
CS292F Statistical Foundation of Reinforcement Learning Spring 2021

Lecture 2: Markov Decision Process (Part I), March 31
Lecturer: Yu-Xiang Wang Scribes: Mengye Liu

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They
may be distributed outside this class only with the permission of the Instructor.

Recap:

Markov Decision processes(MDP) parameteriztion

1. Infinite horizon/ discounted setting
M(S,A, P, r, γ, µ)

• Transition kernel: P : S ×A → ∆(S), i.e. P (S′ | S, a)

• (Expected) reward function: r : S ×A → R/[0, Rmax], E [Rt | St = s,At = a] =: r(s, a)

WLOG, we can let Rmax = 1

• Innitial state distribution: µ. ∈ ∆(S)

• Discounting factor: γ ∈ [0, 1]

e.g. Horizon 1
1−γ = 1 + γ + γ2 + . . .

2. Immediate reward function r(s, a, s′)

Expected immediate reward

r(s, a, s′) = E[R1 | S1 = s,A1 = a, S2 = s′]

rπ(s) = Ea∼π(a|s)[R1 | S1 = s]

3. state value function V π(s)

Expected long-term return when starting in s and following π

V π(s) = Eπ[R1 + γR2 + . . .+ γt−1Rt + . . . | S1 = s]

4. state-action value function Qπ(s, a)

Expected long-term return when starting in s, performing a, and following π.

Qπ(s, a) = Eπ[R1 + γR2 + . . .+ γt−1Rt + . . . | S1 = s,A1 = a]

5. Optimal value function and the MDP planning problem

V ∗(s) := sup
π∈Π

V π(s)

Q∗(s, a) := sup
π∈Π

Qπ(s, a)

Goal of MDP planning is to find π∗ such that V π(s) = V ∗(s) for all s. For computational reasons,
we sometimes want to solve the approximate solution for the problem. We say π is ε- optimal if
V π ≥ V ∗(s)− ε1.

2-1

2-2 Lecture 2: Markov Decision Process (Part I), March 31

6. Policies

• General policy could depend on the entire history

π : (S ×A× R)∗ × S → ∆(A)

• Stationary policy

π : S → ∆(A)

• Stationary, Deterministic policy

π : S → A

7. Few results about MDPs

Proposition It suffices to consider stationary policies.

– Occupancy measure

νπµ (s) =

∞∑
t=1

γt−1dπ(St = s) (State occupancy measure)

νπµ (s, a) =

∞∑
t=1

γt−1dπ(St = s,At = a) (State-action occupancy measure)

where dπ(St = s) is marginal density function under policy π at time t observe state s.
Similarly, dπ(St = s,At = a) is marginal distribution policy π at time t with state-action pair
(s, a) observed.
Then

V π(µ) = 〈νπ(s, a), r(s, a)〉

– There exists a stationary policy with the same occupancy measure.
For a policy π is optimal or any policies π which is non-stationary, ∃π′ is stationary s.t.
νπ(s, a) = νπ

′
(s, a).

Corollary There is a stationary poly that is optimal for all initial states.

2.1 Bellman Equations

For stationary policies there is an alternative, recursive and more useful way of defining the V function and
Q function.

V π(s) =
∑
a

π(a | s)
∑
s′

P (s′ | s, a) [r(s, a, s′) + γV π(s′)] =
∑
a

π(a | s)Qπ(s, a) (2.1)

Exercise:

• Prove Bellman equation from the (first principle) definition.

• Write down the Bellman equation using Q function alone.

Qπ(s, a) =
∑
s′

P (s′ | s, a)

[
r(s, a, s′) + γ

∑
a′

π(a′ | s′)Qπ(s′, a′)

]

Lecture 2: Markov Decision Process (Part I), March 31 2-3

Now we are going to derive Bellman Equation for stationary policies.

