Lecture 3: Markov Decision Processes II, April 5

Lecturer: Yu-Xiang Wang
Scribes: Fuheng Zhao

Note: LaTeX template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

3.1 Some Recaps

The following equations are either taken from the lecture slides or from the textbook [1].

3.1.1 Markov Decision Process (MDP)

A discounted Markov Decision Process $M=(S, A, P, r, \gamma, \mu)$ where S denote state space, A denote action space, P denote transition function, r denote reward function, γ denote discounted factor, and μ denote initial state distribution.

3.1.2 Reward function and Value functions

In the following section, π denotes a stationary policy in which the following actions is based on the current state. The expected immediate reward function $r(s, a)$,:

$$
\begin{aligned}
r(s, a) & =E\left[R_{1} \mid S_{1}=s, A_{1}=a\right] \\
r^{\pi}(s) & =E_{a \sim \pi(. \mid s)}\left[R_{1} \mid S_{1}=s\right]
\end{aligned}
$$

The state value function $V^{\pi}(s)$ denotes expected long-term return when starting in s and following policy π :

$$
V^{\pi}(s)=E_{\pi}\left(\sum_{i=1} \gamma^{i-1} R_{i} \mid S_{1}=s\right)
$$

Similarly, the state-action value function $Q^{\pi}(s, a)$ denote the expected long-term return when starting in s, performing a, and following π

$$
Q^{\pi}(s, a)=E_{\pi}\left(\sum_{i=1} \gamma^{i-1} R_{i} \mid S_{1}=s, A_{1}=a\right)
$$

3.1.3 Bellman consistency equations

Lemma 3.1. Given π is a stationary policy, for all $s \in S$ and $a \in A, V^{\pi}(s)=Q^{\pi}(s, \pi(s))$ and $Q^{\pi}(s, a)=$ $r(s, a)+\gamma E\left(V_{s^{\prime} \sim P(. \mid s, a)}^{\pi}\left(s^{\prime}\right)\right)$

By shifting the Markov decision process one step into the future, one can obtain the following equations:

$$
\begin{gathered}
V^{\pi}=r^{\pi}+\gamma P^{\pi} V^{\pi} \\
Q^{\pi}=r+\gamma P V^{\pi} \\
V^{\pi}=r^{\pi}+\gamma \hat{P}^{\pi} V^{\pi}
\end{gathered}
$$

3.2 Statistic Tools

The law of large number says that as n grows, the probability having the sample mean of independent and identically distributed random variables equal to the expected value goes to 1 .

Theorem 3.2. Law of Large Number. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent and identically distributed random variables, and let the sample mean $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$. Then, as n approach infinity, $P\left(\bar{X}_{n}=E\left(X_{1}\right)\right)=1$.

The central limit theorem says that as n grows, the distribution of the sample mean of independent and identically distributed random variables converge to normal distribution.

Theorem 3.3. Central limit theoreom. Law of Large Number: Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent and identically distributed random variables. Then as n approach infinity, $\sqrt{n}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}-E\left(X_{1}\right)\right)$ approach $\operatorname{Normal}\left(0, \operatorname{Var}\left(X_{1}\right)\right)$

The Hoeffding's Inequality is often used to bound the algorithm's failure probability by δ, a small constant $\delta \ll 1$.

Lemma 3.4. Hoeffding's Inequality. Let X_{1}, \cdots, X_{n} be independent random variables such that $a_{i} \leq X_{i} \leq b_{i}$ and let $\left.S_{n}=\sum_{i=1}^{n} X_{i}\right)$. Then for any $t>0$ we have:

$$
\operatorname{Pr}\left[S_{n}-E\left[S_{n}\right]>t\right] \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right)
$$

An alternative easy version is to have $0<X_{i}<B$, then with high probablity, $1-\delta,|\bar{X}-E(\bar{X})| \leq \sqrt{\frac{B^{2}}{2 n} \log (2 / \delta)}$. This upper bound can be derived by setting $t=\sqrt{\frac{n B^{2}}{2} \log (2 / \delta)}$ and consider both side of the tail to bound the absolute value.

When one desire a even stronger guarantees compare to Hoeffding's Inequality, one can use the Bernstein's Inequality.

