Sparse Modeling of Human Actions from Motion Imagery

ALEXEY CASTRODAD & GUILLERMO SAPIRO PRESENTER: YUXIANG WANG

About the authors

Guillermo Sapiro

- U Minnesota -> Duke
- Pioneer of using sparse representation in Computer Vision/Graphics
- Alexey Castrodad
 - PhD of Sapiro
 - Nothing much online...

Structure of presentation

- On Deep Learning
- Technical details of this paper
 - Features.
 - Dictionary learning.
 - Classification
- Experiments
- Questions and discussions

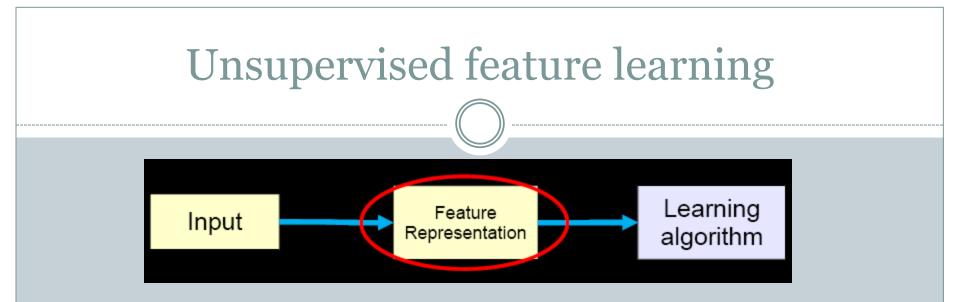
A slide on deep learning

• People:

- o Andrew Ng @ Stanford
- Yann LeCun @ NYU
- o Geoffery Hinton @ Toronto U

• Deep learning:

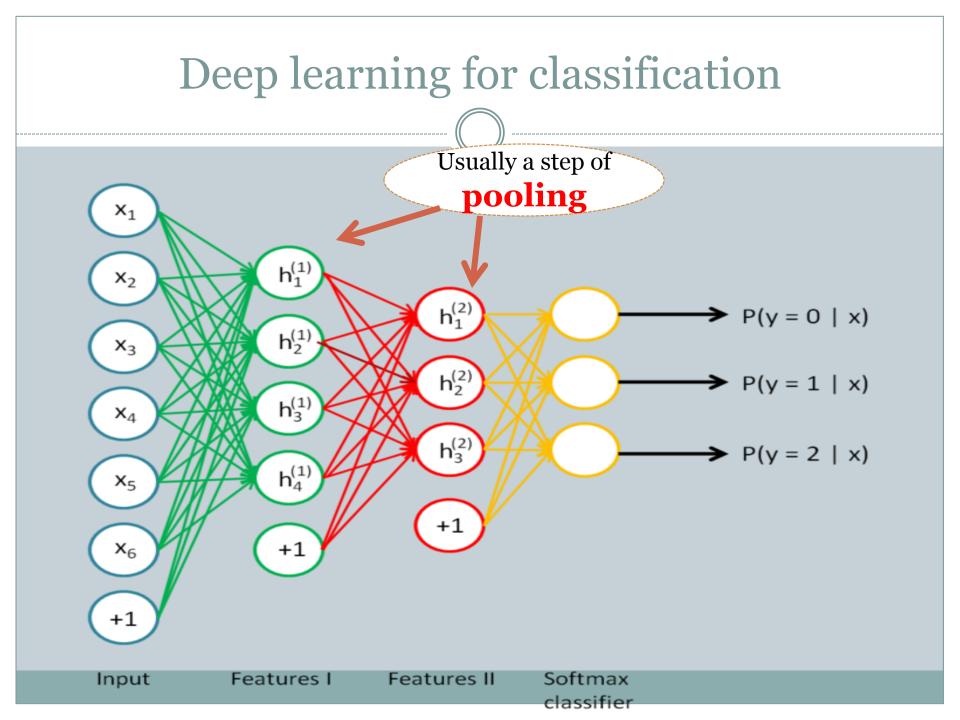
- Multi-layer neural networks with sparse coding
- o "Deep" is only a marketing term, usually 2-3 layers
- Very good in practice, but a bit nasty in theory

