CS292F Statistical Foundation of Reinforcement Learning

Note: LaTeX template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

Recap:

Markov Decision processes(MDP) parameteriztion

1. Infinite horizon/ discounted setting

$$
\mathcal{M}(\mathcal{S}, \mathcal{A}, P, r, \gamma, \mu)
$$

- Transition kernel: $P: \mathcal{S} \times \mathcal{A} \rightarrow \Delta(\mathcal{S})$, i.e. $P\left(S^{\prime} \mid S, a\right)$
- (Expected) reward function: $r: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R} /\left[0, R_{\max }\right], \mathbb{E}\left[R_{t} \mid S_{t}=s, A_{t}=a\right]=: r(s, a)$

WLOG, we can let $R_{\max }=1$

- Innitial state distribution: $\mu, \in \Delta(S)$
- Discounting factor: $\gamma \in[0,1]$ e.g. Horizon $\frac{1}{1-\gamma}=1+\gamma+\gamma^{2}+\ldots$

2. Immediate reward function $r\left(s, a, s^{\prime}\right)$

Expected immediate reward

$$
\begin{aligned}
r\left(s, a, s^{\prime}\right) & =\mathbb{E}\left[R_{1} \mid S_{1}=s, A_{1}=a, S_{2}=s^{\prime}\right] \\
r^{\pi}(s) & =\mathbb{E}_{a \sim \pi(a \mid s)}\left[R_{1} \mid S_{1}=s\right]
\end{aligned}
$$

3. state value function $V^{\pi}(s)$

Expected long-term return when starting in s and following π

$$
V^{\pi}(s)=\mathbb{E}_{\pi}\left[R_{1}+\gamma R_{2}+\ldots+\gamma^{t-1} R_{t}+\ldots \mid S_{1}=s\right]
$$

4. state-action value function $Q^{\pi}(s, a)$

Expected long-term return when starting in s, performing a, and following π.

$$
Q^{\pi}(s, a)=\mathbb{E}_{\pi}\left[R_{1}+\gamma R_{2}+\ldots+\gamma^{t-1} R_{t}+\ldots \mid S_{1}=s, A_{1}=a\right]
$$

5. Optimal value function and the MDP planning problem

$$
\begin{aligned}
V^{*}(s) & :=\sup _{\pi \in \Pi} V^{\pi}(s) \\
Q^{*}(s, a) & :=\sup _{\pi \in \Pi} Q^{\pi}(s, a)
\end{aligned}
$$

Goal of MDP planning is to find π^{*} such that $V^{\pi}(s)=V^{*}(s)$ for all s. For computational reasons, we sometimes want to solve the approximate solution for the problem. We say π is ε - optimal if $V^{\pi} \geq V^{*}(s)-\varepsilon \mathbf{1}$.
6. Policies

- General policy could depend on the entire history

$$
\pi:(\mathcal{S} \times \mathcal{A} \times \mathbb{R})^{*} \times \mathcal{S} \rightarrow \Delta(\mathcal{A})
$$

- Stationary policy

$$
\pi: \mathcal{S} \rightarrow \Delta(\mathcal{A})
$$

- Stationary, Deterministic policy

$$
\pi: \mathcal{S} \rightarrow \mathcal{A}
$$

7. Few results about MDPs

Proposition It suffices to consider stationary policies.

- Occupancy measure

$$
\begin{aligned}
\nu_{\mu}^{\pi}(s) & =\sum_{t=1}^{\infty} \gamma^{t-1} d^{\pi}\left(S_{t}=s\right) \quad \text { (State occupancy measure) } \\
\nu_{\mu}^{\pi}(s, a) & =\sum_{t=1}^{\infty} \gamma^{t-1} d^{\pi}\left(S_{t}=s, A_{t}=a\right) \quad \text { (State-action occupancy measure) }
\end{aligned}
$$

where $d^{\pi}\left(S_{t}=s\right)$ is marginal density function under policy π at time t observe state s. Similarly, $d^{\pi}\left(S_{t}=s, A_{t}=a\right)$ is marginal distribution policy π at time t with state-action pair (s, a) observed.
Then

$$
V^{\pi}(\mu)=\left\langle\nu^{\pi}(s, a), r(s, a)\right\rangle
$$

- There exists a stationary policy with the same occupancy measure.