V π(s) = Eπ
[∞∑
t=1

γt−1r(St, At) | S1 = s

]

= Eπ [r(S1, A1) | S1 = s] +
∑
S2

Pπ(S2 = s′ | S1 = s)Eπ
[∞∑
t=2

γt−1r(St, At) | S2 = s′

]
Let t̃ = t− 1

= rπ(s) + γ
∑
S2

Pπ(S2 = s′ | S1 = s)Eπ
 ∞∑
t̃=1

γ t̃−1r(St̃, At̃) | S1 = s′

By Stationarity = rπ(s) + γ

∑
S2

Pπ(S2 = s′ | S1 = s)V π(s′)

where Pπ(s′ | s) =
∑
a P (s′ | s, a) · π(a | s).

We can also write Bellman Equation in matrix form.

V π = rπ + γP πV π

where P π ∈ RS×S is the transpose of transition matrix under policy π, V π, rπ ∈ RS .

Lemma 2.1 (Bellman consistency). For stationary policies, we have

V π = Qπ(s, π(s)) = Ea∼π(a|s)[Q
π(s, a)]

Qπ(s, a) = r(s, a) + γEs′∼P (·|s,a)[V
π(s′)]

In matrix forms:

V π = rπ + γP πV π P π ∈ RS×S

Qπ = r + γPV π

Qπ = r + γP πQπ P π ∈ RSA×SA

where r ∈ RSA, rπ ∈ RS.

Notice: The dimensions of two P π’s are different. Both of them are depend on π but in slightly different
ways. The first P π is marginal over a and the second P π is joint with a′.

The matrix forms can help us solve the close form of V π and Qπ. For example, (I − γP π)V π = rπ, then we
can obtain V π by solving this linear equations.

It is interesting that we can connect the matrix forms of value functions with occupancy measure.

V π(µ) =
∑
s,a

r(s, a)νπµ (s, a) =
〈
r, νπµ

〉
What we derived in Lecture 1 is that there is also a Bellman equation holds for νπµ .

νπ(s) = µ(s) + γ
∑
s′

νπ(s′)Pπ(s | s′)

νπ(s, a) = µ(s)π(s, a) + γ
∑
s′

νπ(s′)π(a | s)
∑
a′

Pπ(s | s′, a′)π(a′ | s′)

⇒νπ(s, a) = µπ(s, a) + γ
∑
s′

∑
a′

νπ(a′, s′)Pπ(s, a | s′, a′)

2-4 Lecture 2: Markov Decision Process (Part I), March 31

{
V π = (I − γPπ)−1rπ

νπ =
(
I − γ(Pπ)T

)−1
µ

. They are dual to each other in some sense.

To prove that the above equations hold, we need to prove the matrix I − γPπ is invertible.

Corollary 2.2. The matrix I − γPπ is full rank/ invertible for any γ < 1.

Proof. WTP: ∀x 6= 0, (I − γPπ)x 6= 0, where I is identity matrix.

‖(I − γPπ)x‖∞ = ‖x− γPπ‖∞
≥ ‖x‖∞ − γ‖Pπx‖∞ By triangle inequality and linearity

≥ ‖x‖∞ − γ‖x‖∞

Pπ is a transpose of transition matrix, i.e. each row of Pπ is probability distribution (P (s′ | s)), that is the
row sum is 1.

By Holder’s inequality,

Pπx =

〈P
π[1, :], x〉

...
〈Pπ[n, :], x〉

 = (1− γ)‖x‖∞

Consider the first element in the vector, 〈Pπ[1, :], x〉 ≤ ‖Pπ[1, :]‖1‖x‖∞ ≤ ‖x‖∞.

Bellman optimality equations characterizes the optimal policy.

V ∗ = max
a

∑
s′

P (s′ | s, a) [r(s, a, s′) + γV ∗(s′)] (2.2)

where
∑
s′ P (s′ | s, a)r(s, a, s′) is the expected immediate reward,

∑
s′ P (s′ | s, a)γV ∗(s′) represents discounted

future reward by optimal policy.

This is a system of n non-linear equations. If we can solve V ∗(s) then it is easy to extract the optimal policy
by simply converting it to Q∗ function. Then π∗(s) = argmaxaQ

∗(s, a).

Proposition 2.3. There is a deterministic, stationary and optimal policy and it is given by

π∗(s) = argmax
a

Q∗(s, a)

Proof. π∗ is stationary.

