CS292F Statistical Foundation of Reinforcement Learning Spring 2021

Lecture 2: Markov Decision Process (Part I), March 31
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Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They
may be distributed outside this class only with the permission of the Instructor.

Recap:

Markov Decision processes(MDP) parameteriztion

1. Infinite horizon/ discounted setting
M(S, A, P,r,v, 1)
e Transition kernel: P:S x A — A(S), i.e. P(S"|S,a)
o (Expected) reward function: r : § x A — R/[0, Ryax], E[R: | St = s, At = a] =: 1(s,a)
WLOG, we can let Ry =1
o Innitial state distribution: p. € A(S)
e Discounting factor: v € [0, 1]
e.g. Horizon ﬁ =1+y+~2+...

2. Immediate reward function r(s, a, s’)

Expected immediate reward

T(Sv a, 5/) = ]E[Rl ‘ Sl =S, A1 = a, SQ = 5/]
rﬂ(s) = IEa~7\'(a|s) [Rl ‘ S1 = 3]

3. state value function V7 (s)

Expected long-term return when starting in s and following =
Vﬂ-(S) ZEW[Rl + vRs —‘r...—l—’yt_lRt + ... ‘ S| = 8}

4. state-action value function Q™ (s, a)

Expected long-term return when starting in s, performing a, and following 7.
Q™ (s,a) =Ex[Ry +YRo+ ... + v 'Ry +...| S1 = 5, A1 = d]
5. Optimal value function and the MDP planning problem

V*(s) :=sup V7 (s)
mell
Q"(s,a) :=sup Q" (s, a)

mell

Goal of MDP planning is to find 7* such that V™ (s) = V*(s) for all s. For computational reasons,
we sometimes want to solve the approximate solution for the problem. We say 7 is e- optimal if
VT >V*(s) —el.
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6. Policies

e General policy could depend on the entire history
T:(EXAXR)* xS — A(A)

e Stationary policy
7m: S — A(A)

e Stationary, Deterministic policy
m:S—=> A

7. Few results about MDPs

Proposition It suffices to consider stationary policies.

— Occupancy measure
o0
vi(s) = Z 71" (S; = s) (State occupancy measure)
o0
v (s,a) = Z ' 1d™(S; = s, Ay = a) (State-action occupancy measure)

where d™(S; = s) is marginal density function under policy 7 at time ¢ observe state s.
Similarly, d™(S; = s, A; = a) is marginal distribution policy 7 at time ¢ with state-action pair
(s,a) observed.

Then

Vﬂ(M) = <V7r(8’ a),r(s,a))

— There exists a stationary policy with the same occupancy measure.
For a policy 7 is optimal or any policies m which is non-stationary, 37’ is stationary s.t.
v (s,a) = V" (s,a).

Corollary There is a stationary poly that is optimal for all initial states.

2.1 Bellman Equations

For stationary policies there is an alternative, recursive and more useful way of defining the V' function and
Q function.

Vi(s) =Y mlals)d P(s' | s,a)[r(s,a.8) + V(s = D m(a]$)Q"(s,a) (2.1)

a a

Exercise:

e Prove Bellman equation from the (first principle) definition.

e Write down the Bellman equation using @) function alone.

Q(s,0) = S P( | ,0) |r(s,a,8) +7 S w(d | $)Q7(s', )
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Now we are going to derive Bellman Equation for stationary policies.
VT(s) =E™ | Y 7' (S A [ S1 =5
t=1

=E"[r(S1, A1) | S1=s]+ ) P™(Sa=5"|S1=9s)E" |> 4"'r(Si,A) | Sa=5"| Lett=t—1
t=2

5)+72P”(52:s'|51:8 nyt Yr(S;, A7) | S1 =&
By Stationarity = r7(s) + ’yz P™(Sy=35"| S =s)V™(s)

where P™(s' | s) =Y, P(s' | s,a) -7m(a|s).
We can also write Bellman Equation in matrix form.
VT =r" 4+ ~4P"V"

where P™ € R5*S is the transpose of transition matrix under policy m, V™, r™ € R¥.
Lemma 2.1 (Bellman consistency). For stationary policies, we have

VT = Qﬂ(sv W(S)) = an‘fr(als) [Qﬂ(sﬂ a)]

Qﬂ- (57 CL) = T’(S, CL) + VES’NP(-|s,a) [Vﬂ- (S/)]

In matrix forms:

VTr:,r,T(_'_,YPTrVﬂ' Pﬂ'eRSXS

Q" =r+~PVT

Q?T:,,,,_"_,YPTI'QT( PT GRSAXSA
where v € R4, r™ € RS,
Notice: The dimensions of two P™’s are different. Both of them are depend on 7 but in slightly different
ways. The first P™ is marginal over a and the second P™ is joint with a’.