For a policy π is optimal or any policies π which is non-stationary, $\exists \pi^{\prime}$ is stationary s.t. $\nu^{\pi}(s, a)=\nu^{\pi^{\prime}}(s, a)$.
Corollary There is a stationary poly that is optimal for all initial states.

2.1 Bellman Equations

For stationary policies there is an alternative, recursive and more useful way of defining the V function and Q function.

$$
\begin{equation*}
V^{\pi}(s)=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right)\right]=\sum_{a} \pi(a \mid s) Q^{\pi}(s, a) \tag{2.1}
\end{equation*}
$$

Exercise:

- Prove Bellman equation from the (first principle) definition.
- Write down the Bellman equation using Q function alone.

$$
Q^{\pi}(s, a)=\sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma \sum_{a^{\prime}} \pi\left(a^{\prime} \mid s^{\prime}\right) Q^{\pi}\left(s^{\prime}, a^{\prime}\right)\right]
$$

Now we are going to derive Bellman Equation for stationary policies.

$$
\begin{aligned}
V^{\pi}(s) & =\mathbb{E}^{\pi}\left[\sum_{t=1}^{\infty} \gamma^{t-1} r\left(S_{t}, A_{t}\right) \mid S_{1}=s\right] \\
& =\mathbb{E}^{\pi}\left[r\left(S_{1}, A_{1}\right) \mid S_{1}=s\right]+\sum_{S_{2}} P^{\pi}\left(S_{2}=s^{\prime} \mid S_{1}=s\right) \mathbb{E}^{\pi}\left[\sum_{t=2}^{\infty} \gamma^{t-1} r\left(S_{t}, A_{t}\right) \mid S_{2}=s^{\prime}\right] \quad \text { Let } \tilde{t}=t-1 \\
& =r^{\pi}(s)+\gamma \sum_{S_{2}} P^{\pi}\left(S_{2}=s^{\prime} \mid S_{1}=s\right) \mathbb{E}^{\pi}\left[\sum_{\tilde{t}=1}^{\infty} \gamma^{\tilde{t}-1} r\left(S_{\tilde{t}}, A_{\tilde{t}}\right) \mid S_{1}=s^{\prime}\right]
\end{aligned}
$$

By Stationarity $=r^{\pi}(s)+\gamma \sum_{S_{2}} P^{\pi}\left(S_{2}=s^{\prime} \mid S_{1}=s\right) V^{\pi}\left(s^{\prime}\right)$
where $P^{\pi}\left(s^{\prime} \mid s\right)=\sum_{a} P\left(s^{\prime} \mid s, a\right) \cdot \pi(a \mid s)$.
We can also write Bellman Equation in matrix form.

$$
\boldsymbol{V}^{\pi}=\boldsymbol{r}^{\pi}+\gamma \boldsymbol{P}^{\pi} \boldsymbol{V}^{\pi}
$$

where $\boldsymbol{P}^{\pi} \in \mathbb{R}^{S \times S}$ is the transpose of transition matrix under policy $\pi, \boldsymbol{V}^{\pi}, \boldsymbol{r}^{\pi} \in \mathbb{R}^{S}$.
Lemma 2.1 (Bellman consistency). For stationary policies, we have

$$
\begin{aligned}
V^{\pi} & =Q^{\pi}(s, \pi(s))=\mathbb{E}_{a \sim \pi(a \mid s)}\left[Q^{\pi}(s, a)\right] \\
Q^{\pi}(s, a) & =r(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)}\left[V^{\pi}\left(s^{\prime}\right)\right]
\end{aligned}
$$

In matrix forms:

$$
\begin{aligned}
& \boldsymbol{V}^{\pi}=\boldsymbol{r}^{\pi}+\gamma \boldsymbol{P}^{\pi} \boldsymbol{V}^{\pi} \quad \boldsymbol{P}^{\pi} \in \mathbb{R}^{S \times S} \\
& \boldsymbol{Q}^{\pi}=\boldsymbol{r}+\gamma \boldsymbol{P} \boldsymbol{V}^{\pi} \\
& \boldsymbol{Q}^{\pi}=\boldsymbol{r}+\gamma \boldsymbol{P}^{\pi} \boldsymbol{Q}^{\pi} \quad \boldsymbol{P}^{\pi} \in \mathbb{R}^{S A \times S A}
\end{aligned}
$$

where $\boldsymbol{r} \in \mathbb{R}^{S A}, \boldsymbol{r}^{\pi} \in \mathbb{R}^{S}$.

