CS292F Statistical Foundation of Reinforcement Learning

Lecture 8: Linear Bandit (April 21)

Lecturer: Yu-Xiang Wang

Note: LaTeX template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

8.1 Problem Setup

In linear bandit, we choose a decision x_{t} on each round, where the action space is a compact set: $x_{t} \in D \subset \mathbb{R}^{d}$. Then we obtain a reward $r_{t} \in[-1,1]$. The reward is linear + i.i.d. noise, where $\mathbb{E}\left[r_{t} \mid x_{t}=x\right]=\mu^{\star} \cdot x \in[-1,1]$ and noise sequence $\eta_{t}=r_{t}-\mu^{\star} \cdot x_{t}$ is i.i.d. noise.

If $x_{0}, \ldots x_{T}$ are our decisions, then our cumulative regret is

$$
\operatorname{Reg}_{T}=T \cdot\left\langle\mu^{\star}, x^{\star}\right\rangle-\sum_{t=0}^{T}\left\langle\mu^{\star}, x_{t}\right\rangle
$$

where $x^{\star} \in D$ is an optimal decision for μ^{\star}, i.e.

$$
x^{\star} \in \operatorname{argmax}_{x \in D} \mu^{\star} \cdot x
$$

8.2 LinUCB Algorithm

```
Algorithm 1: Linear UCB
Input: \(\lambda, \beta_{t}\)
for \(t=0,1,2, \ldots\) do
    Execute
        \(x_{t}=\operatorname{argmax}_{x \in D} \max _{\mu \in \mathrm{BALL}_{t}}\langle x, \mu\rangle\)
    and observe the reward \(r_{t}\)
    Update \(\mathrm{BALL}_{t+1}\).
end
```

LinUCB is based on "optimism in the face of uncertainty," which is described in Algorithm 1 . At episode t, we use all previous experience to define an uncertainty region (an ellipse) BALL ${ }_{t}$. The center of this region, $\widehat{\mu}_{t}$, is the solution of the following ridge regression problem:

$$
\widehat{\mu}_{t}=\arg \min _{\theta} \sum_{i=0}^{t-1}\left(x_{i}^{\top} \theta-r_{i}\right)^{2}+\lambda\|\theta\|_{2}^{2}
$$

If we consider the matrix form of x_{t} that $X_{t}=\left[x_{0}, x_{1}, \ldots, x_{t-1}\right]^{\top} \in \mathbb{R}^{t \times d}$ and set $\mathbf{r}_{t}=\left[r_{0}, r_{1}, \ldots, r_{t-1}\right]^{\top} \in \mathbb{R}^{t}$, the solution of the ridge regression is that:

$$
\begin{aligned}
\widehat{\mu}_{t} & =\arg \min _{\theta}\left\|X_{t}^{\top} \theta-\mathbf{r}_{t}\right\|_{2}^{2}+\lambda\|\theta\|_{2}^{2} \\
& =\left(X_{t}^{\top} X_{t}+\lambda I\right)^{-1} X_{t}^{\top} \mathbf{r}_{t} \\
& =\Sigma_{t}^{-1} \sum_{i=0}^{t-1} r_{i} x_{i}
\end{aligned}
$$

where λ is a parameter and where

$$
\Sigma_{t}=\lambda I+\sum_{i=0}^{t-1} x_{i} x_{i}^{\top}, \text { with } \Sigma_{0}=\lambda I
$$

The shape of the region BALL_{t} is defined through the feature covariance Σ_{t}. Precisely, the uncertainty region, or confidence ball, is defined as:

$$
\mathrm{BALL}_{t}=\left\{\mu \mid\left(\mu-\widehat{\mu}_{t}\right)^{\top} \Sigma_{t}\left(\mu-\widehat{\mu}_{t}\right) \leq \beta_{t}\right\}
$$

where β_{t} is a parameter of the algorithm.