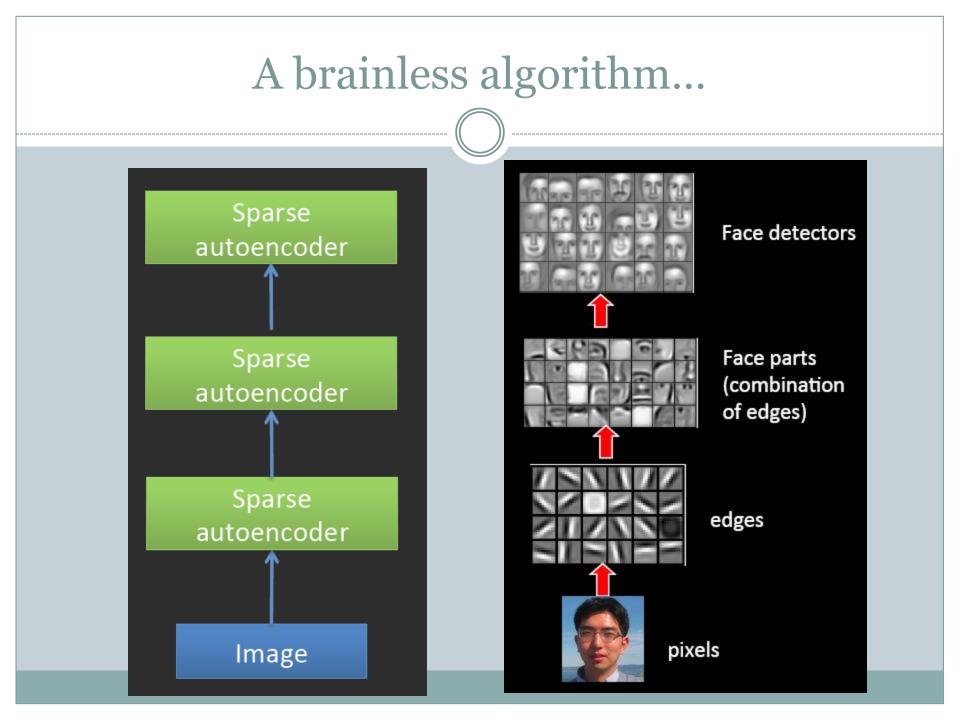


- Usually hand-crafted: SIFT, HOG, etc...
- Now learn from data directly and
 - No engineering/research effort
 - Equally good if not better

Unsupervised feature learning

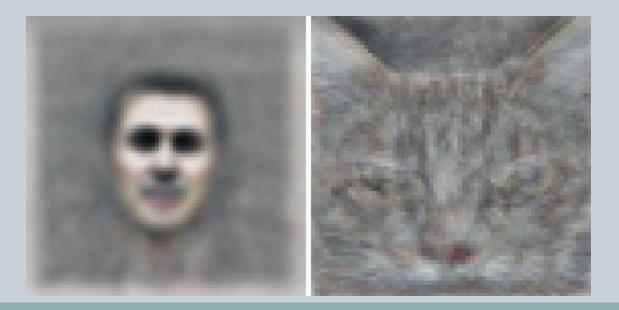
- Outperformed state-of-the-art in:
 - Activity recognition: Hollywood 2 Benchmark
 - Audio recognition/Phoneme classification
 - Parsing sentence
 - Multi-class segmentation: (topic discussed last week)
 - The list goes on...





Unsupervised feature learning

- Large-scale unsupervised feature learning
 - Human learns features (sometimes very high level features: grandmother cell)
 - 16000 CPUs of Google run weeks to simulate human brain and watch YouTube. It gives:



Criticism on deep learning

- Advocates say deep learning is SVM in the 80s.
- Critics say it's yet another a flashback/relapse of the neural network rush.
 - Little insights into how/why it works.
 - Computational intensive
 - A lot of parameters to tune

Wanna know more?