V ∗(s) = V π
∗
(s) = Ea∼π∗(a|s)

[
Qπ
∗
(s, a)

]
≤ max

a
Qπ
∗
(s, a)

= max
a

Q∗(s, a) By the fact π∗ is optimal

Then define π′(s) = argmaxsQ
∗(s, a).

I. Check π′ is stationary, i.e. only depends on §.

II. π′ is deterministic, i.e.

max
a

Q∗(s, a) = Q∗(s, π′(s))
Stationary

= V π
′
(s)

Lecture 2: Markov Decision Process (Part I), March 31 2-5

By definition,
V ∗(s) ≥ V π̃(s), ∀π̃

substitute π̃ = π′, then we can get

V π
′
(s) ≤ V ∗(s) ≤ V π

′
(s)⇔ V ∗(s) = V π

′
(s) = argmax

a
Q∗(s, a)

2.2 Solving MDP planning problem

The crux of solving a MDP planning problem is to construct Q∗. There are two approaches

• By solving a linear program

• By solving Bellman equations/ Bellman optimality equations

2.2.1 Linear programming approach

Solve for V ∗ by solving the following LP

min
V ∈RS

∑
s

µ(s)V (s)

s.t. V (s) ≥ max
a

r(s, a) + γ
∑
s′

P (s′ | s, a)V (s′) ∀a ∈ A, s ∈ S
(2.3)

If we substitute V = V ∗, we have
∑
s µ(s)V ∗(s) = V ∗(µ). The constraints are equivalent to

V (s) ≥ max
a

r(s, a) + γ
∑
s′

P (s′ | s, a)V (s′))

The Lagrange dual of the LP

max
ν

∑
s,a

ν(s, a)r(s, a)

s.t. ν ≥ 0∑
z

ν(s, a) = µ(s) + γ
∑
s′,a

P (s | s′, a)ν(s′, a′)

(2.4)

Linear programming has strong duality, i.e. the minimum of the primal problem is the maximum of the dual
problem.

Exercise: Derive the dual by applying the standard procedure.

• Construct Lagrangian multiplier.

• Minimize the Lagrangian to obtain the exact formula

Quiz: Once we have the solution (ν ∈ RSA), how to construct the policy?

ν∗(s, a) = νπ
∗
(s, a) = νπ

∗
(s)π∗(a | s)

where π∗(a | s) = νπ
∗

(s,a)∑
a ν

π∗ (s,a)
.

When the optimal solution is unique then always exists stationary, deterministic policy.

2-6 Lecture 2: Markov Decision Process (Part I), March 31

2.2.2 Value Iteration Algorithm

According to Bellman optimality equations 2.2, we can get

Q(s, a) = r(s, a) + γE
s′∼P (|̇s,a)

[
max
a′∈A

Q(s′, a′)

]
Then, we can define

T Q = r + PVQ

where T is a nonlinear operator, VQ(s) := maxa∈AQ(s, a).

Theorem 2.4. Q = Q∗ if and only if Q satisfies the Bellman optimality equations.

Algorithm: Value iteration(VI)

1. Initialize Q0 arbitrarily

2. For i in 1, 2, . . . , k, update Qi = T Qi−1

3. Return Qk

Value iteration algorithm iteratively applies the Bellman operator until it converges.

2.2.3 Convergence analysis of Value Iteration

Lemma 2.5. The Bellman operator is a γ-contraction. That is ∀Q,Q′ ∈ RSA,

‖T Q− T Q′‖∞ ≤ γ‖Q−Q′‖∞

Proof.

‖T Q− T Q′‖∞ = ‖r + γPVQ − (r + γPVQ′)‖∞
= γ‖PVQ − PVQ′‖∞
= γ‖P (VQ − VQ′)‖∞ P is a linear operator with row sum 1

≤ γ‖VQ − VQ′‖∞
= γmax

s
|VQ(s)− VQ”(s)| By def of l∞ norm

1. For s s.t. VQ(s) ≥ VQ′(s), let a = argmaxsQ(s, a)

γmax
s

(VQ(s)− VQ′(s)) ≤ γQ(s, a)−max
a

Q′(s, a)

≤ γ(Q(s, a)−Q′(s, a))

≤ γ|Q(s, a)−Q′(s, a)|

2. For s s.t. VQ(s) < VQ′(s), we can get the same conclusion similarly.

Then
γmax

s
|VQ(s)− VQ′(s)| ≤ γmax

s,a
|Q(s, a)−Q′(s, a)|

Lecture 2: Markov Decision Process (Part I), March 31 2-7

This lemma shows that the distance of any pairs gets smaller after Bellman operator. Here we set γ < 1,
then the distance tends to zero with exponential rate.