8.3 Regret bound of LinUCB

Our main result here is that we have sublinear regret: $R_{T} \leq O^{\star}(d \sqrt{T})$, poly dependence on d and no dependence on the cardinality $|D|$.

Theorem 8.1. Suppose: bounded noise $\left|\eta_{t}\right| \leq \sigma$, that $\left\|\mu^{\star}\right\| \leq W$, and that $\|x\| \leq B$ for all $x \in D$. Set $\lambda=\sigma^{2} / W^{2}$ and

$$
\beta_{t}:=\sigma^{2}\left(2+4 d \log \left(1+\frac{T B^{2} W^{2}}{d}\right)+8 \log (4 / \delta)\right)
$$

With probability greater than $1-\delta$, that for all $t \geq 0$,

$$
R_{T} \leq c \sigma \sqrt{T}\left(d \log \left(1+\frac{T B^{2} W^{2}}{d \sigma^{2}}\right)+\log (4 / \delta)\right)
$$

where c is an absolute constant.
To proof the Theorem 8.1, we need two key components. The first is in showing that the confidence region is appropriate.
Proposition 8.2. (Uniform confidence bound)
Let $\delta>0$. We have that

$$
\operatorname{Pr}\left(\forall t, \mu^{\star} \in \mathrm{BALL}_{t}\right) \geq 1-\delta
$$

The second main step in analyzing LinUCB is to show that as long as the aforementioned high-probability event holds, we have some control on the growth of the regret. Let us define the instantaneous regret as regret $_{t}=\mu^{\star} \cdot x^{\star}-\mu^{\star} \cdot x_{t}$, the following bounds the sum of the squares of instantaneous regret.

Proposition 8.3. (Sum of Squares Regret Bound)
Define:

$$
\operatorname{regret}_{t}=\mu^{\star} \cdot x^{\star}-\mu^{\star} \cdot x_{t}
$$

Suppose $\|x\| \leq B$ for $x \in D$. Suppose β_{t} is increasing and larger than 1. Suppose $\mu^{\star} \in \mathrm{BALL}_{t}$ for all t, then

$$
\sum_{t=0}^{T-1} \operatorname{regret}_{t}^{2} \leq 8 \beta_{T} d \log \left(1+\frac{T B^{2}}{d \lambda}\right)
$$

Using these two results we are able to prove our upper bound as follows:

Proof of Theorem 8.1. By Propositions 8.2 and 8.3 along with the Cauchy-Schwarz inequality, we have, with probability at least $1-\delta$,

$$
R_{T}=\sum_{t=0}^{T-1} \operatorname{regret}_{t} \leq \sqrt{T \sum_{t=0}^{T-1} \operatorname{regret}_{t}^{2}} \leq \sqrt{8 T \beta_{T} d \log \left(1+\frac{T B^{2}}{d \lambda}\right)}
$$

The remainder of the proof follows from using our chosen value of $\beta_{T}=\sigma^{2}\left(2+4 d \log \left(1+\frac{T B^{2} W^{2}}{d}\right)+8 \log (4 / \delta)\right)$ and algebraic manipulations (that $2 a b \leq a^{2}+b^{2}$).

8.3.1 Plan of the proof

1. First prove the Proposition that bounds the sum of square regret

- By bounding instantaneous regret
- And then bounding the sum of squares with "Information Gain"

2. Prove the uniform confidence bound

- Basically show that the choice of β_{t} "works".

Lemma 8.4. ("Width" of Confidence Ball)
Let $x \in D$. If $\mu \in \mathrm{BALL}_{t}$ and $x \in D$. Then

$$
\left|\left(\mu-\widehat{\mu}_{t}\right)^{\top} x\right| \leq \sqrt{\beta_{t} x^{\top} \Sigma_{t}^{-1} x}
$$