• Watch YouTube video:

• Bay Area Vision Meeting: Unsupervised Feature Learning and Deep Learning

• A great step-by-step tutorial:

o http://deeplearning.stanford.edu/wiki

- Use deep learning framework for action recognition (with some variations).
- Not the first, but the most successful.
- Supply physical meaning to the second layer.
- Benefits from Blessing of dimensionality?

Flow chart of the algorithm Train Test Labeled Videos **Unlabeled Video** 1=C Temporal Gradient & Thresholding (vectorized) Y. $\mathbf{y} \in \mathfrak{R}^m$ **Dictionary Learning** DI DC D $\mathbf{D}^{j} \in \mathfrak{R}^{m \times k_{j}}$ Sparse Coding using D & Per-class Pooling $\mathbf{s} = \sum a_i^1, \dots,$ $\mathbf{s} \in \mathfrak{R}^c$ Inter-class Dictionary Learning **Global Per-class Pooling & Labeling** $g = \sum s_i$ $\mathbf{g} \in \mathfrak{R}^{C}$ $j = \arg \max(g_j)$ Inter-class Sparse Coding & Labeling $\Phi^{\scriptscriptstyle j} \in \Re^{{\scriptscriptstyle C} \times l_j}$ $j^* = \operatorname{argmin} \left[\frac{1}{2} \Phi^j \mathbf{b}^j - \mathbf{g} \right]^2$ *i*=[1,...,*C*],**b**≥0

Minimal feature used?

- Data vector y:
 - 15*15*7 volume patch in temporal gradient
- Thresholding:
 - o Only those patch with large variations used
- Simple but captures the essence.
 - Invariant to location
- More sophisticated feature descriptors are automatically learned!

Dictionary learning/Feature learning

• First layer

$$\mathbf{D}^{j*} = \arg\min_{(\mathbf{D}^j, \mathbf{A}^j) \succeq 0} \frac{1}{2} \|\mathbf{D}^j \mathbf{A}^j - \mathbf{Y}^j\|_F^2 + \lambda \sum_{i=1}^{n_j} \mathcal{S}(\mathbf{a}^j),$$

20

Per Class Sum-Pooling

$$\mathbf{s} = [\mathcal{S}(\mathbf{a}^1), ..., \mathcal{S}(\mathbf{a}^C)]^T \in \Re^C_+$$

Second layer

$$\mathbf{\Phi}^{j*} = \arg\min_{(\mathbf{\Phi}^j, \mathbf{B}^j) \succeq 0} \frac{1}{2} \|\mathbf{\Phi}^j \mathbf{B}^j - \mathbf{S}^j\|_F^2 + \tau \sum_{i=1}^{n_j} \mathcal{S}(\mathbf{b}^j),$$

Procedure for classification

Video i has n_i patches: Y=[y₁, y₂,..., y_{ni}]
Layer 1 sparse coding to get A

$$\mathbf{A}^* = \operatorname*{argmin}_{\mathbf{A} \succeq 0} \frac{1}{2} \| \mathbf{D} \mathbf{A} - \mathbf{Y} \|_F^2 + \lambda \sum_{i=1}^n \mathcal{S}(\mathbf{a}_i),$$

- Class-Sum Pooling from A to $S = [s_1, ..., s_{ni}]$
- Patch-Sum Pooling from S to $g = s_1 + ... + s_{ni}$

Class-wise layer 2 sparse coding

$$\mathcal{R}(\mathbf{\Phi}^{j}, \mathbf{g}) = \min_{\mathbf{b}^{j} \succeq 0} \frac{1}{2} \|\mathbf{\Phi}^{j} \mathbf{b}^{j} - \mathbf{g}\|_{2}^{2} + \tau \mathcal{S}(\mathbf{b}^{j})$$

Procedure for classification

• Either by (pooled) sparse code of first layer

$$f_1(\mathbf{g}) = \{ j | g_j > g_i, j \neq i, (i, j) \in [1, ..., C] \}.$$

Or use residual of second layer

 $f_2(\mathbf{g}) = \{ j | \mathcal{R}(\mathbf{\Phi}^j, \mathbf{g}) < \mathcal{R}(\mathbf{\Phi}^i, \mathbf{g}), j \neq i, (i, j) \in [1, ..., C] \}.$

Analogy to Bag-of-Words model

• D contains:

- Latent local 'words'
- o learned from training image patches

• For a new video:

- Each local patch is represented by 'words'
- Then sum pooled over each class, and over all patches, obtaining 'g'
- If reverse the order, then exactly Bag-of-Words.

