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8.1 Problem Setup

In linear bandit, we choose a decision xt on each round, where the action space is a compact set: xt ∈ D ⊂ Rd.
Then we obtain a reward rt ∈ [−1, 1]. The reward is linear + i.i.d. noise, where E [rt | xt = x] = µ? ·x ∈ [−1, 1]
and noise sequence ηt = rt − µ? · xt is i.i.d. noise.

If x0, . . . xT are our decisions, then our cumulative regret is

RegT = T · 〈µ?, x?〉 −
T∑
t=0

〈µ?, xt〉

where x? ∈ D is an optimal decision for µ?, i.e.

x? ∈ argmaxx∈D µ
? · x

8.2 LinUCB Algorithm

Algorithm 1: Linear UCB

Input :λ, βt
1 for t = 0, 1, 2, ... do
2 Execute

xt = argmaxx∈D max
µ∈BALLt

〈x, µ〉

and observe the reward rt
3 Update BALLt+1.

4 end

LinUCB is based on “optimism in the face of uncertainty,” which is described in Algorithm 1. At episode t,
we use all previous experience to define an uncertainty region (an ellipse) BALLt. The center of this region,
µ̂t, is the solution of the following ridge regression problem:

µ̂t = arg min
θ

t−1∑
i=0

(
x>i θ − ri

)2
+ λ‖θ‖22
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If we consider the matrix form of xt that Xt = [x0, x1, . . . , xt−1]> ∈ Rt×d and set rt = [r0, r1, . . . , rt−1]> ∈ Rt,
the solution of the ridge regression is that:

µ̂t = arg min
θ

∥∥X>t θ − rt
∥∥2

2
+ λ‖θ‖22

=
(
X>t Xt + λI

)−1
X>t rt

= Σ−1
t

t−1∑
i=0

rixi

where λ is a parameter and where

Σt = λI +

t−1∑
i=0

xix
>
i , with Σ0 = λI

The shape of the region BALLt is defined through the feature covariance Σt. Precisely, the uncertainty region,
or confidence ball, is defined as:

BALLt =
{
µ| (µ− µ̂t)>Σt (µ− µ̂t) ≤ βt

}
where βt is a parameter of the algorithm.

8.3 Regret bound of LinUCB

Our main result here is that we have sublinear regret: RT ≤ O?(d
√
T ), poly dependence on d and no

dependence on the cardinality |D|.

Theorem 8.1. Suppose: bounded noise |ηt| ≤ σ, that ‖µ?‖ ≤ W , and that ‖x‖ ≤ B for all x ∈ D. Set
λ = σ2/W 2 and

βt := σ2

(
2 + 4d log

(
1 +

TB2W 2

d

)
+ 8 log(4/δ)

)
With probability greater than 1− δ, that for all t ≥ 0,

RT ≤ cσ
√
T

(
d log

(
1 +

TB2W 2

dσ2

)
+ log(4/δ)

)
where c is an absolute constant.

To proof the Theorem 8.1, we need two key components. The first is in showing that the confidence region is
appropriate.

Proposition 8.2. (Uniform confidence bound)
Let δ > 0. We have that

Pr (∀t, µ? ∈ BALLt) ≥ 1− δ.

The second main step in analyzing LinUCB is to show that as long as the aforementioned high-probability
event holds, we have some control on the growth of the regret. Let us define the instantaneous regret as
regrett = µ? · x? − µ? · xt, the following bounds the sum of the squares of instantaneous regret.
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Proposition 8.3. (Sum of Squares Regret Bound)
Define:

regrett = µ? · x? − µ? · xt
Suppose ‖x‖ ≤ B for x ∈ D. Suppose βt is increasing and larger than 1. Suppose µ? ∈ BALLt for all t, then

T−1∑
t=0

regret2
t ≤ 8βT d log

(
1 +

TB2

dλ

)

Using these two results we are able to prove our upper bound as follows:

Proof of Theorem 8.1. By Propositions 8.2 and 8.3 along with the Cauchy-Schwarz inequality, we have, with
probability at least 1− δ,

RT =

T−1∑
t=0

regrett ≤

√√√√T

T−1∑
t=0

regret2
t ≤

√
8TβT d log

(
1 +

TB2

dλ

)
.

The remainder of the proof follows from using our chosen value of βT = σ2
(

2 + 4d log
(

1 + TB2W 2

d

)
+ 8 log(4/δ)

)
and algebraic manipulations (that 2ab ≤ a2 + b2).

8.3.1 Plan of the proof

1. First prove the Proposition that bounds the sum of square regret

• By bounding instantaneous regret

• And then bounding the sum of squares with “Information Gain”

2. Prove the uniform confidence bound

• Basically show that the choice of βt ”works”.