Notice: The dimensions of two \boldsymbol{P}^{π},s are different. Both of them are depend on π but in slightly different ways. The first \boldsymbol{P}^{π} is marginal over a and the second \boldsymbol{P}^{π} is joint with a^{\prime}.

The matrix forms can help us solve the close form of \boldsymbol{V}^{π} and \boldsymbol{Q}^{π}. For example, $\left(\boldsymbol{I}-\boldsymbol{\gamma} \boldsymbol{P}^{\pi}\right) \boldsymbol{V}^{\boldsymbol{\pi}}=\boldsymbol{r}^{\pi}$, then we can obtain \boldsymbol{V}^{π} by solving this linear equations.

It is interesting that we can connect the matrix forms of value functions with occupancy measure.

$$
V^{\pi}(\mu)=\sum_{s, a} r(s, a) \nu_{\mu}^{\pi}(s, a)=\left\langle r, \nu_{\mu}^{\pi}\right\rangle
$$

What we derived in Lecture 1 is that there is also a Bellman equation holds for ν_{μ}^{π}.

$$
\begin{aligned}
& \nu^{\pi}(s)=\mu(s)+\gamma \sum_{s^{\prime}} \nu^{\pi}\left(s^{\prime}\right) P^{\pi}\left(s \mid s^{\prime}\right) \\
& \nu^{\pi}(s, a)=\mu(s) \pi(s, a)+\gamma \sum_{s^{\prime}} \nu^{\pi}\left(s^{\prime}\right) \pi(a \mid s) \sum_{a^{\prime}} P^{\pi}\left(s \mid s^{\prime}, a^{\prime}\right) \pi\left(a^{\prime} \mid s^{\prime}\right) \\
\Rightarrow & \nu^{\pi}(s, a)=\mu^{\pi}(s, a)+\gamma \sum_{s^{\prime}} \sum_{a^{\prime}} \nu^{\pi}\left(a^{\prime}, s^{\prime}\right) P^{\pi}\left(s, a \mid s^{\prime}, a^{\prime}\right)
\end{aligned}
$$

$\left\{\begin{array}{l}V^{\pi}=\left(I-\gamma P^{\pi}\right)^{-1} r^{\pi} \\ \nu^{\pi}=\left(I-\gamma\left(P^{\pi}\right)^{T}\right)^{-1} \mu\end{array}\right.$. They are dual to each other in some sense.
To prove that the above equations hold, we need to prove the matrix $I-\gamma P^{\pi}$ is invertible.
Corollary 2.2. The matrix $I-\gamma P^{\pi}$ is full rank/ invertible for any $\gamma<1$.

Proof. WTP: $\forall x \neq 0,\left(I-\gamma P^{\pi}\right) x \neq 0$, where I is identity matrix.

$$
\begin{aligned}
\left\|\left(I-\gamma P^{\pi}\right) x\right\|_{\infty} & =\left\|x-\gamma P^{\pi}\right\|_{\infty} \\
& \geq\|x\|_{\infty}-\gamma\left\|P^{\pi} x\right\|_{\infty} \quad \text { By triangle inequality and linearity } \\
& \geq\|x\|_{\infty}-\gamma\|x\|_{\infty}
\end{aligned}
$$

P^{π} is a transpose of transition matrix, i.e. each row of P^{π} is probability distribution $\left(P\left(s^{\prime} \mid s\right)\right)$, that is the row sum is 1 .

By Holder's inequality,

$$
P^{\pi} x=\left(\begin{array}{c}
\left\langle P^{\pi}[1,:], x\right\rangle \\
\vdots \\
\left\langle P^{\pi}[n,:], x\right\rangle
\end{array}\right)=(1-\gamma)\|x\|_{\infty}
$$

Consider the first element in the vector, $\left\langle P^{\pi}[1,:], x\right\rangle \leq\left\|P^{\pi}[1,:]\right\|_{1}\|x\|_{\infty} \leq\|x\|_{\infty}$.

