Note: LaTeX template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

9.1 Exploration in Tabular MDPs

We now move to the learning in an episodic finite-horizon MDP with non-stationary transitions, i.e. in every episode k , the learner acts for H step starting from a fixed starting state $s_{0} \sim \mu$ and, at the end of the H-length episode, the state is reset. $\mathcal{M}=\left\{\mathcal{S}, \mathcal{A},\left\{r_{h}\right\}_{h},\left\{P_{h}\right\}_{h}, H, s_{0}\right\}$ and $\pi=\left\{\pi_{0}, \ldots, \pi_{H-1}\right\}$ depends on time step.

Regret definition:

$$
\text { Regret }:=\mathbb{E}\left[\sum_{k=0}^{K-1} \operatorname{Regret}_{k}\right]=\mathbb{E}\left[K V^{*}\left(s_{0}\right)-\sum_{k=0}^{K-1} \sum_{h=0}^{H-1} r\left(s_{h}^{k}, a_{h}^{k}\right)\right]
$$

where the goal of the agent is to minimize her expected cumulative regret over K episodes.

9.2 UCB-VI

9.2.1 Algorithm

UCB-VI algorithm is a model-based approach and requires estimating P. It repeats the following procedure for K episodes:

1. Compute \hat{P}_{h}^{k} as the empirical estimates, for all h. It is defined by

$$
\text { At } k, h: \quad \hat{P}_{h}^{k}\left(s^{\prime} \mid s, a\right)=\frac{N_{h}^{k}\left(s, a, s^{\prime}\right)}{N_{h}^{k}(s, a)}
$$

where $N_{h}^{k}\left(s, a, s^{\prime}\right)=\{$ the number of times these triplets appear from step h to $\mathrm{h}+1\}=\sum_{i=0}^{k-1} \mathbb{1}\left(S_{h}^{i}=\right.$ $\left.s, A_{h}^{i}=a, S_{h+1}^{i}=s^{\prime}\right) ; N_{h}^{k}(s, a)=\sum_{i=1}^{k-1} \mathbb{1}\left(S_{h}^{i}=s, A_{h}^{i}=a\right)$. If there is no state-action pairs, we assume $0 / 0:=0$.
2. Compute reward bonus b_{h}^{k} for all h, where

$$
b_{h}^{k}(s, a)=H \sqrt{\frac{L}{N_{h}^{k}(s, a)}}, \quad \text { with } L=\log (S A H K / \delta), \delta \text { is the failure probability. }
$$

Remark: This Hoeffding style bonus encourages exploring new state-action pairs.
3. Run Value-Iteration on $\left\{\hat{P}_{h}^{k}, r+b_{h}^{k}\right\}_{h=0}^{H-1}$. Starting at H, we perform dynamic programming all the way to $h=0$:

$$
\begin{aligned}
& \hat{V}_{H}^{n}(s)=0, \forall s \\
& \hat{Q}_{h}^{n}(s, a)=\min \left\{r_{h}(s, a)+b_{h}^{n}(s, a)+\hat{P}(\cdot \mid s, a) \cdot \hat{V}_{h+1}^{n}, H\right\} \\
& \hat{V}_{h}^{n}(s)=\max _{a} \hat{Q}_{h}^{n}(s, a), \quad \pi_{h}^{n}(s)=\arg \max _{a} \hat{Q}_{h}^{n}(s, a), \forall h, s, a
\end{aligned}
$$

Remark: It converges in H steps and produces a non-stationary policy indexed by h.
4. Set π^{k} as the returned policy of VI.

9.2.2 Regret Bound of UCB-VI

Theorem 1. (Regret Bound of UCB-VI). UCB-VI achieves the following regret bound:

$$
\text { Regret }:=\mathbb{E}\left[\sum_{k=0}^{K-1}\left(V^{*}-V^{\pi^{k}}\right)\right] \leq 2 H^{2} S \sqrt{A K \cdot \log \left(S A H^{2} K^{2}\right)}=\tilde{O}\left(H^{2} S \sqrt{A K}\right)
$$

Remark. The regret is not optimal in H, S, but is a simple analysis to start. Ideas for improving it include improving H by using Bernstein's inequality and including S using lemma 3.