Looking back to their two approach

• Given Bag-of-Words representation: v = R^k.

• Classification Method A: is in fact a simple voting scheme.

• Classification Method B is to manipulate the voting results by representing them with a set of pre-defined rules (each class has a set of rules), then check how fitting each set of rules is.

Blessing of dimensionality

• Since the advent of compressive sensing

o Donoho, Candes, Ma Yi and etc...

- Basically:
 - Redundancy in data
 - Random data are almost orthogonal (incoherent)
 - Sparse/low-rank representation of data
 - Great properties for denoising, handling corrupted/missing data.
- This paper uses sparse coding but never explicitly handle data noise/corruption.
- Only implicitly benefits from such blessing.

Experiments

• Top 3 previous results vs.

- **1.** SM-1: Classification by pooled first layer output
- 2. SM-2: Classification by second layer output
- 3. SM-SVM: One-against-others SVM classification using perclass class-sum-pooled vectors S.

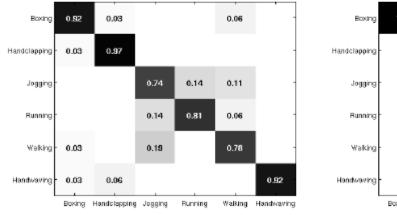
KTH dataset Walking Running Boxing Hand waving Hand clapping Jogging sI s2 53 s4

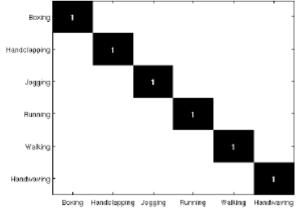
- Indoor, outdoor
- change of clothing, change of viewpoint

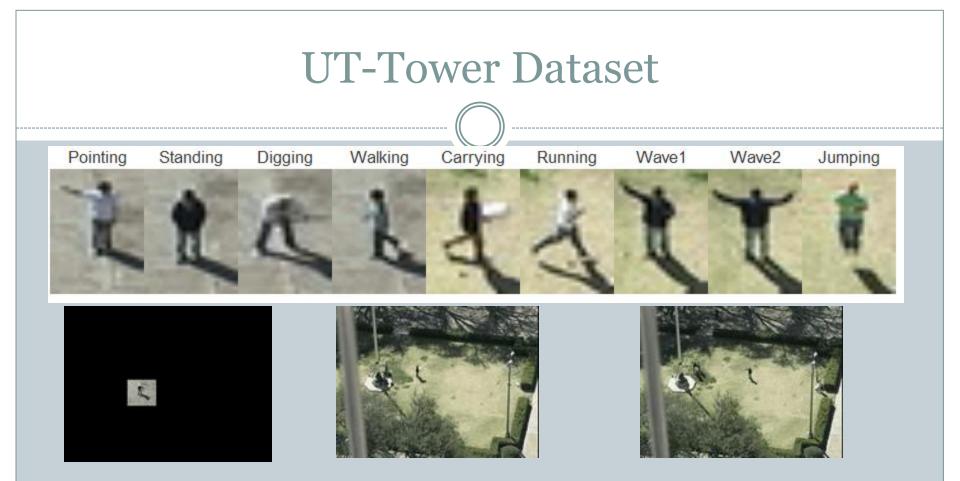
KTH Dataset

Table 2: Results for the KTH dataset.

Method	Overall Accuracy (%)
Wang et al. [34]	94.2
Kovashka <i>et al.</i> [17]	94.5
Guo et al. $[13]$	97.4
SM-SVM	87.6
SM-1	88.8
SM-2	100





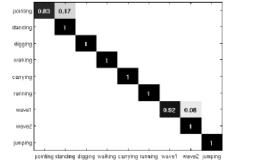


- Low resolution (20 pixels) (a blessing or a curse?)
- Bounding box is given
- Relatively easy among all UT action dataset.