The matrix forms can help us solve the close form of V™ and Q™. For example, (I —yP™)V7™ = r™ then we
can obtain V™ by solving this linear equations.

It is interesting that we can connect the matrix forms of value functions with occupancy measure.

VT(w) = Zr(s,a)vfj(s,a) <7’, vy

s,a

What we derived in Lecture 1 is that there is also a Bellman equation holds for vj.
v (s) )+ Z VT (s) P (s | 5)
V™ (s,a) = p(s)m(s,a —|—’}/Zl/ (s")m(a | S)ZP“(S | s’ )m(a | )
=v"(s,a) = u"(s,a) + ’yz SZ: v (d, s’)P”(s?a | s',a)

s’ a’
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V™ = (] —~P7™ —1,.7
{ (F=yP7)"r . They are dual to each other in some sense.

I L -1
vt = (I=y(P)") p
To prove that the above equations hold, we need to prove the matrix I — «P™ is invertible.

Corollary 2.2. The matriz I — yP7 is full rank/ invertible for any v < 1.

Proof. WTP: Va #0,(I —yP™)x # 0, where I is identity matrix.
(I =y PT)xlloo = [l —vP7 [l
> |z||loo — Y||PT |0 By triangle inequality and linearity
2 [lzlloe = Yllzllo

P7™ is a transpose of transition matrix, i.e. each row of P™ is probability distribution (P(s’ | s)), that is the
row sum is 1.

By Holder’s inequality,

(P15, )
Pre = : = (1 =)l[lloo
(P7[n, 3], z)
Consider the first element in the vector, (P™[1,:],z) < [|P™[1,:]]l1]1%]lco < ||Z]|oo- O

Bellman optimality equations characterizes the optimal policy.

V* = mgxz P(s' | s,a) [r(s,a,s") +yV*(s')] (2.2)

where ), P(s" | s,a)r(s, a,s") is the expected immediate reward, ) ., P(s" | s,a)yV*(s") represents discounted
future reward by optimal policy.

This is a system of n non-linear equations. If we can solve V*(s) then it is easy to extract the optimal policy
by simply converting it to @* function. Then 7*(s) = argmax, Q*(s, a).

Proposition 2.3. There is a deterministic, stationary and optimal policy and it is given by

7 (s) = argmax Q* (s, a)

Proof. 7 is stationary.
V*(S) = Vﬂ'* (S) = ]Ea~7r*(a|s) |:Q7T* (Sa a):|
< max Q" (s, a)
=maxQ*(s,a) By the fact 7* is optimal

Then define 7/(s) = argmax, Q*(s, a).

I. Check 7’ is stationary, i.e. only depends on §.

II. 7’ is deterministic, i.e.

max Q' (s,0) = Q"(s,7'()) "V (s)
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By definition, i
Vi(s) =2 V7(s), V&
substitute # = 7/, then we can get

VT (s) S V*(s) < VT (s) & V*(s) = V™ (s) = argmax Q*(s,a)

2.2 Solving MDP planning problem

The crux of solving a MDP planning problem is to construct @*. There are two approaches

e By solving a linear program

e By solving Bellman equations/ Bellman optimality equations

2.2.1 Linear programming approach

Solve for V* by solving the following LP
i Vv
min, Z p(s)V (s)

st. V(s) > maxr(s,a)+ 72 P(s'|s,a)V(s) Vae A,seS

S

If we substitute V = V*, we have > u(s)V*(s) = V*(u). The constraints are equivalent to

V(s) > maxr(s,a) +7)_ P(s' | s,a)V ("))

s’

(2.3)

The Lagrange dual of the LP
maxz v(s,a)r(s,a)
s,a
st. v>0 (2.4)
ZI/(S, a) = p(s) + 'yz P(s| s a)v(s',a)
s’,a

z

Linear programming has strong duality, i.e. the minimum of the primal problem is the maximum of the dual
problem.

