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10.1 Recap

1. Exploration in Tabular MDPs:

• Problem setup: Episodic finite-horizon MDP with non-stationary transitions, i.e. in every episode
k, the learner acts for H step starting from a fixed starting state s0 ∼ µ and, at the end of the
H-length episode, the state is reset. M = {S,A, {rh}h, {Ph}h, H, s0} and π = {π0, . . . , πH−1}
depends on time step.

• Regret definition:

Regret := E

[
K−1∑
k=0

Regretk

]
= E

[
KV ∗(s0)−

K−1∑
k=0

H−1∑
h=0

r(skh, a
k
h)

]
,

where the goal of the agent is to minimize her expected cumulative regret over K episodes.

2. UCB-VI (Azar et al., 2017)
A model-based approach; requires estimating P . It repeats the following procedure for K episodes:

(a) Compute P̂ kh as the empirical estimates, for all h;

(b) Compute reward bonus bkh for all h;

(c) Run Value-Iteration on {P̂ kh , r + bkh}
H−1
h=0 ;

(d) Set πk as the returned policy of VI.

3. Proof of Regret Bound of UCBVI: Õ
(
H2S

√
AK

)
.

10.2 Linear MDPs

The structural assumption is a linear structure in both reward and the transition.

Definition 1. The transition and and reward of a linear MDP follows:

rh(s, a) = θ∗h · φ(s, a), Ph(·|s, a) = µ∗h · φ(s, a), ∀h,

where φ is a known state-action feature map φ : S × A → Rd, and µ∗h ∈ R|S|×d. Here φ, θ∗h are known to
the learner,while µ∗ is unknown.
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The definition implies a low-rank assumption in large-MDP case, since it says the transition matrix Ph ∈
R|S|×|S||A| has rank ar most d.

Example. Tabular MDPs are instances of linear MDPs by choosing d = |S||A| and the feature map

φ(s, a) = δs,a(·) =

{
1, if input is (s, a)
0, otherwise

.

Claim 2. Linear MDPs imply that the Q-function for any policy is linear.

Proof. For the optimal Q∗ function:

Q∗h(s, a) = r(s, a) + Ph(·|s, a) · V ∗h+1

= θ∗h · φ(s, a) + (µ∗hφ(s, a))
T
V ∗h+1

=
(
θ∗h + (µ∗hV

∗
h+1)

)T
φ(s, a)

= (wh)Tφ(s, a),

where wh := θ∗h + (µ∗hV
∗
h+1. Then it is clear that Q∗h(s, a) is a linear function with respect to φ(s, a) and the

optimal policy is simply π∗h(s) = arg maxa(wh)Tφ(s, a) for all h = 0, . . . ,H − 1.

10.3 UCB-VI for linear MDPs

10.3.1 Algorithm

Since µ∗hφ(sih, a
i
h) = Ph(·|sih, aih), and δ(sih+1) is an unbiased estimator of Ph(·|sih, aih) conditioned on sih, a

i
h. It

is reasonable to learn µ∗ by regression from φ(sih, a
i
h) to δ(sih+1) . Thus it leads to the ridge linear regression:

||µ̂nh||F = arg min
µ∈R|S|×d

n−1∑
i=0

||µφ(sih, a
i
h)− δ(sih+1)||22 + λ||µ||2F ,

which has the closed form solution given in (10.1).

Algorithm: in every round,

1. Run Ridge regression for estimating the model:

µ̂nh =

n−1∑
i=0

δ(sih+1)φ(sih, a
i
h)T (Γnh)−1. (10.1)

2. Construct the exploration bonuses:

bnh(s, a) = β
√
φ(s, a)T (Λnh)−1φ(s, a).

3. Run optimistic value iterations, and update greedy policy:

V̂ nH(s) = 0, ∀s,
Q̂nh(s, a) = rh(s, a) + bnh(s, a) + P̂ (·|s, a) · V̂ nh+1

= θ∗h · φ(s, a) + β
√
φ(s, a)T (Λnh)−1φ(s, a) + φ(s, a)T (µ̂nh)T V̂ nh+1

= β
√
φ(s, a)T (Λnh)−1φ(s, a) +

(
θ∗h + (µ̂nh)T V̂ nh+1

)T
φ(s, a),

V̂ nh (s) = min{max
a

Q̂nh(s, a), H}, πnh(s) = arg max
a

Q̂nh(s, a).
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10.3.2 Regret Analysis

Theorem 3. (Regret Bound). Choose

λ = 1, β = Hd
(√

log(H/δ) +
√

log(W +H) +
√

logB +
√

log d+
√

logN
)

= Õ(Hd),

UCB-VI achieves the following regret bound:

R

[
NV ∗ −

N∑
i=0

V πn

]
≤ Õ(H2

√
d3N),

where N is the number of episodes.

Proof. Sketch of the regret analysis: We will use several results/lemmas, which is presented in Section
10.3.3, to prove the regret bound. We first use optimism to upper bound per-episode regret and use simulation
lemma to decompose the per-episode regret. Then by uniform concentration and information gain bound, we
can attain the regret bound.

first, we upper bound the per-episode regret (for episode n) as follows:

V ∗ − V πn = V ∗0 (s0)− V πn
0 (s0)

(by optimism) ≤ V̂ πn
0 (s0)− V πn

0 (s0)

(by simulation lemma) ≤
H−1∑
h=0

Eπn

[
bnh(Sh, Ah) +

(
P̂nh (·|Sh, Ah)− Ph(·|Sh, Ah)

)
· V̂ nh+1

]
(by uniform concentration lemma) ≤

H−1∑
h=0

Eπn [2bnh(Sh, Ah)] if V̂ nh+1 ∈ F .