Lemma 3.5. Bernstein's Inequality. Let X_{1}, \cdots, X_{n} be independent zero-mean random variables such that $-M \leq X_{i} \leq M$. Then for any $t>0$ we have:

$$
\operatorname{Pr}\left[\left|\sum_{i=1}^{n} X_{i}\right|>t\right] \leq \exp \left(-\frac{\frac{1}{2} t^{2}}{\sum_{1}^{n} E\left(X_{i}^{2}\right)+\frac{1}{3} M t}\right)
$$

Similarly to Hoeffiding's inequality, an alternative version of Bernstein's inequality is to have $0<X_{i}<B$ such that $\operatorname{Var}\left(X_{i}\right) \leq \frac{B^{2}}{4}$, then with high probability, $1-\delta,|\bar{X}-E(\bar{X})| \leq \sqrt{\frac{2 \operatorname{Var}\left(X_{1}\right)}{n} \log (2 / \delta)}+\frac{2 M \log (2 / \delta)}{3 n}$. Moreover a generalization of Hoeffding's Inequality, McDiarmid's Inequality by bounding the failure probablity of a special function of the data.

Lemma 3.6. McDiarmid's Inequality. Let X_{1}, \cdots, X_{n} be independent random variables, and lef a function f statisfy coordinate uniform stability condition where for all $i \in\{1,2 \ldots, n\}$ and for all $x_{1}, x_{2}, \ldots, x_{n}, x_{i^{\prime}} \in X$, $\left|f\left(x_{1}, \ldots, x_{i}, . ., x_{n}\right)-f\left(x_{1}, \ldots, x_{i^{\prime}}, . ., x_{n}\right)\right| \leq c_{i}$ Then for any $t>0$ we have:

$$
\operatorname{Pr}\left[f\left(X_{1}, \ldots, X_{n}\right)-E\left(f\left(X_{1}, \ldots, X_{n}\right)\right) \geq \epsilon\right] \leq \exp \left(-\frac{2 \epsilon^{2}}{\sum_{1}^{n} c_{i}^{2}}\right)
$$

A special trick often used to bound the failure probability of a set of events is called the union bound. More formally, for a countable sequence of events, $P\left(\cup_{i} A_{i}\right) \leq \sum_{i} P\left(A_{i}\right)$.
Lemma 3.7. Concentration for Discrete Distributions: Let z be a discrete random variable that takes values in $1, \ldots, d$, distributed according to q. We write q as a vector where $q=[\operatorname{Pr}(z=j)]_{j=1}^{d}$. Assume we have N iid samples, and that our empirical estimate of q is $[q]_{j}=\sum_{i=1}^{N} \frac{z_{i}=j}{N}$, then for all $\left.\epsilon>0\right)$:

$$
\operatorname{Pr}\left(\|\hat{q}=q\|_{1} \geq \sqrt{d}\left(\frac{1}{\sqrt{N}}+\epsilon\right)\right) \leq \exp \left(-N \epsilon^{2}\right)
$$

3.3 Simulation Lemma and model-based approach

The transition matrix P is a very large matrix, $|S||A| \mathrm{x}|S|$, can we use a sparse matrix \hat{P}, a sampled transition to approximation of P to reduce the computational complexity but still get the desired result. How many samples do we need to draw to obtain an ϵ-optimal policy (sample size should be less than $|S|$).
Define $\hat{P}\left(s^{\prime} \mid s, a\right)=\frac{\operatorname{count}\left(s^{\prime}, s, a\right)}{N}$ in which $\operatorname{count}\left(s^{\prime}, s, a\right)=\sum_{i=1}^{N} 1\left(S^{\prime}\left(S_{i, s, a}^{\prime}=s^{\prime}\right)\right.$. Since the sample size $N \ll|S|$, we expect many entry in \hat{P} is 0 . The time complexity of computing \hat{P} is $O(N|S \| A|)$ and the space complexity is $O(N|S \| A|)$.
Let's define the approximate Markov decision process $\hat{M}=(S, A, \hat{P}, r, \gamma, \mu)$. Then, one can run value iteration or policy iteration on \hat{M} to obtain $\hat{\pi}^{*}=\operatorname{argmax} \hat{Q}^{*}(s, a)$ where \hat{Q}^{*} is the optimal state value function under \hat{M}. To show \hat{M} is ϵ-optimal, we want to bound:

$$
\begin{equation*}
Q^{\pi *}-Q^{\hat{\pi} *}=Q^{\pi *}+\left(\hat{Q}^{\pi *}-\hat{Q}^{\pi *}\right)+\left(\hat{Q}^{\hat{\pi} *}-\hat{Q}^{\hat{\pi} *}\right)-Q^{\hat{\pi} *} \leq 2 \epsilon \tag{3.1}
\end{equation*}
$$