Exercise: Derive the dual by applying the standard procedure.

e Construct Lagrangian multiplier.

e Minimize the Lagrangian to obtain the exact formula

Quiz: Once we have the solution (v € R94), how to construct the policy?
vi(s,a) =™ (s,a) =" (s)7*(a | s)

V”*(s a)
s,a

T (sa)

When the optimal solution is unique then always exists stationary, deterministic policy.

where 7*(a | )
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2.2.2 Value Iteration Algorithm

According to Bellman optimality equations 2.2] we can get

max Q(s', a')}

Q(S7 a’) = T(S7 a) + ’}/ES’NPGS,G) H/G.A

Then, we can define
TQ=r+PVy

where 7 is a nonlinear operator, Vg (s) := maxgae 4 Q(s, a).

Theorem 2.4. Q = Q* if and only if Q satisfies the Bellman optimality equations.
Algorithm: Value iteration(VT)

1. Initialize Qg arbitrarily
2. Foriin 1,2,...,k, update Q; = T Q;_1
3. Return Qy

Value iteration algorithm iteratively applies the Bellman operator until it converges.

2.2.3 Convergence analysis of Value Iteration

Lemma 2.5. The Bellman operator is a vy-contraction. That is VQ,Q' € R4,
1TQ - TQ o <7Q - QI

Proof.

ITQ = TQ' o = lIr + 7PV — (r + 7PVg)llso
=71PVo = PVl
=7||P(Vg —Vg')|leo P is a linear operator with row sum 1
<7lVe = Vaorllo
= ymax |Vg(s) — Vg (s)| By def of I norm

1. For s s.t. Vo(s) > Vigr(s), let a = argmax, Q(s,a)

’ymsaX(VQ(s) — Vo (s)) <~Q(s,a) — max Q' (s,a)

< V(Q(s,a) - Q/(Sva))
< ’Y|Q(Sv a’) - Q/(S’ a)|

2. For s s.t. V(s) < Vr(s), we can get the same conclusion similarly.

Then
ymax [V(s) — Vi (s)] < 5 max|Q(s.a) — Q'(s.)
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This lemma shows that the distance of any pairs gets smaller after Bellman operator. Here we set v < 1,
then the distance tends to zero with exponential rate.

Lemma 2.6. (Convergence of Q function)

e~ 1=k

— * <
10k~ Q' < G

Proof. Recall that r(s,a) € [0,1] then | Y72, v !r(s,a)| < == = by geometric series. Thus

1
_ < =
190 @l < 1
1Qk — Q*[loo = | TQr—1 — Q"||c
<AQk-1 — Q|| By lemma

S.

_ _ k
cp L _(-(0-y)
1—7 1—7
e (177)]‘5

<
S

The last inequality uses

Quiz: Compute "iteration complexity” from ”convergence bound”.

Set € = E_il__; )k, then solve this equation to get

_ log(e(1 7))
G

Convergence of the @) function implies the convergence of the value of the induced policy.
Let mg(s) = argmax, Q(s, a)
Lemma 2.7. (Q—error amplification)

21Q - Q" ,

VT >y* —
1—xv

Proof. Fix sate s and let a = mg(s). We have:

V*(s) = V4 (s) = Q*(s5,7(5)) — Q™ (s,0)
= Q(5,7(5) — Q"(5,0) + Q*(s,@) — Q"(s,a)
= Q(5,7°(5)) = Q" (5,0) + 1y _py [V (5) = V()]
< Q" (5.7°(5) = Q*(5,@) + Qls, @) — Q*(5,0) + 1Ey_p, o [V*(5) = V(&)

<20Q = Qoo +IVT = V™l
where the first inequality uses Q(s, 7*(s)) < Q(s,mg(s)) = Q(s, a) due to the definition of mq. O
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2.2.4 Policy iteration

An alternative method is policy iteration.

Algorithm: Policy iteration

1. Initialize g arbitrarily
2. For kin 1,2,...
(a) Policy evaluation. Compute Q™ by solving Q™ = (I — yP™)~!r.
(b) Policy improvement. Update the policy: my11 = mQms
R

1
Theorem 2.8. (Policy iteration convergence). Let mg be any initial policy. For k > jE——
in policy iteration has the following performance bound:

the k-th policy
Q" 2@ a1

2.2.5 Computational complexity

The computational complexity of three above MDP solvers are as below

Table 2.1: Table of Time Complexity
Value Iteration | Policy Iteration | LP-Algorithm

lo % og —L
S2A - & G2 (SA)31 g T—e poly (S, A)

1—v 1—v

For policy iteration, (SA)3 is the time complexity to get the inverse of (I —~P™) naively. It can be improved
log —L —
as S% + S2A. Then the time complexity for PI algorithm will be impoved as (S® + SQA)ogfii?”.
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