Then with high probability:

V ∗ − V πn ≤
H−1∑
h=1

Eπn [2bnh(Sh, Ah)|histn] ,

and the total regret:

Regret = E

[
N−1∑
n=0

(V ∗ − V πn)

]
= E

[
N−1∑
n=0

(V ∗ − V πn)1(Not Fail)

]
+ E

[
N−1∑
n=0

(V ∗ − V πn)1(Fail)

]

≤ E

[
N−1∑
n=0

H−1∑
h=0

2bnh(Snh , A
n
h)1(Not Fail)

]
+ δNH

≤ E

[
N−1∑
n=0

H−1∑
h=0

2bnh(Snh , A
n
h)

]
+ δNH (10.2)

(see below) ≤ Õ(H2
√
d3N). (10.3)
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The last step is because, by information gain bound and note that β = Õ(Hd),

N−1∑
n=0

H−1∑
h=0

bnh(Snh , A
n
h) = β

N−1∑
n=0

H−1∑
h=0

√
φ(Snh , A

n
h)(Λnh)−1φ(Snh , A

n
h)

≤ β
H−1∑
h=0

√√√√N

N−1∑
n=0

φ(Snh , A
n
h)(Λnh)−1φ(Snh , A

n
h)

= Õ(dH2
√
Nd logN) = Õ(H2

√
d3N).

10.3.3 Lemmas for Regret Analysis

It remains to prove for UCB-VI:

1. Uniform convergence bound;

2. Optimism;

3. Information gain bound as Lemma 7.12 in [AJKS].

Lemma 4. (Uniform Concentration/ Uniform Convergence). With probability 1− δ, ∀ s, a, h, n

sup
f∈F

(
P̂nh (·|s, a)− Ph(·|s, a)

)
· f ≤ β||φ(s, a)||(Λn

h)−1 =: bnh(s, a)

Proof. Using Lemma 7.3 in [AJKS]:

µ̂nh − µ∗h = −λµ∗h(Λnh)−1 +

n−1∑
i=1

εihφ(sih, a
i
h)T (Λnh)−1.

Then

((µ̂nh − µ∗h) · φ(s, a))
T
V = φ(s, a)T (µ̂nh − µ∗h)TV

= −λφ(s, a)T (Λnh)−1(µ∗h)TV +

(
n−1∑
i=1

εihφ(sih, a
i
h)T (Λnh)−1

)T
· V.

The first term is:

Bias = −λφ(s, a)T (Λnh)−1(µ∗h)TV

= −λφ(s, a)T (Λnh)−1/2(Λnh)−1/2(µ∗h)TV

≤ λ||φ(s, a)||(Λn
h)−1 ||(µ∗n)TV ||(Λn

h)−1

≤
√
dH||φ(s, a)||(Λn

h)−1 .
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The second term:

Variance = φ(s, a)T (Λnh)−1
n−1∑
i=1

φ(sih, a
i
h)(εih)T · V

≤ ||φ(s, a)||(Λn
h)−1 · ||

n−1∑
i=1

φ(sih, a
i
h)(εih)TV ||(Λn

h)−1

(by ”self-normalized bound”) ≤ ||φ(s, a)||(Λn
h)−1 · 3H

√
log

(
H det(Λnh)1/2 det(λI)−1/2

δ

)
(by information gain) ≤ ||φ(s, a)||(Λn

h)−1 · 3H
√
d logN.

So that

((µ̂nh − µ∗h) · φ(s, a))
T
V ≤ ||φ(s, a)||(Λn

h)−1 · (
√
dH + 3H

√
d logN).

Recall that
(
P̂nh (·|s, a)− Ph(·|s, a)

)
· f = φ(s, a)T (µ̂nh − µ∗h)T f and use covering number theorem, for any

f ∈ F , there exists a V ∈ Nε, such that ||f − V ||ε ≤ ε. It remains one more step to finish the proof and it is
shown in the next lecture notes.

Lemma 5. (”Optimism” from Optimism Value Iteration)

V̂ πn
0 (s0) ≥ V ∗0 (s0)

.

Proof. (Use Induction.) If V̂ nh+1(s) ≥ V̂ ∗h+1(s) for all s, then

Q̂nh(s, a)−Q∗h(s, a) = r(s, a) + β
√
φ(s, a)T (Λnh)−1φ(s, a) + φ(s, a)T (µ̂nh)T V̂ nh+1

− r(s, a)− φ(s, a)T (µ∗h)TV ∗h+1

apply inductive hypothesis ≥ β
√
φ(s, a)T (Λnh)−1φ(s, a) + φ(s, a)T (µ̂nh − µ∗n)V̂ nh+1

≥ 0,

if we choose β such that with high probability

β
√
φ(s, a)T (Λnh)−1φ(s, a) ≥

∣∣∣φ(s, a)T (µ̂nh − µ∗n)V̂ nh+1

∣∣∣ ,
according to Lemma 4.

Lemma 6. (Information Gain Bound) ∀Snh , Anh sequence

N−1∑
n=0

φ(Snh , A
n
h)Λn−1

h φ(Snh , A
n
h) = Õ(d logN)

Challenge

We cannot use union bound because we have an infinite number of value functions. We will use the covering
number idea to solve for it and prove Lemma 4.
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