To show Equation 3.1 holds, it is equivalent to show the following two equations holds.

$$
\begin{aligned}
& Q^{\pi *}-\hat{Q}^{\pi *} \leq \epsilon \\
& \hat{Q}^{\hat{\pi} *}-Q^{\hat{\pi} *} \leq \epsilon
\end{aligned}
$$

Lemma 3.8. Simulation Lemma: For all π we have that: $Q^{\pi}-\hat{Q}^{\pi}=\gamma\left(1-\gamma \hat{P}^{\pi}\right)^{-1}(P-\hat{P}) V^{\pi}$
Proof. $Q^{\pi}-\hat{Q}^{\pi}=\left(I-\gamma \hat{P}^{\pi}\right)^{-1}\left(I-\gamma \hat{P}^{\pi}\right) Q^{\pi}-\left(I-\gamma \hat{P}^{\pi}\right)^{-1}\left(I-\gamma P^{\pi}\right)^{-1} Q^{\pi}$
$=\left(I-\gamma \hat{P}^{\pi}\right)^{-1}\left(\left(I-\gamma \hat{P}_{\hat{P}}\right)-\left(I-\gamma P^{\pi}\right)^{-1}\right) Q^{\pi}$
$=\gamma\left(I-\gamma \hat{P}^{\pi}\right)^{-1}\left(P^{\pi}-\hat{P}^{\pi}\right) Q^{\pi}$
$=\gamma\left(I-\gamma \hat{P}^{\pi}\right)^{-1}(P-\hat{P}) V^{\pi}$

Lemma 3.9. For any π, M, and $x \in R^{\{|S|,|A|\}},\left\|\left(I-\gamma P^{\pi}\right)^{-1} x\right\|_{\infty} \leq \frac{\|x\|_{\infty}}{1-\gamma}$
Proof. Let $x=\left(I-\gamma P^{\pi}\right)\left(I-\gamma P^{\pi}\right)^{-1} x=\left(I-\gamma P^{\pi}\right) y$ where $y=\left(I-\gamma P^{\pi}\right)^{-1} x$. By triangle inequality:

$$
\|x\|=\left\|\left(I-\gamma P^{\pi}\right) y\right\| \geq\|y\|_{\mathrm{inf}}-\gamma\left\|P^{\pi} y\right\|_{\mathrm{inf}} \geq\|y\|_{\mathrm{inf}}-\gamma\|y\|_{\mathrm{inf}}
$$

3.3.1 Applying Simulation Lemma

Firstly, we can show that using $O\left(S^{2} A\right)$ space is sufficient to provide accurate model using uniform convergence via simulation lemma, such that for all policies $\pi,\left\|Q^{\pi}-\hat{Q}^{\pi}\right\|_{\infty} \leq \epsilon$.
$\left\|Q^{\pi *}-\hat{Q}^{\pi *}\right\|_{\infty}=\left\|\gamma\left(I-\gamma \hat{P}^{\pi}\right)^{-1}\left(P-\hat{P} V^{\pi}\right)\right\|_{\infty}$
$\leq \frac{\gamma}{1-\gamma}\|(P-\hat{P})\|_{\infty}$
$\leq \frac{\gamma}{1-\gamma}\left(\max _{s, a}\|P(. \mid s, a)-\hat{P}(. \mid s, a)\|_{1}\right)\left\|V^{\pi}\right\|_{\infty}$
$\leq \frac{\gamma}{1-\gamma} \max _{s, a}\|P(. \mid s, a)-\hat{P}(. \mid s, a)\|_{1}$.
By lemma 3.7, for some constant c, sample size m, and fixed s, a, with high success probability, i.e, $1-\delta$, $\mid P(. \mid s, a)-\hat{P}(. \mid s, a) \|_{1} \leq c \sqrt{\frac{|S| \log (1 / \delta)}{m}}$. We can then union bound of $m|S \| A|$ samples by decrease the failure probability to $\frac{\delta}{|S \| A|}$.
Hence, setting $m \geq \frac{2 \gamma^{2}\left(\log \left(\frac{2 S A}{\delta}\right)+S\right)}{(1-\gamma)^{4} \epsilon^{2}}$ is sufficent to bound $\left\|Q^{\pi}-\hat{Q}^{\pi}\right\|_{\infty} \leq \epsilon$. However, this $O(m)$ grows linear to S, meaning we will still need $S^{2} A$ matrix.