Proof. By Cauchy-Schwarz, we have:

$$
\begin{aligned}
\left|\left(\mu-\widehat{\mu}_{t}\right)^{\top} x\right| & =\left|\left(\mu-\widehat{\mu}_{t}\right)^{\top} \Sigma_{t}^{1 / 2} \Sigma_{t}^{-1 / 2} x\right|=\left|\left(\Sigma_{t}^{1 / 2}\left(\mu-\widehat{\mu}_{t}\right)\right)^{\top} \Sigma_{t}^{-1 / 2} x\right| \\
& \leq\left\|\Sigma_{t}^{1 / 2}\left(\mu-\widehat{\mu}_{t}\right)\right\|\left\|\Sigma_{t}^{-1 / 2} x\right\|=\left\|\Sigma_{t}^{1 / 2}\left(\mu-\widehat{\mu}_{t}\right)\right\| \sqrt{x^{\top} \Sigma_{t}^{-1} x} \\
& \leq \sqrt{\beta_{t} x^{\top} \Sigma_{t}^{-1} x}
\end{aligned}
$$

where the last inequality holds since $\mu \in \mathrm{BALL}_{t}$.

Define

$$
w_{t}:=\sqrt{x_{t}^{\top} \Sigma_{t}^{-1} x_{t}}
$$

which is the "normalized width" at time t in the direction of the chosen decision. We now see that the width, $2 \sqrt{\beta_{t}} w_{t}$, is an upper bound for the instantaneous regret.

Lemma 8.5. (Instantaneous Regret is bounded by the width of the ellipsoid)
Fix $t \leq T$. If $\mu^{\star} \in \mathrm{BALL}_{t}$, then

$$
\operatorname{regret}_{t} \leq 2 \min \left(\sqrt{\beta_{t}} w_{t}, 1\right) \leq 2 \sqrt{\beta_{T}} \min \left(w_{t}, 1\right)
$$

Proof. Let $\widetilde{\mu} \in \mathrm{BALL}_{t}$ denote the vector which minimizes the dot product $\tilde{\mu}^{\top} x_{t}$. By choice of x_{t}, we have

$$
\widetilde{\mu}^{\top} x_{t}=\max _{\mu \in \mathrm{BALL}_{t}} \max _{x \in D} \mu^{\top} x \geq\left(\mu^{\star}\right)^{\top} x^{*}
$$

where the inequality used the hypothesis $\mu^{\star} \in \mathrm{BALL}_{t}$. Hence,

$$
\begin{aligned}
\operatorname{regret}_{t} & =\left(\mu^{\star}\right)^{\top} x^{*}-\left(\mu^{\star}\right)^{\top} x_{t} \leq\left(\widetilde{\mu}-\mu^{\star}\right)^{\top} x_{t} \\
& =\left(\widetilde{\mu}-\widehat{\mu}_{t}\right)^{\top} x_{t}+\left(\widehat{\mu}_{t}-\mu^{\star}\right)^{\top} x_{t} \leq 2 \sqrt{\beta_{t}} w_{t}
\end{aligned}
$$

where the last step follows from Lemma 8.4 since $\widetilde{\mu}$ and μ^{\star} are in BALL_{t}. Since $r_{t} \in[-1,1]$, regret ${ }_{t}$ is always at most 2 and the first inequality follows. The final inequality is due to that β_{t} is increasing and larger than 1.

The following two lemmas prove useful in showing that we can treat the log determinant as a potential function, where can bound the sum of widths independently of the choices made by the algorithm.

Lemma 8.6. We have:

$$
\operatorname{det} \Sigma_{T}=\operatorname{det} \Sigma_{0} \prod_{t=0}^{T-1}\left(1+w_{t}^{2}\right)
$$