Bellman optimality equations characterizes the optimal policy.

$$
\begin{equation*}
V^{*}=\max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right] \tag{2.2}
\end{equation*}
$$

where $\sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) r\left(s, a, s^{\prime}\right)$ is the expected immediate reward, $\sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) \gamma V^{*}\left(s^{\prime}\right)$ represents discounted future reward by optimal policy.

This is a system of n non-linear equations. If we can solve $V^{*}(s)$ then it is easy to extract the optimal policy by simply converting it to Q^{*} function. Then $\pi^{*}(s)=\operatorname{argmax}_{a} Q^{*}(s, a)$.

Proposition 2.3. There is a deterministic, stationary and optimal policy and it is given by

$$
\pi^{*}(s)=\underset{a}{\operatorname{argmax}} Q^{*}(s, a)
$$

Proof. π^{*} is stationary.

$$
\begin{aligned}
V^{*}(s)=V^{\pi^{*}}(s) & =\mathbb{E}_{a \sim \pi^{*}(a \mid s)}\left[Q^{\pi^{*}}(s, a)\right] \\
& \leq \max _{a} Q^{\pi^{*}}(s, a) \\
& =\max _{a} Q^{*}(s, a) \quad \text { By the fact } \pi^{*} \text { is optimal }
\end{aligned}
$$

Then define $\pi^{\prime}(s)=\operatorname{argmax}_{s} Q^{*}(s, a)$.
I. Check π^{\prime} is stationary, i.e. only depends on \S.
II. π^{\prime} is deterministic, i.e.

$$
\max _{a} Q^{*}(s, a)=Q^{*}\left(s, \pi^{\prime}(s)\right) \stackrel{\text { Stationary }}{=} V^{\pi^{\prime}}(s)
$$

By definition,

$$
V^{*}(s) \geq V^{\tilde{\pi}}(s), \quad \forall \tilde{\pi}
$$

substitute $\tilde{\pi}=\pi^{\prime}$, then we can get

$$
V^{\pi^{\prime}}(s) \leq V^{*}(s) \leq V^{\pi^{\prime}}(s) \Leftrightarrow V^{*}(s)=V^{\pi^{\prime}}(s)=\underset{a}{\operatorname{argmax}} Q^{*}(s, a)
$$

2.2 Solving MDP planning problem

The crux of solving a MDP planning problem is to construct Q^{*}. There are two approaches

- By solving a linear program
- By solving Bellman equations/ Bellman optimality equations

2.2.1 Linear programming approach

Solve for V^{*} by solving the following LP

$$
\begin{array}{ll}
& \min _{V \in \mathbb{R}^{S}} \sum_{s} \mu(s) V(s) \\
\text { s.t. } & V(s) \geq \max _{a} r(s, a)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V\left(s^{\prime}\right) \quad \forall a \in \mathcal{A}, s \in \mathcal{S} \tag{2.3}
\end{array}
$$

If we substitute $V=V^{*}$, we have $\sum_{s} \mu(s) V^{*}(s)=V^{*}(\mu)$. The constraints are equivalent to

$$
\left.V(s) \geq \max _{a} r(s, a)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V\left(s^{\prime}\right)\right)
$$

The Lagrange dual of the LP

$$
\begin{array}{ll}
& \max _{\nu} \sum_{s, a} \nu(s, a) r(s, a) \\
\text { s.t. } & \nu \geq 0 \tag{2.4}\\
& \sum_{z} \nu(s, a)=\mu(s)+\gamma \sum_{s^{\prime}, a} P\left(s \mid s^{\prime}, a\right) \nu\left(s^{\prime}, a^{\prime}\right)
\end{array}
$$

Linear programming has strong duality, i.e. the minimum of the primal problem is the maximum of the dual problem.

Exercise: Derive the dual by applying the standard procedure.

- Construct Lagrangian multiplier.
- Minimize the Lagrangian to obtain the exact formula

Quiz: Once we have the solution $\left(\nu \in \mathbb{R}^{S A}\right)$, how to construct the policy?

$$
\nu^{*}(s, a)=\nu^{\pi^{*}}(s, a)=\nu^{\pi^{*}}(s) \pi^{*}(a \mid s)
$$

where $\pi^{*}(a \mid s)=\frac{\nu^{\pi^{*}}(s, a)}{\sum_{a} \nu^{\pi^{*}}(s, a)}$.
When the optimal solution is unique then always exists stationary, deterministic policy.