We prove the above theorem in the following with some lemmas introduced first.
Lemma 2. With probability at least $1-\delta$, for all h, k, s, a,

$$
\left\|\hat{P}_{h}^{k}(\cdot \mid s, a)-P_{h}^{*}(\cdot \mid s, a)\right\|_{1} \leq \sqrt{\frac{S \log (S A H K / \delta)}{N_{h}^{k}(s, a)}}
$$

Lemma 3. With probability at least $1-\delta$, for all h, k, s, a,

$$
\left|\hat{P}_{h}^{k}(\cdot \mid s, a) \cdot V_{h+1}^{*}-P_{h}^{*}(\cdot \mid s, a) \cdot V_{h+1}^{*}\right| \leq H \sqrt{\frac{L}{N_{h}^{k}(s, a)}}, \quad L=\log (S A H K / \delta)
$$

From above, we know that the probability of the inequalities fail is 2δ, i.e., $P($ Fail $) \leq 2 \delta$.
Lemma 4. (Optimism). Assume the above inequality in Lemma 3 is true. For all episode k, we have:

$$
\hat{V}_{h}^{k} \geq V_{h}^{*}, \quad \forall h=0,1, \ldots, H-1, H
$$

Proof. Prove via induction.
Base: $\hat{V}_{H}^{k}=V_{H}^{*}=0$.
Assume for $h, \hat{V}_{h}^{k} \geq V_{h}^{*}$, we will prove that $\hat{V}_{h-1}^{k} \geq V_{h-1}^{*}$. Note that $\hat{V}_{h-1}^{k}=\max _{a} \hat{Q}_{h-1}^{k}(\cdot, a)$, and

$$
\begin{aligned}
& \hat{Q}_{h-1}^{k}(s, a)=\min \left\{H, r_{h-1}(s, a)+b_{h-1}^{k}(s, a)+\hat{P}_{h-1}^{k}(\cdot \mid s, a) \cdot \hat{V}_{h}^{k}\right\} \\
& Q_{h-1}^{*}(s, a)=r_{h-1}(s, a)+b_{h-1}^{k}(s, a)+P_{h-1}^{*}(\cdot \mid s, a) \cdot V_{h}^{*} .
\end{aligned}
$$

- When H is smaller: $\hat{Q}_{h-1}^{k}(s, a)=H \geq Q_{h-1}^{*}(s, a)$.
- When H is not selected:

$$
\begin{aligned}
\hat{Q}_{h-1}^{k}(s, a)-Q_{h-1}^{*}(s, a) & =b_{h-1}^{k}(s, a)+\hat{P}_{h-1}^{k}(\cdot \mid s, a) \cdot \hat{V}_{h}^{k}-P_{h-1}^{*}(\cdot \mid s, a) \cdot V_{h}^{*} \\
& \geq b_{h-1}^{k}(s, a)+\left(\hat{P}_{h-1}^{k}(\cdot \mid s, a)-P_{h-1}^{*}(\cdot \mid s, a)\right) \cdot V_{h}^{*} \\
& \geq b_{h-1}^{k}(s, a)-H \sqrt{\frac{L}{N_{h-1}^{k}(s, a)}} \\
& \geq 0,
\end{aligned}
$$

where the first inequality is from the inductive hypothesis, and the second is by leman 3 .

- Thus for any s,

$$
\hat{V}_{h-1}^{k}(s)=\max _{a} \hat{Q}_{h-1}^{k}(s, a) \geq \hat{Q}_{h-1}^{k}\left(s, a^{*}\right) \geq Q_{h-1}^{*}\left(s, a^{*}\right)=V_{h-1}^{*}(s)
$$

Finally, we can prove the main theorem for the regret bound.

Proof. Proof of Theorem 1.
Recall the finite horizon simulation lemma from HW1 Q5:

$$
\hat{V}_{0}^{\pi}-V_{0}^{\pi}=\sum_{h=0}^{H-1} \mathbb{E}^{\pi}\left[\hat{r}_{h}^{\pi}\left(S_{h}\right)-r^{\pi}\left(S_{h}\right)+\left(\hat{P}_{h}^{\pi}\left(\cdot \mid S_{h}\right)-P_{h}^{\pi}\left(\cdot \mid S_{h}\right)\right) \cdot \hat{V}_{h+1}^{\pi}(\cdot)\right]
$$

Then the regret in the k-th episode:

$$
\begin{aligned}
\text { Regret }_{k} & =V_{0}^{*}\left(s_{0}\right)-V_{0}^{\pi_{k}}\left(s_{0}\right) \\
(\text { by optimism }) & \leq \hat{V}_{0}^{\pi_{k}}\left(s_{0}\right)-V_{0}^{\pi_{k}}\left(s_{0}\right) \\
(\text { by simulation lemma) } & \leq \sum_{h=0}^{H-1} \mathbb{E}^{\pi_{k}}\left[\hat{r}_{h}\left(S_{h}, A_{h}\right)-r\left(S_{h}, A_{h}\right)+\left(\hat{P}_{h}\left(\cdot \mid S_{h}, A_{h}\right)-P_{h}\left(\cdot \mid S_{h}, A_{h}\right)\right) \cdot \hat{V}_{h+1}^{\pi_{k}}\right] \\
& =\sum_{h=0}^{H-1} \mathbb{E}^{\pi_{k}}\left[b_{h}^{k}\left(S_{h}, A_{h}\right)+\left(\hat{P}_{h}\left(\cdot \mid S_{h}, A_{h}\right)-P_{h}\left(\cdot \mid S_{h}, A_{h}\right)\right) \cdot \hat{V}_{h+1}^{\pi_{k}}\right] \\
& \leq \sum_{h=0}^{H-1} \mathbb{E}^{\pi_{k}}\left[2 H \sqrt{\frac{S L}{N_{h}^{k}\left(S_{h}, A_{h}\right)}}\right] \\
& =2 H \sqrt{S L} \mathbb{E}\left[\left.\sum_{h=0}^{H-1} \sqrt{\frac{1}{N_{h}^{k}\left(S_{h}^{k}, A_{h}^{k}\right)}} \right\rvert\, \text { hist }_{k}\right]
\end{aligned}
$$

where in the last term the expectation is taken with respect to the trajectory and condition on all history $H(<k)$ up to and including the end of episode $k-1$. The last inequality is by lemma 2 ,

$$
\left(\hat{P}_{h}\left(\cdot \mid S_{h}, A_{h}\right)-P_{h}\left(\cdot \mid S_{h}, A_{h}\right)\right) \cdot \hat{V}_{h+1}^{\pi_{k}} \leq\left\|\hat{P}_{h}\left(\cdot \mid S_{h}, A_{h}\right)-P_{h}\left(\cdot \mid S_{h}, A_{h}\right)\right\|_{1}\left\|\hat{V}_{h+1}^{\pi_{k}}\right\|_{\infty} \leq \sqrt{\frac{S L}{N_{h}^{k}\left(S_{h}, A_{h}\right)}} \cdot H
$$

Then the total regret:

$$
\begin{aligned}
\mathbb{E}\left[\sum_{k=0}^{K-1} \operatorname{Regret}_{k}\right] & =\mathbb{E}\left[\sum_{k=0}^{K-1} V^{*}\left(s_{0}\right)-V^{\pi_{k}}\left(s_{0}\right)\right] \\
& =\mathbb{E}\left[\left(\sum_{k=0}^{K-1} V^{*}\left(s_{0}\right)-V^{\pi_{k}}\left(s_{0}\right)\right) \mathbb{1}(\text { Not Fail })\right]+\mathbb{E}\left[\left(\sum_{k=0}^{K-1} V^{*}\left(s_{0}\right)-V^{\pi_{k}}\left(s_{0}\right)\right) \mathbb{1}(\text { Fail })\right] \\
& \leq \mathbb{E}\left[\left(\sum_{k=0}^{K-1} V^{*}\left(s_{0}\right)-V^{\pi_{k}}\left(s_{0}\right)\right) \mathbb{1}(\text { Not Fail })\right]+2 \delta \cdot K \cdot H \\
& \leq 2 H \sqrt{S L} \cdot \mathbb{E}\left[\sum_{k=0}^{K-1} \sum_{h=0}^{H-1} \frac{1}{\sqrt{N_{h}^{k}\left(S_{h}^{k}, A_{h}^{k}\right)}}\right]+2 \delta \cdot K H .
\end{aligned}
$$

The expectation in the first term $=\sum_{h=0}^{H-1} \sum_{(s, a) \in \mathcal{S} \times \mathcal{A}} \sum_{i=1}^{N_{h}^{k}(s, a)} \frac{1}{\sqrt{i}} \leq \sum_{h=0}^{H-1} \sum_{(s, a)} 2 \sqrt{N_{h}^{k}(s, a)}$ from last lecture. We conclude that

$$
\begin{aligned}
\mathbb{E}\left[\sum_{k=0}^{K-1} \operatorname{Regret}_{k}\right] & \leq 2 H \sqrt{S L} \cdot \mathbb{E}\left[\sum_{h=0}^{H-1} \sum_{(s, a)} 2 \sqrt{N_{h}^{k}(s, a)}\right]+2 \delta \cdot K H \\
& \leq 2 H \sqrt{S L} \cdot 2 \sum_{h=0}^{H-1} \sqrt{S A \cdot \sum_{(s, a)} N_{h}^{k}(s, a)}+2 \delta \cdot K H \\
& \leq 2 H \sqrt{S L} \cdot 2 H \sqrt{S A K}+2 \delta \cdot K H \\
& \leq 4 H^{2} S \sqrt{A K L}+2 \delta \cdot K H \\
& =\tilde{O}\left(H^{2} S \sqrt{A K}\right), \quad \text { choose } \delta=\frac{1}{K H} .
\end{aligned}
$$