Proof. By the definition of Σ_{t+1}, we have

$$
\begin{aligned}
\operatorname{det} \Sigma_{t+1} & =\operatorname{det}\left(\Sigma_{t}+x_{t} x_{t}^{\top}\right)=\operatorname{det}\left(\Sigma_{t}^{1 / 2}\left(I+\Sigma_{t}^{-1 / 2} x_{t} x_{t}^{\top} \Sigma_{t}^{-1 / 2}\right) \Sigma_{t}^{1 / 2}\right) \\
& =\operatorname{det}\left(\Sigma_{t}\right) \operatorname{det}\left(I+\Sigma_{t}^{-1 / 2} x_{t}\left(\Sigma_{t}^{-1 / 2} x_{t}\right)^{\top}\right)=\operatorname{det}\left(\Sigma_{t}\right) \operatorname{det}\left(I+v_{t} v_{t}^{\top}\right)
\end{aligned}
$$

where $v_{t}:=\Sigma_{t}^{-1 / 2} x_{t}$. Now observe that $v_{t}^{\top} v_{t}=w_{t}^{2}$ and

$$
\left(I+v_{t} v_{t}^{\top}\right) v_{t}=v_{t}+v_{t}\left(v_{t}^{\top} v_{t}\right)=\left(1+w_{t}^{2}\right) v_{t}
$$

Hence $\left(1+w_{t}^{2}\right)$ is an eigenvalue of $I+v_{t} v_{t}^{\top}$. Since $v_{t} v_{t}^{\top}$ is a rank one matrix, all other eigenvalues of $I+v_{t} v_{t}^{\top}$ equal 1. Hence, $\operatorname{det}\left(I+v_{t} v_{t}^{\top}\right)$ is $\left(1+w_{t}^{2}\right)$, implying det $\Sigma_{t+1}=\left(1+w_{t}^{2}\right) \operatorname{det} \Sigma_{t}$. The result follows by induction.

Lemma 8.7. ("Potential Function" Bound)
For any sequence $x_{0}, \ldots x_{T-1}$ such that, for $t<T,\left\|x_{t}\right\|_{2} \leq B$, we have.

$$
\log \left(\operatorname{det} \Sigma_{T-1} / \operatorname{det} \Sigma_{0}\right)=\log \operatorname{det}\left(I+\frac{1}{\lambda} \sum_{t=0}^{T-1} x_{t} x_{t}^{\top}\right) \leq d \log \left(1+\frac{T B^{2}}{d \lambda}\right)
$$

Proof. Denote the eigenvalues of $\sum_{t=0}^{T-1} x_{t} x_{t}^{\top}$ as $\sigma_{1}, \ldots \sigma_{d}$, and note:

$$
\sum_{i=1}^{d} \sigma_{i}=\operatorname{Trace}\left(\sum_{t=0}^{T-1} x_{t} x_{t}^{\top}\right)=\sum_{t=0}^{T-1}\left\|x_{t}\right\|^{2} \leq T B^{2}
$$

Using the AM-GM inequality,

$$
\begin{aligned}
\log \operatorname{det}\left(I+\frac{1}{\lambda} \sum_{t=0}^{T-1} x_{t} x_{t}^{\top}\right) & =\log \left(\prod_{i=1}^{d}\left(1+\sigma_{i} / \lambda\right)\right)=d \log \left(\prod_{i=1}^{d}\left(1+\sigma_{i} / \lambda\right)\right)^{1 / d} \\
& \leq d \log \left(\frac{1}{d} \sum_{i=1}^{d}\left(1+\sigma_{i} / \lambda\right)\right) \leq d \log \left(1+\frac{T B^{2}}{d \lambda}\right)
\end{aligned}
$$

which concludes the proof.

Finally, we are ready to prove that if μ^{\star} always stays within the evolving confidence region, then our regret is under control.

Proof of Proposition 8.3. Assume that $\mu^{\star} \in \mathrm{BALL}_{t}$ for all t. We have that:

$$
\begin{aligned}
\sum_{t=0}^{T-1} \operatorname{regret}_{t}^{2} & \leq \sum_{t=0}^{T-1} 4 \beta_{t} \min \left(w_{t}^{2}, 1\right) \leq 4 \beta_{T} \sum_{t=0}^{T-1} \min \left(w_{t}^{2}, 1\right) \\
& \leq \max \left\{8, \frac{4}{\log 2}\right\} \beta_{T} \sum_{t=0}^{T-1} \log \left(1+w_{t}^{2}\right) \leq 8 \beta_{T} \log \left(\operatorname{det} \Sigma_{T-1} / \operatorname{det} \Sigma_{0}\right) \\
& =8 \beta_{T} d \log \left(1+\frac{T B^{2}}{d \lambda}\right)
\end{aligned}
$$