2.2.2 Value Iteration Algorithm

According to Bellman optimality equations 2.2, we can get

$$
Q(s, a)=r(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(\mid \dot{s}, a)}\left[\max _{a^{\prime} \in \mathcal{A}} Q\left(s^{\prime}, a^{\prime}\right)\right]
$$

Then, we can define

$$
\mathcal{T} Q=r+P V_{Q}
$$

where \mathcal{T} is a nonlinear operator, $V_{Q}(s):=\max _{a \in \mathcal{A}} Q(s, a)$.
Theorem 2.4. $Q=Q^{*}$ if and only if Q satisfies the Bellman optimality equations.
Algorithm: Value iteration(VI)

1. Initialize Q_{0} arbitrarily
2. For i in $1,2, \ldots, k$, update $Q_{i}=\mathcal{T} Q_{i-1}$
3. Return Q_{k}

Value iteration algorithm iteratively applies the Bellman operator until it converges.

2.2.3 Convergence analysis of Value Iteration

Lemma 2.5. The Bellman operator is a γ-contraction. That is $\forall Q, Q^{\prime} \in \mathbb{R}^{S A}$,

$$
\left\|\mathcal{T} Q-\mathcal{T} Q^{\prime}\right\|_{\infty} \leq \gamma\left\|Q-Q^{\prime}\right\|_{\infty}
$$

Proof.

$$
\begin{aligned}
\left\|\mathcal{T} Q-\mathcal{T} Q^{\prime}\right\|_{\infty} & =\left\|r+\gamma P V_{Q}-\left(r+\gamma P V_{Q^{\prime}}\right)\right\|_{\infty} \\
& =\gamma\left\|P V_{Q}-P V_{Q^{\prime}}\right\|_{\infty} \\
& =\gamma\left\|P\left(V_{Q}-V_{Q^{\prime}}\right)\right\|_{\infty} \quad P \text { is a linear operator with row sum 1 } \\
& \leq \gamma\left\|V_{Q}-V_{Q^{\prime}}\right\|_{\infty} \\
& =\gamma \max _{s}\left|V_{Q}(s)-V_{Q "}(s)\right| \quad \text { By def of } l_{\infty} \text { norm }
\end{aligned}
$$

1. For s s.t. $V_{Q}(s) \geq V_{Q^{\prime}}(s)$, let $a=\operatorname{argmax}_{s} Q(s, a)$

$$
\begin{aligned}
\gamma \max _{s}\left(V_{Q}(s)-V_{Q^{\prime}}(s)\right) & \leq \gamma Q(s, a)-\max _{a} Q^{\prime}(s, a) \\
& \leq \gamma\left(Q(s, a)-Q^{\prime}(s, a)\right) \\
& \leq \gamma\left|Q(s, a)-Q^{\prime}(s, a)\right|
\end{aligned}
$$

2. For s s.t. $V_{Q}(s)<V_{Q^{\prime}}(s)$, we can get the same conclusion similarly.

Then

$$
\gamma \max _{s}\left|V_{Q}(s)-V_{Q^{\prime}}(s)\right| \leq \gamma \max _{s, a}\left|Q(s, a)-Q^{\prime}(s, a)\right|
$$

This lemma shows that the distance of any pairs gets smaller after Bellman operator. Here we set $\gamma<1$, then the distance tends to zero with exponential rate.

Lemma 2.6. (Convergence of Q function)

$$
\left\|Q_{k}-Q^{*}\right\|_{\infty} \leq \frac{e^{-(1-\gamma) k}}{1-\gamma}
$$

Proof. Recall that $r(s, a) \in[0,1]$ then $\left|\sum_{t=1}^{\infty} \gamma^{t-1} r(s, a)\right| \leq \frac{1}{1-\gamma}$ by geometric series. Thus

$$
\begin{aligned}
&\left\|Q_{0}-Q^{*}\right\|_{\infty} \leq \frac{1}{1-\gamma} \\
&\left\|Q_{k}-Q^{*}\right\|_{\infty}=\left\|\mathcal{T} Q_{k-1}-Q^{*}\right\|_{\infty} \\
& \leq \gamma\left\|Q_{k-1}-Q^{*}\right\| \quad \text { By lemma } 2.5 \\
& \leq \cdots \\
& \leq \gamma^{k} \frac{1}{1-\gamma}=\frac{(1-(1-\gamma))^{k}}{1-\gamma} \\
& \leq \frac{e^{-(1-\gamma) k}}{1-\gamma}
\end{aligned}
$$