Lemma 8.4. (”Width” of Confidence Ball)
Let x ∈ D. If µ ∈ BALLt and x ∈ D. Then∣∣∣(µ− µ̂t)> x∣∣∣ ≤√βtx>Σ−1

t x

Proof. By Cauchy-Schwarz, we have:∣∣∣(µ− µ̂t)> x∣∣∣ =
∣∣∣(µ− µ̂t)>Σ

1/2
t Σ

−1/2
t x

∣∣∣ =

∣∣∣∣(Σ
1/2
t (µ− µ̂t)

)>
Σ
−1/2
t x

∣∣∣∣
≤
∥∥∥Σ

1/2
t (µ− µ̂t)

∥∥∥∥∥∥Σ
−1/2
t x

∥∥∥ =
∥∥∥Σ

1/2
t (µ− µ̂t)

∥∥∥√x>Σ−1
t x

≤
√
βtx>Σ−1

t x

where the last inequality holds since µ ∈ BALLt.
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Define

wt :=

√
x>t Σ−1

t xt

which is the ”normalized width” at time t in the direction of the chosen decision. We now see that the width,
2
√
βtwt, is an upper bound for the instantaneous regret.

Lemma 8.5. (Instantaneous Regret is bounded by the width of the ellipsoid)
Fix t ≤ T . If µ? ∈ BALLt, then

regrett ≤ 2 min
(√

βtwt, 1
)
≤ 2
√
βT min (wt, 1)

Proof. Let µ̃ ∈ BALLt denote the vector which minimizes the dot product µ̃>xt. By choice of xt, we have

µ̃>xt = max
µ∈BALLt

max
x∈D

µ>x ≥ (µ?)
>
x∗

where the inequality used the hypothesis µ? ∈ BALLt . Hence,

regrett = (µ?)
>
x∗ − (µ?)

>
xt ≤ (µ̃− µ?)> xt

= (µ̃− µ̂t)> xt + (µ̂t − µ?)> xt ≤ 2
√
βtwt

where the last step follows from Lemma 8.4 since µ̃ and µ? are in BALLt. Since rt ∈ [−1, 1], regrett is always
at most 2 and the first inequality follows. The final inequality is due to that βt is increasing and larger than
1.

The following two lemmas prove useful in showing that we can treat the log determinant as a potential
function, where can bound the sum of widths independently of the choices made by the algorithm.

Lemma 8.6. We have:

det ΣT = det Σ0

T−1∏
t=0

(
1 + w2

t

)

Proof. By the definition of Σt+1, we have

det Σt+1 = det
(
Σt + xtx

>
t

)
= det

(
Σ

1/2
t

(
I + Σ

−1/2
t xtx

>
t Σ
−1/2
t

)
Σ

1/2
t

)
= det (Σt) det

(
I + Σ

−1/2
t xt

(
Σ
−1/2
t xt

)>)
= det (Σt) det

(
I + vtv

>
t

)

where vt := Σ
−1/2
t xt. Now observe that v>t vt = w2

t and(
I + vtv

>
t

)
vt = vt + vt

(
v>t vt

)
=
(
1 + w2

t

)
vt

Hence
(
1 + w2

t

)
is an eigenvalue of I+ vtv

>
t . Since vtv

>
t is a rank one matrix, all other eigenvalues of I+ vtv

>
t

equal 1. Hence, det
(
I + vtv

>
t

)
is
(
1 + w2

t

)
, implying det Σt+1 =

(
1 + w2

t

)
det Σt. The result follows by

induction.
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Lemma 8.7. (”Potential Function” Bound)
For any sequence x0, . . . xT−1 such that, for t < T, ‖xt‖2 ≤ B, we have.

log (det ΣT−1/ det Σ0) = log det

(
I +

1

λ

T−1∑
t=0

xtx
>
t

)
≤ d log

(
1 +

TB2

dλ

)

Proof. Denote the eigenvalues of
∑T−1
t=0 xtx

>
t as σ1, . . . σd, and note:

d∑
i=1

σi = Trace

(
T−1∑
t=0

xtx
>
t

)
=

T−1∑
t=0

‖xt‖2 ≤ TB2.

Using the AM-GM inequality,

log det

(
I +

1

λ

T−1∑
t=0

xtx
>
t

)
= log

(
d∏
i=1

(1 + σi/λ)

)
= d log

(
d∏
i=1

(1 + σi/λ)

)1/d

≤ d log

(
1

d

d∑
i=1

(1 + σi/λ)

)
≤ d log

(
1 +

TB2

dλ

)

which concludes the proof.

Finally, we are ready to prove that if µ? always stays within the evolving confidence region, then our regret is
under control.