where the first inequality follow from Lemma 8.5, the second from that β_{t} is an increasing function of t; the third uses that for $0 \leq y \leq 1, y \geq \log (1+y) \geq \frac{y}{1+y} \geq \frac{y}{2}$, when $w_{t}^{2} \leq 1, w_{t}^{2} \leq 2 \log \left(1+w_{t}^{2}\right)$, and when $w_{t}^{2}>1$, $4 \beta_{t}=\frac{4}{\log 2} \beta_{t} \log 2 \leq \frac{4}{\log 2} \beta_{t} \log \left(1+w_{t}^{2}\right)$; the final two inequalities follow by Lemmas 8.6 and 8.7 .

Then we can do confidence analysis to prove the uniform confidence bound:
Lemma 8.8. (Self-Normalized Bound for Vector-Valued Martingales; [Abbasi-Yadkori et al., 2011]). Let $\left\{\varepsilon_{i}\right\}_{i=1}^{\infty}$ be a real-valued stochastic process with corresponding filtration $\left\{\mathcal{F}_{i}\right\}_{i=1}^{\infty}$ such that ε_{i} is \mathcal{F}_{i} measurable, $\mathbb{E}\left[\varepsilon_{i} \mid \mathcal{F}_{i-1}\right]=0$, and ε_{i} is conditionally σ-sub-Gaussian with $\sigma \in \mathbb{R}^{+}$. Let $\left\{X_{i}\right\}_{i=1}^{\infty}$ be a stochastic process with $X_{i} \in \mathcal{H}$ (some Hilbert space) and X_{i} being \mathcal{F}_{t} measurable. Assume that a linear operator $\Sigma: \mathcal{H} \rightarrow \mathcal{H}$ is positive definite, i.e., $x^{\top} \Sigma x>0$ for any $x \in \mathcal{H}$. For any t, define the linear operator $\Sigma_{t}=\Sigma_{0}+\sum_{i=1}^{t} X_{i} X_{i}^{\top}$ (here $x x^{\top}$ denotes outer-product in \mathcal{H}). With probability at least $1-\delta$, we have for all $t \geq 1$:

$$
\left\|\sum_{i=1}^{t} X_{i} \varepsilon_{i}\right\|_{\Sigma_{t}^{-1}}^{2} \leq \sigma^{2} \log \left(\frac{\operatorname{det}\left(\Sigma_{t}\right) \operatorname{det}(\Sigma)^{-1}}{\delta^{2}}\right)
$$

Proof of Proposition 8.2. Since $r_{\tau}=x_{\tau} \cdot \mu^{\star}+\eta_{\tau}$, we have:

$$
\begin{aligned}
\widehat{\mu}_{t}-\mu^{\star} & =\Sigma_{t}^{-1} \sum_{\tau=0}^{t-1} r_{\tau} x_{\tau}-\mu^{\star}=\Sigma_{t}^{-1} \sum_{\tau=0}^{t-1} x_{\tau}\left(x_{\tau} \cdot \mu^{\star}+\eta_{\tau}\right)-\mu^{\star} \\
& =\Sigma_{t}^{-1}\left(\sum_{\tau=0}^{t-1} x_{\tau}\left(x_{\tau}\right)^{\top}\right) \mu^{\star}-\mu^{\star}+\Sigma_{t}^{-1} \sum_{\tau=0}^{t-1} \eta_{\tau} x_{\tau} \\
& =\lambda \Sigma_{t}^{-1} \mu^{\star}+\Sigma_{t}^{-1} \sum_{\tau=0}^{t-1} \eta_{\tau} x_{\tau}
\end{aligned}
$$