The last inequality uses

$$
\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)^{n}=e^{-1} \Rightarrow\left(1-\frac{1}{n}\right)^{n} \leq e^{-1} \quad \forall n
$$

Quiz: Compute "iteration complexity" from "convergence bound".
Set $\varepsilon=\frac{e^{-(1-\gamma) k}}{1-\gamma}$, then solve this equation to get

$$
k=\frac{\log (\varepsilon(1-\gamma))}{-(1-\gamma)}
$$

Convergence of the Q function implies the convergence of the value of the induced policy.
Let $\pi_{Q}(s)=\operatorname{argmax}_{a} Q(s, a)$
Lemma 2.7. (Q-error amplification)

$$
V^{\pi_{Q}} \geq V^{*}-\frac{2\left\|Q-Q^{*}\right\|_{\infty}}{1-\gamma} \mathbf{1}
$$

Proof. Fix sate s and let $a=\pi_{Q}(s)$. We have:

$$
\begin{aligned}
V^{*}(s)-V^{\pi_{Q}}(s) & =Q^{*}\left(s, \pi^{*}(s)\right)-Q^{\pi_{Q}}(s, a) \\
& =Q^{*}\left(s, \pi^{*}(s)\right)-Q^{*}(s, a)+Q^{*}(s, a)-Q^{\pi_{Q}}(s, a) \\
& =Q^{*}\left(s, \pi^{*}(s)\right)-Q^{*}(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(\dot{\mid} s, a)}\left[V^{*}\left(s^{\prime}\right)-V^{\pi_{Q}}\left(s^{\prime}\right)\right] \\
& \leq Q^{*}\left(s, \pi^{*}(s)\right)-Q^{*}(s, a)+Q(s, a)-Q^{*}(s, a)+\gamma \mathbb{E}_{s^{\prime} \sim P(\dot{\mid} s, a)}\left[V^{*}\left(s^{\prime}\right)-V^{\pi_{Q}}\left(s^{\prime}\right)\right] \\
& \leq 2\left\|Q-Q^{*}\right\|_{\infty}+\gamma\left\|V^{*}-V^{\pi_{Q}}\right\|_{\infty}
\end{aligned}
$$

where the first inequality uses $Q\left(s, \pi^{*}(s)\right) \leq Q\left(s, \pi_{Q}(s)\right)=Q(s, a)$ due to the definition of π_{Q}.

2.2.4 Policy iteration

An alternative method is policy iteration.
Algorithm: Policy iteration

1. Initialize π_{0} arbitrarily
2. For k in $1,2, \ldots$
(a) Policy evaluation. Compute $Q^{\pi_{k}}$ by solving $Q^{\pi}=\left(I-\gamma P^{\pi}\right)^{-1} r$.
(b) Policy improvement. Update the policy: $\pi_{k+1}=\pi_{Q^{\pi_{k}}}$

Theorem 2.8. (Policy iteration convergence). Let π_{0} be any initial policy. For $k \geq \frac{\log \frac{1}{(1-\gamma) \varepsilon}}{1-\gamma}$, the k-th policy in policy iteration has the following performance bound:

$$
Q^{\pi^{(k)}} \geq Q^{*}-\varepsilon \mathbf{1}
$$

2.2.5 Computational complexity

The computational complexity of three above MDP solvers are as below

Table 2.1: Table of Time Complexity

Value Iteration	Policy Iteration	LP-Algorithm
$S^{2} A \cdot \frac{\log \frac{1}{(1-\gamma)^{2} \varepsilon}}{1-\gamma}$	$(S A)^{3} \frac{\log \frac{1}{(1-\gamma) \varepsilon}}{1-\gamma}$	$\operatorname{poly}(S, A)$

For policy iteration, $(S A)^{3}$ is the time complexity to get the inverse of $\left(I-\gamma P^{\pi}\right)$ naively. It can be improved as $S^{3}+S^{2} A$. Then the time complexity for PI algorithm will be impoved as $\left(S^{3}+S^{2} A\right) \frac{\log \frac{1}{(1-\gamma) \varepsilon}}{1-\gamma}$.