Proof of Proposition 8.3. Assume that µ? ∈ BALLt for all t. We have that:

T−1∑
t=0

regret2
t ≤

T−1∑
t=0

4βt min
(
w2
t , 1
)
≤ 4βT

T−1∑
t=0

min
(
w2
t , 1
)

≤ max{8, 4

log 2
}βT

T−1∑
t=0

log
(
1 + w2

t

)
≤ 8βT log (det ΣT−1/ det Σ0)

= 8βT d log

(
1 +

TB2

dλ

)
where the first inequality follow from Lemma 8.5, the second from that βt is an increasing function of t; the
third uses that for 0 ≤ y ≤ 1, y ≥ log(1 + y) ≥ y

1+y ≥
y
2 ,when w2

t ≤ 1, w2
t ≤ 2 log(1 +w2

t ), and when w2
t > 1,

4βt = 4
log 2βt log 2 ≤ 4

log 2βt log(1 + w2
t ); the final two inequalities follow by Lemmas 8.6 and 8.7.

Then we can do confidence analysis to prove the uniform confidence bound:

Lemma 8.8. (Self-Normalized Bound for Vector-Valued Martingales; [Abbasi-Yadkori et al., 2011]). Let
{εi}∞i=1 be a real-valued stochastic process with corresponding filtration {Fi}∞i=1 such that εi is Fi measurable,
E [εi | Fi−1] = 0, and εi is conditionally σ -sub-Gaussian with σ ∈ R+. Let {Xi}∞i=1 be a stochastic process
with Xi ∈ H (some Hilbert space) and Xi being Ft measurable. Assume that a linear operator Σ : H → H is
positive definite, i.e., x>Σx > 0 for any x ∈ H. For any t, define the linear operator Σt = Σ0 +

∑t
i=1XiX

>
i

(here xx> denotes outer-product in H ). With probability at least 1− δ, we have for all t ≥ 1 :∥∥∥∥∥
t∑
i=1

Xiεi

∥∥∥∥∥
2

Σ−1
t

≤ σ2 log

(
det (Σt) det(Σ)−1

δ2

)
.
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Proof of Proposition 8.2 . Since rτ = xτ · µ? + ητ , we have:

µ̂t − µ? = Σ−1
t

t−1∑
τ=0

rτxτ − µ? = Σ−1
t

t−1∑
τ=0

xτ (xτ · µ? + ητ )− µ?

= Σ−1
t

(
t−1∑
τ=0

xτ (xτ )
>

)
µ? − µ? + Σ−1

t

t−1∑
τ=0

ητxτ

= λΣ−1
t µ? + Σ−1

t

t−1∑
τ=0

ητxτ

For any 0 < δt < 1, using triangle inequality and Lemma 8.8, it holds with probability at least 1− δt,√
(µ̂t − µ?)>Σt (µ̂t − µ?) =

∥∥∥(Σt)
1/2

(µ̂t − µ?)
∥∥∥

≤
∥∥∥λΣ

−1/2
t µ?

∥∥∥+

∥∥∥∥∥Σ
−1/2
t

t−1∑
τ=0

ητxτ

∥∥∥∥∥
≤
√
λ ‖µ?‖+

√
2σ2 log

(
det (Σt) det (Σ0)

−1
/δt

)
where we have also used the triangle inequality and that

∥∥Σ−1
t

∥∥ ≤ 1/λ. We seek to lower bound Pr (∀t, µ? ∈ BALLt).
Note that at t = 0, by our choice of λ, we have that BALL0 contains W ?, so Pr (µ? /∈ BALL0) = 0. For
t ≥ 1, let us assign failure probability δt =

(
3/π2

)
/t2 · 2δ for the t -th event, which, using the above and

union bound, gives us an upper bound on the sum failure probability as

1−Pr (∀t, µ? ∈ BALLt) = Pr (∃t, µ? /∈ BALLt) ≤
∞∑
t=1

Pr (µ? /∈ BALLt) <

∞∑
t=1

(
1/t2

) (
3/π2

)
·2δ = 1/2 ·2δ = δ

This along with Lemma 8.7 completes the proof.

8.4 Remarks

• The regret of LinUCB is optimal up to Õ(d
√
T )

• The analysis of LinUCB is based on strong assumption on realizability.

• For agnostic linear bandits, EXP4 [Auer et al., 2002] can achieve the regret of O(d
√
T ), and works in

the adversarial settings, but is computationally inefficient.

• In contextual version with a finite list of available actions are given at each t, assuming i.i.d. setting,
the ”Taming the Monster” algorithm [Agarwal et al., 2014] achieves a regret bound of O(

√
dkT ) where

k is the number of actions with an oracle-efficient algorithm.
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