For any $0<\delta_{t}<1$, using triangle inequality and Lemma 8.8 , it holds with probability at least $1-\delta_{t}$,

$$
\begin{aligned}
\sqrt{\left(\widehat{\mu}_{t}-\mu^{\star}\right)^{\top} \Sigma_{t}\left(\widehat{\mu}_{t}-\mu^{\star}\right)} & =\left\|\left(\Sigma_{t}\right)^{1 / 2}\left(\widehat{\mu}_{t}-\mu^{\star}\right)\right\| \\
& \leq\left\|\lambda \Sigma_{t}^{-1 / 2} \mu^{\star}\right\|+\left\|\Sigma_{t}^{-1 / 2} \sum_{\tau=0}^{t-1} \eta_{\tau} x_{\tau}\right\| \\
& \leq \sqrt{\lambda}\left\|\mu^{\star}\right\|+\sqrt{2 \sigma^{2} \log \left(\operatorname{det}\left(\Sigma_{t}\right) \operatorname{det}\left(\Sigma^{0}\right)^{-1} / \delta_{t}\right)}
\end{aligned}
$$

where we have also used the triangle inequality and that $\left\|\Sigma_{t}^{-1}\right\| \leq 1 / \lambda$. We seek to lower bound $\operatorname{Pr}\left(\forall t, \mu^{\star} \in \operatorname{BALL}_{t}\right)$. Note that at $t=0$, by our choice of λ, we have that BALL_{0} contains W^{\star}, so $\operatorname{Pr}\left(\mu^{\star} \notin \mathrm{BALL}_{0}\right)=0$. For $t \geq 1$, let us assign failure probability $\delta_{t}=\left(3 / \pi^{2}\right) / t^{2} \cdot 2 \delta$ for the t-th event, which, using the above and union bound, gives us an upper bound on the sum failure probability as
$1-\operatorname{Pr}\left(\forall t, \mu^{\star} \in \mathrm{BALL}_{t}\right)=\operatorname{Pr}\left(\exists t, \mu^{\star} \notin \mathrm{BALL}_{t}\right) \leq \sum_{t=1}^{\infty} \operatorname{Pr}\left(\mu^{\star} \notin \mathrm{BALL}_{t}\right)<\sum_{t=1}^{\infty}\left(1 / t^{2}\right)\left(3 / \pi^{2}\right) \cdot 2 \delta=1 / 2 \cdot 2 \delta=\delta$
This along with Lemma 8.7 completes the proof.

8.4 Remarks

- The regret of LinUCB is optimal up to $\tilde{O}(d \sqrt{T})$
- The analysis of LinUCB is based on strong assumption on realizability.
- For agnostic linear bandits, EXP4 [Auer et al., 2002] can achieve the regret of $O(d \sqrt{T})$, and works in the adversarial settings, but is computationally inefficient.
- In contextual version with a finite list of available actions are given at each t, assuming i.i.d. setting, the "Taming the Monster" algorithm [Agarwal et al., 2014] achieves a regret bound of $O(\sqrt{d k T})$ where k is the number of actions with an oracle-efficient algorithm.

References

[AJKS] Agarwal, Alekh, Nan Jiang and S. Kakade. "Reinforcement Learning: Theory and Algorithms." (2019).
[Abbasi-Yadkori et al., 2011] Yasin Abbasi-Yadkori, David Pal, and Csaba Szepesvari. Improved algorithms for linear stochastic bandits. In Advances in Neural Information Processing Systems, pages 2312-2320, 2011.
[Auer et al., 2002] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multiarmed bandit problem. SIAM Journal of Computing, 32(1):48-77, 2002.
[Agarwal et al., 2014] Alekh Agarwal, Daniel J. Hsu, Satyen Kale, John Langford, Lihong Li, and Robert E. Schapire. Taming the monster: A fast and simple algorithm for contextual bandits. In Proceedings of the 31th International Conference on Machine Learning, pages 1638-1646, 2014