UT-Tower dataset

Table 3: Results for the UT-Tower dataset.

Method	Overall Accuracy (%)
Guo et al. [13, 26]	97.2
Vezzani <i>et al.</i> [33]	93.9
Gall $et \ al. \ [12]$	93.9
SM-SVM	93.3
SM-1	97.2
SM-2	100



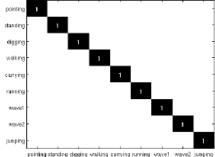


Figure 6: Confusion matrices from classification results on the UT-Tower data using SM-1 and SM-2.

Table 5. System accuracies (%) of the aerial-view challenge.

	Point	Stand	Dig	Walk	Carry	Run	Wave1	Wave2	Jump	Total
Team BIWI	<u>100</u>	<u>91.7</u>	<u>100</u>	<u>100</u>	<u>100</u>	<u>100</u>	83.3	83.3	<u>100</u>	95.4
BU	91.7	83.3	<u>100</u>	<u>97.2</u>						
ECSU_ISI	<u>100</u>	83.3	91.7	<u>100</u>	<u>100</u>	<u>100</u>	<u>100</u>	91.7	91.7	95.4
Imagelab	83.3	83.3	<u>100</u>	96.3						
Baseline	<u>100</u>	83.3	<u>100</u>	<u>100</u>	<u>100</u>	<u>100</u>	83.3	<u>100</u>	<u>100</u>	96.3

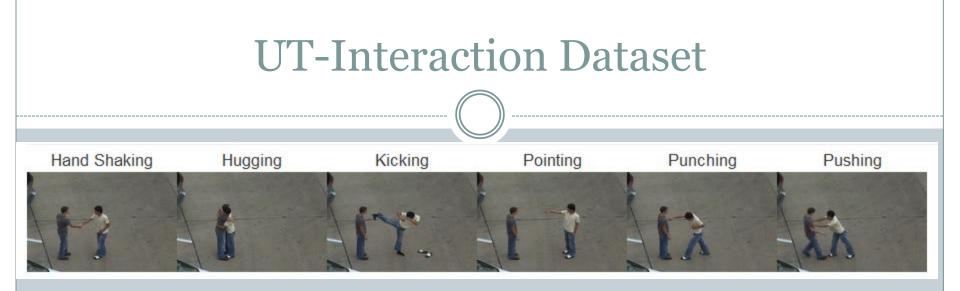


Table 4. Activity classification accuracies of the systems tested on the UT-Interaction dataset #2.

	Shake	Hug	Kick	Point	Punch	Push	Total
Laptev + kNN	0.3	0.38	0.76	0.98	0.34	0.22	0.497
Laptev + Bayes.	0.36	0.67	0.62	0.9	0.32	0.4	0.545
Laptev + SVM	0.49	0.64	0.68	0.9	0.47	0.4	0.597
Latpev + SVM (best)	0.5	0.7	0.8	0.9	0.5	0.5	0.65
Cuboid + kNN	0.65	0.75	0.57	0.9	0.58	0.25	0.617
Cuboid + Bayes.	0.26	0.68	0.72	0.94	0.28	0.33	0.535
Cuboid + SVM	0.61	0.75	0.55	0.9	0.59	0.36	0.627
Cuboid + SVM (best)	0.8	0.8	0.6	0.9	0.7	0.4	0.7
Team BIWI	0.5	0.9	<u>1</u>	1	<u>0.8</u>	0.4	<u>0.77</u>

UCF-Sports dataset

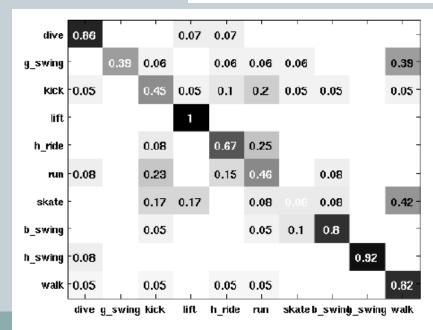
Real data from ESPN/BBC Sports

- Total 200 videos, each class has 15-30 videos.
- Camera motion, varying background
- Quite realistic/challenging

UCF-Sports dataset

Table 4: Results for the UCF-Sports dataset.

