}} \sqrt{K T}
\end{gathered}
$$

by Cauchy-Schwarz

$$
=K+c \sqrt{K T \log \frac{2 T k}{\delta}}
$$

Gap dependent analysis to obtain a tighter bound:
Claim: $N_{t}(a) \frac{\leq 2 \sqrt{2} \log \frac{2 T k}{\delta}}{\Delta_{a}^{2}}$
Substitute above to get bound.

7.1.4 Summary of Regret Bounds in Multi-Armed Bandits

Let \widetilde{O} hide constant \log factors.

- Explore-First

$$
\widetilde{O}\left(T^{\frac{2}{3}} k^{\frac{1}{3}}\right)
$$

- Epsilon greedy

$$
\widetilde{O}\left(T^{\frac{2}{3}} k^{\frac{1}{3}}\right)
$$

- UCB

$$
\widetilde{O}(\sqrt{T K})
$$

7.2 Linear bandits: Multi-Armed Bandits with an infinite number of actions

- Each action is determined by a feature vector
- Action space is a compact set $A \subset \mathbb{R}^{d}$
- Reward is linear with noise: $R_{t}=\left\langle A_{t}, \mu_{*}\right\rangle+\eta_{t}$, where η_{t} independent and σ^{2} subgaussian.
- Agent chooses a sequence of actions $A_{1} \ldots A_{T}$
- Regret is defined as:

$$
\text { Regret }_{T}=T \cdot\left\langle a^{*}, u_{*}\right\rangle-\sum_{t=1}^{T}\left\langle A_{t}, u_{*}\right\rangle
$$

Note that in the textbook the notation is different: $A_{i}=D, a=x$

7.2.1 The LinUCB algorithm: Optimism in the Face of Uncertainty

- Consider the ridge regression at each time t

$$
\hat{\mu}_{t}=\underset{\mu \in W}{\operatorname{argmin}} \sum_{i=1}^{t-1}\left(r_{i}-\mu^{T} x_{i}\right)^{2}+\lambda\|\mu\|^{2}
$$

Note that there is a closed form solution $\hat{\mu}_{t}=\Sigma_{t}^{-1} \sum_{i=1}^{t-1} x_{i} r_{i}$ where Σ_{t} is defined below

- Construct high probability confidence set of the parameter vector

$$
\text { Ball }_{t}=\left\{\mu \mid\left(\mu-\hat{\mu}_{t}\right)^{T} \Sigma_{t}\left(\mu-\hat{\mu}_{T}\right) \leq B_{t}\right\}
$$

where $\Sigma_{t}=\sum_{i=1}^{t-1} x_{i} x_{i}^{T}+\lambda I_{d}$

- Choose actions that maximize the UCB

$$
x_{t}=\underset{x \in D}{\operatorname{argmax}} \max _{\mu \in \text { Ball }_{t}}\langle x, \mu\rangle
$$

