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7.1 Multi-arm bandits: Problem Setup

• No state or equivalently there’s only one state and k-actions a ∈ A = {1, 2, ..., k}

• Decide which arm to pull in every iteration, where we can think of the horizon to be 1

• Get reward
∑T
t=1Rt

• E[Rt|At = a] = µa and Rt = µa +Noise , where E[Noise] = 0

• Define regret as T maxa∈[k] E[Rt|a]−
∑t=T
t=1 Ea∼π[E[Rt|a]]

• No regret means sublinear scaling in T.

lim
T→∞

1

T
RegretT = 0

• The regret (upper) bound needs to apply to all problem instances

7.1.1 Exploration first

• Spend first N steps exploring, picking each action N
k times, where k is the number of actions.

• Define

Q̂t(a) =

∑t−1
t=1 Ri · 1Ai=a∑t−1
i=1 1Ai=a

• For t = N+1, N+2, ..., T:
At = argmax

a
Qt(a)

Recall the concentration inequalities:

Hoeffding’s inequality: Assume X1, ..., Xm are independent and P (ai ≤ xi ≤ bi) = 1

Sn = X1 + ...+Xn

P (Sn − E[Sn] ≥ t) ≤ e
−2t2∑n

i=1
(bi−ai)2
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Easier version, if 0 < Xi < B, with probability 1− δ

|X − E[X]| ≤
√
B2log(2/δ)

2n

Regret analysis of Exploration First

Since we take each action N
K times, by Hoeffding’s, with probability ≥ 1− δ

k

|Q̂(a)−Q(a) ≤
√
klog(2k/δ)

2N

for all a ∈ A, using union bound

sup
a∈A
|Q̂(a)−Q(a)| ≤

√
K

2N
log

2k

δ
= ε

Regret for Exploration Phase:

N

K

∑
a

max
a′

Q(a′)−Q(a) ≤ N

since 0 ≤ Q(a) ≤ 1

Regret for Exploitation Phase:

Define â∗ = argmaxa Q̂(a)

(T −N)(Q(a∗)−Q(â∗)

= (T −N)[Q(a∗)− Q̂(a∗) + Q̂(a∗)− Q̂(â∗) + Q̂(â∗)−Q(â∗)]

≤ (T −N) · 2ε

since Q(a∗)− Q̂(a∗) ≤ ε, Q̂(a∗)− Q̂(â∗) ≤ 0, Q̂(â∗)−Q(â∗) ≤ ε

≤ 2T

√
K

2N
log

2K

δ

Total Regret:

Regret = N + 2T

√
K

2N
log

2k

δ
= O(T

2
3K

1
3 (log

2k

δ
)

1
3 ))

where we chose N = T
2
3 k

1
3 (log 2k

δ )
1
3



Lecture 7: Multi-Armed Bandits (April 19) 7-3

7.1.2 ε-greedy strategy

• With probability 1-ε choose
At = argmax

a
Qt(a)

• With probability ε choose an action uniformly at random.

Sketch of regret analysis for ε greedy:

• In expectation, each arm is chosen for at least εt times: By Hoeffding’s, at time t:

Nt(a) ≥ εt

k
−O(

√
k

t
) ≥ εt

2k

• Condition on the number of times, and then apply Hoeffding’s inequality/union bound for all t and a

sup
a
|Q̂t(a)−Q(a)| ≤ O(

√
k

εt
)

• The regret bound is then:

εT +

T∑
t=1

C

√
k

εt

where the first term comes from the exploration part and the second from the exploitation part. Note

that we can bound the second term by observing that
∑T
t=1

1√
t

is less than
∫ T

1
1√
x
dx = 2

√
t− 2

7.1.3 Upper Confidence Bound algorithm

• Play each action a ∈ A once. Given that we have k actions this corresponds to k steps

• for t = k+1, ..., T

At = argmax
a

Q̂t(a) +

√
log( 2TK

δ )

2Nt(a)

where

Nt(a) =

t−1∑
t=1

1At=a

Q̂t(a) =
1

Nt(a)
(Ra +

t−1∑
i=k+1

1Ai=aRi)

Introduce Martingale

• A sequence of random variables X1, ..., Xn is a Martingale if for any n

E[|Xn|] <∞

E[Xn+1|X1, ..., Xn] = Xn
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Introduce Azuma-Hoeffding’s inequality