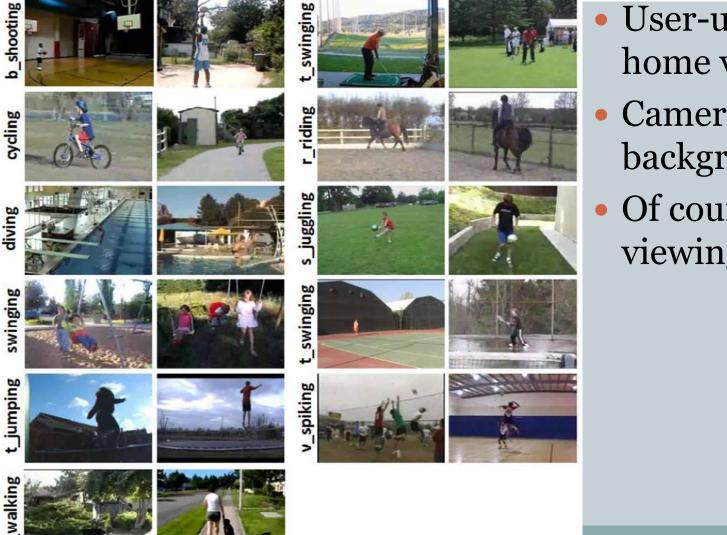
Method	Overall Accuracy (%)
Le <i>et al.</i> [20]	86.5
Wang et al. [34]	88.2
Kovashka <i>et al.</i> [17]	87.5
SM-SVM	87.6
SM-1	66.3
SM-2	96.0





Close look at 1st Layer results 0.86 0.07 dive 0.07 0.39 0.06 0.06 0.06 0.06 0.39 g_swing 0.05 kick -0.05 0.45 0.1 0.2 0.05 0.05 0.05 lift 1 0.25 h ride 0.08 0.67 run | 0.08 0.15 0.46 0.08 0.23 0.42 skate 0.17 0.17 0.08 0.08 b_swing 0.05 0.05 0.1 0.8 0.92 h_swing -0.08 walk 0.05 0.05 0.05 0.82 0.05 dive g swing kick lift h ride run skateb swing walk

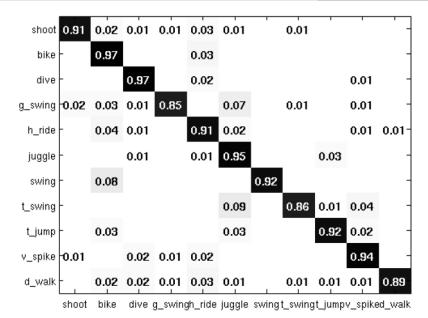
UCF-YouTube dataset

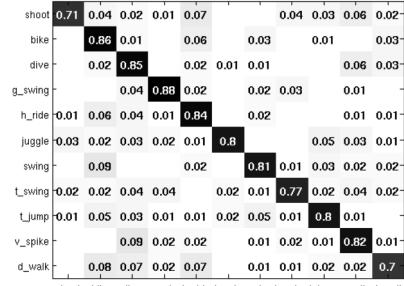


- User-uploaded home video
- Camera motion, background clutter
- Of course different viewing directions

UCF-YouTube dataset

Method	Overall Accuracy (%)
Le <i>et al.</i> [20]	75.8
Wang et al. $[34]$	84.2
Ikizler-Cinbis <i>et al.</i> [14]	75.2
SM-SVM	88.18
SM-1	80.29
SM-2	91.9





shoot bike dive g_swingh_ride juggle swingt_swingt_jumpv_spiked_walk

Comments from class

• Shahzor:

- o not-scalable with the number of action categories.
- Hollywood-2: multi-cam shots and rapid scale variations
- Need multi-scale feature extraction, as well as more sophisticated features

• Ramesh:

- No rigorous theoretical analysis.
- Effect of choosing different k, n, and patch size.
- Non-Negative Sparse Matrix Factorization is slower than L1, why use it?
- What about using PCA?