3.3.2 Bounding the value function instead

Lemma 3.10. Q-error amplification: $V^{\pi Q} \geq V^{*}-\frac{2\|Q-Q *\|_{\infty}}{1-\gamma}$

If we can bound $\left\|\hat{Q}^{*}-Q^{*}\right\|$ with error independent to S, then we automatically improve upon the previous bound.

Lemma 3.11. $\left\|\hat{Q}^{*}-Q^{*}\right\|_{\infty} \leq \frac{\gamma}{1-\gamma}\left\|\left(P-\hat{P} V^{*}\right)\right\|_{\infty}$

Proof. $\left\|\hat{Q}^{*}-Q^{*}\right\|_{\infty}=\left\|Q^{*}-\hat{\tau} Q^{*}+\hat{\tau} Q^{*}-\hat{\tau} \hat{Q}^{*}\right\|_{\infty}$
$\leq\left\|Q^{*}-\hat{\tau} Q^{*}\right\|_{\infty}+\left\|\hat{\tau} Q^{*}-\hat{\tau} \hat{Q}^{*}\right\|_{\infty}$
$\leq\left\|\gamma+\gamma P V^{*}-\left(\gamma+\gamma \hat{P} \frac{\max _{s, a} Q^{*}(s, a)}{V^{*}}\right)\right\|_{\infty}+\gamma\left\|Q^{*}-\hat{Q}^{*}\right\|_{\infty}$
$=\left\|\gamma\left(P-\hat{P} V^{*}\right)\right\|_{\infty}+\gamma\left\|Q^{*}-\hat{Q}^{*}\right\|_{\infty}$
$\leq \frac{\gamma}{1-\gamma}\left\|\left(P-\hat{P} V^{*}\right)\right\|_{\infty}$

Instead of solving S dimensional concentration with bounded l_{1} norm, we used inner produce to collapse the S dimension into 1 dimension, such that $\left\|\left(P-\hat{P} V^{*}\right)\right\|_{\infty}=\max _{s, a}\left|E_{s^{\prime} \sim P(. \mid s, a)}\left[V * s^{\prime}\right]-E_{s^{\prime} \sim \hat{P}(. \mid s, a)}\left[V^{*}\left(s^{\prime}\right)\right]\right|=$ $\max _{s, a}\left|E_{s^{\prime} \sim P(. \mid s, a)}\left[V^{*}\left(s^{\prime}\right)\right]-\frac{1}{N} \sum_{i=1}^{N} V^{*} S_{i, s, a}^{\prime}\right|$. We can then apply Hoeffiding's inequality to bound the equation by $\frac{1}{1-\gamma} \sqrt{\frac{\log (1 / \delta)}{2 N}}$.

Since $V^{*}-V^{\hat{\pi}^{*}} \leq \frac{2\left\|Q^{*}-\hat{Q}^{\hat{\pi}^{*}}\right\|_{\infty}}{1-\gamma} \leq \frac{2}{(1-\gamma)^{3}} \sqrt{\log \left(c / \delta^{\prime}\right) / 2 m}=\epsilon$ where $\delta^{\prime}=\frac{\delta}{S A}$, we obtain $m \geq \frac{2 \gamma}{(1-\gamma)^{3}} \frac{\log (c S A / \delta)}{\epsilon^{2}}$ and the computational complexity is $O(S A(m+\# V I))$.

3.3.3 Optimal sample complexity

In 2013, Azar et al, 2 proved the matching lower bound $m=\theta\left(\frac{1}{(1-\gamma)^{3}} \frac{\log (c S A / \delta)}{\epsilon^{2}}\right)$ sample complexity of estimating the optimal action-value function. Very recently, a group of researchers from UC Santa Barbara, Yin, et al, 3 proposed off-policy double variance reduction approach to achieve the optimal sample complexity
for offline RL in stationary transition setting. It remains an open problem whether model-based plug-in is optimal for all ϵ.

References

[1] Alekh Agarwal, Nan Jiang, and Sham M Kakade. "Reinforcement learning: Theory and algorithms." In: CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep (2019).
[2] Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J Kappen. "Minimax PAC bounds on the sample complexity of reinforcement learning with a generative model." In: Machine learning 91.3 (2013), pp. 325-349.
[3] Ming Yin, Yu Bai, and Yu-Xiang Wang. "Near-Optimal Offline Reinforcement Learning via Double Variance Reduction." In: arXiv preprint arXiv:2102.01748 (2021).

