CS292F Statistical Foundation of Reinforcement Learning Spring 2021

Lecture 7: Multi-Armed Bandits (April 19)
Lecturer: Yu-Xiang Wang Scribes: Ari Polakof

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They
may be distributed outside this class only with the permission of the Instructor.

7.1 Multi-arm bandits: Problem Setup

e No state or equivalently there’s only one state and k-actions a € A = {1,2,...,k}

e Decide which arm to pull in every iteration, where we can think of the horizon to be 1
e Get reward Zthl R

o E[R|A: =a] = pq and Ry = pg + Noise , where E[Noise] =0

e Define regret as T maxqey) E[R;|a] — S Eomr [E[R:a]]

e No regret means sublinear scaling in T.

1
lim fRegretT =0

T—o0

e The regret (upper) bound needs to apply to all problem instances

7.1.1 Exploration first

e Spend first N steps exploring, picking each action % times, where k is the number of actions.

e Define "
A =1 Bi - 1a,=a

Qt(a) N Zf;i ILAi:a

e For t = N+1, N+2, ..., T:
A = argmax Q(a)

Recall the concentration inequalities:

Hoeffding’s inequality: Assume X7, ..., X,, are independent and P(a; < z; <b;) =1

Sn=X1+...+X,

—2¢2

P(S, —E[S,] > t) < eZimi(imed?
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Easier version, if 0 < X; < B, with probability 1 —

B2log(2/96)

|X —E[X]| <
2n

Regret analysis of Exploration First

Since we take each action % times, by Hoeffding’s, with probability > 1 — %

A klog(2k/9)
_ < g ZZIAEE T
QM) - Qo) < /T
for all a € A, using union bound
A K 2k
sup Q(a) = Qla)] </ 5slog— =€
Regret for Exploration Phase:
N

since 0 < Q(a) <1
Regret for Exploitation Phase:

Define a* = argmax, Q(a)

Total Regret:

K (log 7))

@l
Wl

| K 2k
Regret = N + 2T N log 5 = o(T

where we chose N = T3 k3 (log %)%
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7.1.2 e-greedy strategy

e With probability 1-e choose
Ay = argmax Q;(a)
a

e With probability € choose an action uniformly at random.
Sketch of regret analysis for ¢ greedy:

e In expectation, each arm is chosen for at least et times: By Hoeffding’s, at time t:

et k et
N, > — — =y > —

e Condition on the number of times, and then apply Hoeffding’s inequality /union bound for all t and a

k

sup [Qule) — Q)| < O(y/ )

e The regret bound is then:

U
T Cy/ —
el + Z p”
t=1
where the first term comes from the exploration part and the second from the exploitation part. Note
that we can bound the second term by observing that 3°;_, % is less than flT %da: =2v/t—2

7.1.3 Upper Confidence Bound algorithm
e Play each action a € A once. Given that we have k actions this corresponds to k steps
o fort =k+1, .., T

log(#5)

At = argl;nax Qt (CL) + W

where

t—1
Ni(a) = 1a,=a
t=1

1 t—1
Qia) = W(Ra + gﬁ;l 1a,=aRi)

Introduce Martingale
e A sequence of random variables X, ..., X,, is a Martingale if for any n

E[|X,|] < o0
E[Xp1| X1, s Xn] = X
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Introduce Azuma-Hoeffding’s inequality
e Assume Xy, ..., X,, are Martingale differences, then S,, is Martingale, where

S, =X, +..+X,
2

22
P[Sn > 6] <e S (bi—ai)?

Regret analysis of UCB

Recall that we want to bound

1 t—1
Qi(a) = m(ﬁ:u + :;1 1a,—aR;)

Let

t—1
St = (Ra + Z lAi:aR’i)
i=k+1

Subtract the mean to make it zero mean

t—1
Ra — g + Z ]]-A,;:aRi — E[]].(Al = a)Ri|Hz’st0ryi_1]
i=k+1
We know from UCB that 1(A; = a) is fixed
Let X; = 1(A; = a)R; conditioned on X;...X; 4

For those i where A; = a we set b; =1 a; = 0.

t—1
R, —Q(a)+ Y 1(4 =a)(R; — Q(a)
i=k+1
is martingale and so with probability 1 — %
t—1 i
|Ra = Q(a)+ Y 1(Ai = a)(Ri — Q(a)| < |/2Ni(a) log 5
i=k+1

Take union bound over all a € A, all t, k +1 <t <T, with probability 1 — §

1 t—1 kT
sup eyl — Q(a) + 3 1<Ai=a><R¢—Q<a>|<\/E

i=k+1

Let us define the UCB
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Q(ax) — Q(A)) = Q(a") — Qy(a”) + Qy(a*) — Q(Ar) + Q(Ar) — Q(Ay)

where the first term < 0, the second < 0 by UCB, and the last term, by concentration, < 2 - ¢

Define
Ay =Q(a") — Q(Ar)

Regret = ZA + Z Q(a™) — Q(Ar)

a=1 t=k+1

<K+ Z

t=k+1

k Nt
—K+2\/2log Z
k
<K+4\/210g Z
2T
< k—|—4\/210ng\/KT

—K+C\/KTlog¥

Gap dependent analysis to obtain a tighter bound:

. <2v2log 2Tk
Claim: Nt(a)%

2 lOg 2Tk

(l

—

T;M

by Cauchy-Schwarz

Substitute above to get bound.

7.1.4 Summary of Regret Bounds in Multi-Armed Bandits

Let O hide constant log factors.

e Explore-First

e Epsilon greedy

e UCB
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7.2 Linear bandits: Multi-Armed Bandits with an infinite number
of actions

Each action is determined by a feature vector

Action space is a compact set A C R?

Reward is linear with noise: Ry = (A, ps) + m¢ , where 1, independent and o? subgaussian.

Agent chooses a sequence of actions A;...Ar

Regret is defined as:

T
Regretr = (@™, uy) Z (Ag, us)
t=1
Note that in the textbook the notation is different: A; =D ,a =1

7.2.1 The LinUCB algorithm: Optimism in the Face of Uncertainty

e Consider the ridge regression at each time t

iy = argmmz — 1T z)? 4 M|pl?
new

Note that there is a closed form solution fi; = 3, Z 1 x;7; where ¥; is defined below

e Construct high probability confidence set of the parameter vector
Bally = {pl(n — fur) " Se(n — fir) < By}
where ¥, = Zf ixlm + M
e Choose actions that maximize the UCB

x¢ = argmax max (z, u)
zeD MEBally
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