Lemma 2.6. (Convergence of Q function)

‖Qk −Q∗‖∞ ≤
e−(1−γ)k

1− γ

Proof. Recall that r(s, a) ∈ [0, 1] then |
∑∞
t=1 γ

t−1r(s, a)| ≤ 1
1−γ by geometric series. Thus

‖Q0 −Q∗‖∞ ≤
1

1− γ

‖Qk −Q∗‖∞ = ‖T Qk−1 −Q∗‖∞
≤ γ‖Qk−1 −Q∗‖ By lemma 2.5

≤ · · ·

≤ γk 1

1− γ
=

(1− (1− γ))k

1− γ

≤ e−(1−γ)k

1− γ

The last inequality uses

lim
n→∞

(
1− 1

n

)n
= e−1 ⇒

(
1− 1

n

)n
≤ e−1 ∀n

Quiz: Compute ”iteration complexity” from ”convergence bound”.

Set ε = e−(1−γ)k

1−γ , then solve this equation to get

k =
log(ε(1− γ))

−(1− γ)

Convergence of the Q function implies the convergence of the value of the induced policy.

Let πQ(s) = argmaxaQ(s, a)

Lemma 2.7. (Q−error amplification)

V πQ ≥ V ∗ − 2‖Q−Q∗‖∞
1− γ

1

Proof. Fix sate s and let a = πQ(s). We have:

V ∗(s)− V πQ(s) = Q∗(s, π∗(s))−QπQ(s, a)

= Q∗(s, π∗(s))−Q∗(s, a) +Q∗(s, a)−QπQ(s, a)

= Q∗(s, π∗(s))−Q∗(s, a) + γE
s′∼P (|̇s,a)

[V ∗(s′)− V πQ(s′)]

≤ Q∗(s, π∗(s))−Q∗(s, a) +Q(s, a)−Q∗(s, a) + γE
s′∼P (|̇s,a)

[V ∗(s′)− V πQ(s′)]

≤ 2‖Q−Q∗‖∞ + γ‖V ∗ − V πQ‖∞

where the first inequality uses Q(s, π∗(s)) ≤ Q(s, πQ(s)) = Q(s, a) due to the definition of πQ.

2-8 Lecture 2: Markov Decision Process (Part I), March 31

2.2.4 Policy iteration

An alternative method is policy iteration.

Algorithm: Policy iteration

1. Initialize π0 arbitrarily

2. For k in 1, 2, . . .

(a) Policy evaluation. Compute Qπk by solving Qπ = (I − γPπ)−1r.

(b) Policy improvement. Update the policy: πk+1 = πQπk

Theorem 2.8. (Policy iteration convergence). Let π0 be any initial policy. For k ≥
log 1

(1−γ)ε
1−γ , the k-th policy

in policy iteration has the following performance bound:

Qπ
(k)

≥ Q∗ − ε1

2.2.5 Computational complexity

The computational complexity of three above MDP solvers are as below

Table 2.1: Table of Time Complexity
Value Iteration Policy Iteration LP-Algorithm

S2A ·
log 1

(1−γ)2ε
1−γ (SA)3 log 1

(1−γ)ε
1−γ poly(S,A)

For policy iteration, (SA)3 is the time complexity to get the inverse of (I − γPπ) naively. It can be improved

as S3 + S2A. Then the time complexity for PI algorithm will be impoved as (S3 + S2A)
log 1

(1−γ)ε
1−γ .

	Bellman Equations
	Solving MDP planning problem
	Linear programming approach
	Value Iteration Algorithm
	Convergence analysis of Value Iteration
	Policy iteration
	Computational complexity

