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3.1 Some Recaps

The following equations are either taken from the lecture slides or from the textbook [1].

3.1.1 Markov Decision Process (MDP)

A discounted Markov Decision Process M = (S,A, P, r, γ, µ) where S denote state space, A denote action
space, P denote transition function, r denote reward function, γ denote discounted factor, and µ denote
initial state distribution.

3.1.2 Reward function and Value functions

In the following section, π denotes a stationary policy in which the following actions is based on the current
state. The expected immediate reward function r(s, a),:

r(s, a) = E[R1|S1 = s,A1 = a]

rπ(s) = Ea∼π(.|s)[R1|S1 = s]

The state value function V π(s) denotes expected long-term return when starting in s and following policy π:

V π(s) = Eπ(
∑
i=1

γi−1Ri|S1 = s)

Similarly, the state-action value function Qπ(s, a) denote the expected long-term return when starting in s,
performing a, and following π

Qπ(s, a) = Eπ(
∑
i=1

γi−1Ri|S1 = s,A1 = a)

3.1.3 Bellman consistency equations

Lemma 3.1. Given π is a stationary policy, for all s ∈ S and a ∈ A, V π(s) = Qπ(s, π(s)) and Qπ(s, a) =
r(s, a) + γE(V πs′∼P (.|s,a)(s

′))
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By shifting the Markov decision process one step into the future, one can obtain the following equations:

V π = rπ + γPπV π

Qπ = r + γPV π

V π = rπ + γP̂πV π

3.2 Statistic Tools

The law of large number says that as n grows, the probability having the sample mean of independent and
identically distributed random variables equal to the expected value goes to 1.

Theorem 3.2. Law of Large Number. Let X1, X2, ... , Xn be independent and identically distributed random
variables, and let the sample mean X̄n = 1

n

∑n
i=1Xi. Then, as n approach infinity, P (X̄n = E(X1)) = 1.

The central limit theorem says that as n grows, the distribution of the sample mean of independent and
identically distributed random variables converge to normal distribution.

Theorem 3.3. Central limit theoreom. Law of Large Number: Let X1, X2, ... , Xn be independent and
identically distributed random variables. Then as n approach infinity,

√
n( 1

n

∑n
i=1Xi − E(X1)) approach

Normal(0, V ar(X1))

The Hoeffding’s Inequality is often used to bound the algorithm’s failure probability by δ, a small constant
δ << 1.

Lemma 3.4. Hoeffding’s Inequality. Let X1, · · · , Xn be independent random variables such that ai ≤ Xi ≤ bi
and let Sn =

∑n
i=1Xi). Then for any t > 0 we have:

Pr[Sn − E[Sn] > t] ≤ exp(− 2t2∑n
i=1(bi − ai)2

)

An alternative easy version is to have 0 < Xi < B, then with high probablity, 1−δ, |X̄−E(X̄)| ≤
√

B2

2n log(2/δ).

This upper bound can be derived by setting t =
√

nB2

2 log(2/δ) and consider both side of the tail to bound

the absolute value.

When one desire a even stronger guarantees compare to Hoeffding’s Inequality, one can use the Bernstein’s
Inequality.

Lemma 3.5. Bernstein’s Inequality. Let X1, · · · , Xn be independent zero-mean random variables such that
−M ≤ Xi ≤M . Then for any t > 0 we have:

Pr[|
n∑
i=1

Xi| > t] ≤ exp(−
1
2 t

2∑n
1 E(X2

i ) + 1
3Mt

)

Similarly to Hoeffiding’s inequality, an alternative version of Bernstein’s inequality is to have 0 < Xi < B

such that V ar(Xi) ≤ B2

4 , then with high probability, 1− δ, |X̄ − E(X̄)| ≤
√

2V ar(X1)
n log(2/δ) + 2Mlog(2/δ)

3n .

Moreover a generalization of Hoeffding’s Inequality, McDiarmid’s Inequality by bounding the failure probablity
of a special function of the data.
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Lemma 3.6. McDiarmid’s Inequality. Let X1, · · · , Xn be independent random variables, and lef a function
f statisfy coordinate uniform stability condition where for all i ∈ {1, 2..., n} and for all x1, x2, ..., xn, xi′ ∈ X,
|f(x1, ..., xi, .., xn)− f(x1, ..., xi′ , .., xn)| ≤ ci Then for any t > 0 we have:

Pr[f(X1, ..., Xn)− E(f(X1, ..., Xn)) ≥ ε] ≤ exp(− 2ε2∑n
1 c

2
i

)

A special trick often used to bound the failure probability of a set of events is called the union bound. More
formally, for a countable sequence of events, P (∪iAi) ≤

∑
i P (Ai).

Lemma 3.7. Concentration for Discrete Distributions: Let z be a discrete random variable that takes values
in 1,...,d, distributed according to q. We write q as a vector where q = [Pr(z = j)]dj=1. Assume we have N

iid samples, and that our empirical estimate of q is [q]j =
∑N
i=1

zi=j
N , then for all ε > 0):

Pr(‖q̂ = q‖1 ≥
√
d(

1√
N

+ ε)) ≤ exp(−Nε2)

3.3 Simulation Lemma and model-based approach

The transition matrix P is a very large matrix, |S‖A| x |S|, can we use a sparse matrix P̂ , a sampled transition
to approximation of P to reduce the computational complexity but still get the desired result. How many
samples do we need to draw to obtain an ε-optimal policy (sample size should be less than |S|).

Define P̂ (s′|s, a) = count(s′,s,a)
N in which count(s′, s, a) =

∑N
i=1 1(S′(S′i,s,a = s′). Since the sample size

N << |S|, we expect many entry in P̂ is 0. The time complexity of computing P̂ is O(N |S‖A|) and the
space complexity is O(N |S‖A|).