• Assume X1, ..., Xn are Martingale differences, then Sn is Martingale, where

Sn = X1 + ...+Xn

P[Sn ≥ ε] ≤ e
− 2ε2∑n

i=1
(bi−ai)2

Regret analysis of UCB

Recall that we want to bound

Q̂t(a) =
1

Nt(a)
(Ra +

t−1∑
i=k+1

1Ai=aRi)

Let

St = (Ra +

t−1∑
i=k+1

1Ai=aRi)

Subtract the mean to make it zero mean

Ra − µa +

t−1∑
i=k+1

1Ai=aRi − E[1(Ai = a)Ri|Historyi−1]

We know from UCB that 1(Ai = a) is fixed

Let Xi = 1(Ai = a)Ri conditioned on X1...Xi−1

For those i where Ai = a we set bi = 1 ai = 0.

Ra −Q(a) +

t−1∑
i=k+1

1(Ai = a)(Ri −Q(a)

is martingale and so with probability 1− δ
kT

|Ra −Q(a) +

t−1∑
i=k+1

1(Ai = a)(Ri −Q(a)| ≤
√

2Nt(a) log
kt

δ

Take union bound over all a ∈ A, all t, k + 1 ≤ t ≤ T , with probability 1− δ

sup
t,a

1

Nt(a)
|Ra −Q(a) +

t−1∑
i=k+1

1(Ai = a)(Ri −Q(a)| ≤
√

2 log
kT

δ

Let us define the UCB

Qt(a) = Q̂t(a) +

√
2 log kT

δ

Nt(a)
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Q(a∗)−Q(At) = Q(a∗)−Qt(a∗) +Qt(a∗)−Q(At) +Q(At)−Q(At)

where the first term ≤ 0, the second ≤ 0 by UCB, and the last term, by concentration, ≤ 2 · ε

Define
∆a = Q(a∗)−Q(At)

Regret =

k∑
a=1

∆a +

T∑
t=k+1

Q(a∗)−Q(At)

≤ K +

T∑
t=k+1

2

√
2 log 2Tk

δ

Nt(At)

= K + 2

√
2 log

2Tk

δ

k∑
a=1

Nt(a)∑
i=1

1√
i

≤ K + 4

√
2 log

2Tk

δ

k∑
a=N

√
Nt(a)

≤ k + 4

√
2 log

2Tk

δ

√
KT

by Cauchy-Schwarz

= K + c

√
KT log

2Tk

δ

Gap dependent analysis to obtain a tighter bound:

Claim: Nt(a)
≤2
√

2 log 2Tk
δ

∆2
a

Substitute above to get bound.

7.1.4 Summary of Regret Bounds in Multi-Armed Bandits

Let Õ hide constant log factors.

• Explore-First

Õ(T
2
3 k

1
3 )

• Epsilon greedy

Õ(T
2
3 k

1
3 )

• UCB

Õ(
√
TK)
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7.2 Linear bandits: Multi-Armed Bandits with an infinite number
of actions

• Each action is determined by a feature vector

• Action space is a compact set A ⊂ Rd

• Reward is linear with noise: Rt = 〈At, µ∗〉+ ηt , where ηt independent and σ2 subgaussian.

• Agent chooses a sequence of actions A1...AT

• Regret is defined as:

RegretT = T · 〈a∗, u∗〉 −
T∑
t=1

〈At, u∗〉

Note that in the textbook the notation is different: Ai = D , a = x

7.2.1 The LinUCB algorithm: Optimism in the Face of Uncertainty

• Consider the ridge regression at each time t

µ̂t = argmin
µ∈W

t−1∑
i=1

(ri − µTxi)2 + λ‖µ‖2

Note that there is a closed form solution µ̂t = Σ−1
t

∑t−1
i=1 xiri where Σt is defined below

• Construct high probability confidence set of the parameter vector

Ballt = {µ|(µ− µ̂t)TΣt(µ− µ̂T ) ≤ Bt}

where Σt =
∑t−1
i=1 xix

T
i + λId

• Choose actions that maximize the UCB

xt = argmax
x∈D

max
µ∈Ballt

〈x, µ〉
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