Let’s define the approximate Markov decision process M̂ = (S,A, P̂ , r, γ, µ). Then, one can run value iteration
or policy iteration on M̂ to obtain π̂∗ = argmaxQ̂∗(s, a) where Q̂∗ is the optimal state value function under
M̂ . To show M̂ is ε-optimal, we want to bound:

Qπ∗ −Qπ̂∗ = Qπ∗ + (Q̂π∗ − Q̂π∗) + (Q̂π̂∗ − Q̂π̂∗)−Qπ̂∗ ≤ 2ε (3.1)

To show Equation 3.1 holds, it is equivalent to show the following two equations holds.

Qπ∗ − Q̂π∗ ≤ ε

Q̂π̂∗ −Qπ̂∗ ≤ ε
Lemma 3.8. Simulation Lemma: For all π we have that: Qπ − Q̂π = γ(1− γP̂π)−1(P − P̂ )V π

Proof. Qπ − Q̂π = (I − γP̂π)−1(I − γP̂π)Qπ − (I − γP̂π)−1(I − γPπ)−1Qπ

= (I − γP̂π)−1((I − γP̂π)− (I − γPπ)−1)Qπ

= γ(I − γP̂π)−1(Pπ − P̂π)Qπ

= γ(I − γP̂π)−1(P − P̂ )V π

Lemma 3.9. For any π, M , and x ∈ R{|S|,|A|}, ‖(I − γPπ)−1x‖∞ ≤ ‖x‖∞1−γ

Proof. Let x = (I − γPπ)(I − γPπ)−1x = (I − γPπ)y where y = (I − γPπ)−1x. By triangle inequality:

‖x‖ = ‖(I − γPπ)y‖ ≥ ‖y‖inf − γ‖Pπy‖inf ≥ ‖y‖inf − γ‖y‖inf
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3.3.1 Applying Simulation Lemma

Firstly, we can show that using O(S2A) space is sufficient to provide accurate model using uniform convergence
via simulation lemma, such that for all policies π, ‖Qπ − Q̂π‖∞ ≤ ε.

‖Qπ∗ − Q̂π∗‖∞ = ‖γ(I − γP̂π)−1(P − P̂ V π)‖∞
≤ γ

1−γ ‖(P − P̂ )‖∞
≤ γ

1−γ (maxs,a‖P (.|s, a)− P̂ (.|s, a)‖1)‖V π‖∞
≤ γ

1−γmaxs,a‖P (.|s, a)− P̂ (.|s, a)‖1.

By lemma 3.7, for some constant c, sample size m, and fixed s, a, with high success probability, i.e, 1− δ,
|P (.|s, a)− P̂ (.|s, a)‖1 ≤ c

√
|S|log(1/δ)

m . We can then union bound of m|S‖A| samples by decrease the failure

probability to δ
|S‖A| .

Hence, setting m ≥ 2γ2(log( 2SA
δ )+S)

(1−γ)4ε2 is sufficent to bound ‖Qπ − Q̂π‖∞ ≤ ε. However, this O(m) grows linear

to S, meaning we will still need S2A matrix.

3.3.2 Bounding the value function instead

Lemma 3.10. Q-error amplification: V πQ ≥ V ∗ − 2‖Q−Q∗‖∞
1−γ

If we can bound ‖Q̂∗ −Q∗‖ with error independent to S, then we automatically improve upon the previous
bound.

Lemma 3.11. ‖Q̂∗ −Q∗‖∞ ≤ γ
1−γ ‖(P − P̂ V

∗)‖∞

Proof. ‖Q̂∗ −Q∗‖∞ = ‖Q∗ − τ̂Q∗ + τ̂Q∗ − τ̂ Q̂∗‖∞
≤ ‖Q∗ − τ̂Q∗‖∞ + ‖τ̂Q∗ − τ̂ Q̂∗‖∞
≤ ‖γ + γPV ∗ − (γ + γP̂

maxs,aQ
∗(s,a)

V ∗ )‖∞ + γ‖Q∗ − Q̂∗‖∞
= ‖γ(P − P̂ V ∗)‖∞ + γ‖Q∗ − Q̂∗‖∞
≤ γ

1−γ ‖(P − P̂ V
∗)‖∞

Instead of solving S dimensional concentration with bounded l1 norm, we used inner produce to collapse the
S dimension into 1 dimension, such that ‖(P − P̂ V ∗)‖∞ = maxs,a|Es′∼P (.|s,a)[V ∗ s′]−Es′∼P̂ (.|s,a)[V

∗(s′)]| =
maxs,a|Es′∼P (.|s,a)[V

∗(s′)] − 1
N

∑N
i=1 V

∗S
′

i,s,a|. We can then apply Hoeffiding’s inequality to bound the

equation by 1
1−γ

√
log(1/δ)

2N .

Since V ∗ − V π̂∗ ≤ 2‖Q∗−Q̂π̂
∗
‖∞

1−γ ≤ 2
(1−γ)3

√
log(c/δ′)/2m = ε where δ

′
= δ

SA , we obtain m ≥ 2γ
(1−γ)3

log(cSA/δ)
ε2

and the computational complexity is O(SA(m+ #V I)).

3.3.3 Optimal sample complexity

In 2013, Azar et al, [2] proved the matching lower bound m = θ( 1
(1−γ)3

log(cSA/δ)
ε2 ) sample complexity of

estimating the optimal action-value function. Very recently, a group of researchers from UC Santa Barbara,
Yin, et al, [3] proposed off-policy double variance reduction approach to achieve the optimal sample complexity
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for offline RL in stationary transition setting. It remains an open problem whether model-based plug-in is
optimal for all ε.
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