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Problem setup

e Convex optimization

min X MM X
omin (0 X

* {(X) is any convex loss function, | | X| |, is nuclear norm

defined to be sum of singular values.

® Nuclear norm is used to promote low-rank solutions.
® |t is the tight convex relaxation of rank.

e Use it as a tractable replacement of rank.




Matrix completion

® When {(X) is indicator function
min || X
inllx])

s.t.Po(X — M) =0

* It is shown by Candes&Tao that under certain conditions, its

solution is exactly the solution of
min rank(X)
X

s.t.Po(X — M) =0




Practical challenges

® Noise

mXinHPQ(X — M| + A|IX],
* Corruptions (RPCA with missing data)
min||Pq (X — M)lly + AlIX1],
* Noise and corruptions
n)jfl,iprIPg(X — M — BE)IIZ + A 11X,
+ A || Ell4




Practical challenges

® Scalability
* Divide-and-conquer (Mackey et al, NIPS11)
® Stochastic gradient descent
GROUSE/ GRASTA by Eriksson, Balzano, Recht. SGD on Grassmanian.
® Parallel Stochastic Gradient
Jellyfish by Recht and Re
® The later two need fixed rank hence are non-convex

algorithms.




This paper's contributions

e SGD algorithm for convex nuclear norm minimization.
e Provide rate of convergence

® More efficient variations.

* A very clear discussion of
® theory and practice;

® nuances of different low-rank promoting algorithms.




SGD at a glance

e Batch gradient descent vs. Stochastic Gradient Descent
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SGD at a glance

® In expectation, SGD is converging to optimal solution.

* It takes many more update steps, but each step is much
cheaper than batch methods.

e Subgradient descent the extension of gradient descent to
non-differentiable functions.

o Usually it requires only one subgradient in the set.




Master theorem for SSGD

® Solve: %IEH,% F(X).

* By iterates: XUHD — [ (X(t) _ ?’}(tjg(t))

Theorem 2.2 (Convergence of Stochastic Subgra-
dient Descent). Apply 1" iterations of the update
XD = TIe(X® — 5O g®) where ¢\ is an unbi-
ased estimator of a subgradient of F at X (that s,
B[y X®] € OF(X1)) satisfying E[|gV|3|X 0] <
G?2. Then

LS BIF(X0)] — F(Xop) <

T
[ Xope = XVg + 30,2, ()62
22?:1 ﬂ(t}




Master theorem for SSGD

(t) — glXopelle 0
Corollary 2.3. Setn'") =3 le/_’T where 3 > 0. then

E[F(X“)] — F(Xopt) < % ZT: E[F(XD)] — F(Xopt)

Gl X 1
<4 [Xop i max {3, } .
Thus, the above corollary implies that the output iter-

ate 1s O(%) close to the optimum solution in expected

o

F-value.




Bounded solution space
¢ Additional constraint

K= 1{X cR™ . [X|p < A}

Definition 2 (Projection Operator for K). Define
M (P) = argming i || P — Q|lp = min{1, ﬁ}P

e |t doesn't Change the optimization because we know optimal
solution | | X*| | < A.




Compute subgradient

e SVD of X
X =uxv’

° Subgradient of nuclear norm

Ul:??1-,1:-'1*‘/1—;':71.,1;-;* S 8||‘XY||='*<

° Subgradient of objective tunction

G(F(X)) “ W H(X) + A UiV, € Ox F(X)




SSGD for Nuclear norm

® What s left is to provide an efficient unbiased estimator.
* Probing MatrixY: n*k. E(YY')=Identity.
® Weuse (§ ( F ( X) ) VY T asan unbiased estimator of
G(F(X))
® WhenY is scaled identity matrix, computation of

G(F(X))Y is more efficient.




Probing matrix

® [t can be anything that satisfies

o Y E Rnxk

* E(YY')=Identity
* Example:

en=3k%k

o
2

eY=|0 0|, YYT=

0 |
300
-E(YYT)_ 0 0 O
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Basic-SSGD

e Here comes the algorithm.

Algorithm 1 BASICc-SSGD

Input: f, \, T step sizes n'), ... n

Initialize XY = 0,,, .,
fort=0to1 —1do
Generate an n X k& probing matrix Y
gt — G(F (};{ﬂ))ny
X““) R H;C(X{” ntg (f})
end for
Return X = argminy ) g F (X 1)

* Note it requires one SVD for each iteration!




Fast-SSGD

* A Fast-SSGD update for sum loss function and low rank X
using QR factorization of SVD.
Algorithm 2 FAST-SSGD-UPDATE
]

Il][)llt.: '{* c Rin}{r(t:’ E = ]E?":t:'?x;tr":t:' 1— c R??,Xtr' ‘
Y e R"*F and -};':t:' = ()

1. S «— G(F(X))Y {without forming G(F (X))}
2. Ut  [UWx® s

3. VD) v _ p0y]

4. Factorize: U1 — Qo Frr

5. Factorize: VT = Q) Ry,

6. T +— Ry Ry

7. SVD computation: 7" = MIFDNT

R. U+ «— QM

9. Vit « Oy N
10. Return U S+l apnd v+




Guarantee for SSGD

e Theorem 3.3

r , G+ A\/r)A 1
E[XVD] - F Nopt ) < 4 n( max {.i } :

® Rate of convergence at () (—)

vk

n
) to converge to error €

e Need O (@
° Complexity of each iteration

® Basic-SSGD: O(mn?)

® Fast-SSGD: O(m(r®® +k)?)

e r(Y increases as t becomes large. .




Restrict r for fast computation

* Solution space becomes non-convex!
® In theory, it's NP-hard to compute.
® But in practice, it works great.

® Equivalent shown in http://arxiv. org/ abs/1203.1570

o Empirical evidence
® nuclear norm regularization still useful

® even though explicit rank constraint is imposed

Regularized matrix factorization:

Min | [X-UV'[ [+ | [U] [5F] [ V]|

In fact: Min | |[U]| %+ | | V]| [%:=] |UV'] |;



http://arxiv.org/abs/1203.1570

Experiments

* Netflix data: 480k user, 18k movie, 10M movie ratings.

® Movielens data: 70k user, 10k movie, 100 million movie
ratings.
e Results:
® It gives faster and better results w.r.t. convex methods such as
Soft-impute.
® It gives slower and worse results w.r.t. non-convex factorization

methods, e.g., Jellyfish.
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Figure 1. Sensitivity of S5GD to parameters on the MovieLens 10M dataset.

each of the three graphs. we fix two parameters and vary the third.
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Figure 2. Figure (a): test RMSE vs time on MovieLens 10M. Figure (b): test RMSE vs rank MovieLens 10M (for SSGD-
MATRI-COMPLETION, rank r = 11; fisure 1 shows its RMSE vs rank). Figure (¢): shows test RMSE vs time on the

Netflix dataset.




Discussion

e Convex relaxation is tractable, but less desirable under noise.

* Explicit rank will help in practice, especially when the
physical rank of the data is known.

° It's good to add nuclear norm regularization even if the rank

constraint is already imposed.




Questions from class

® Jiaming: In algorithm I, why does it still need to select X(I)
from 0 <= 1<=T7Is the algorithm convergent?

® That's to keep track of the solution with best objective value

thus far. Convergence is not a problem.

* Jiaming: What does it mean “For both JSH and Soft-Impute,
we needed to gotoa much larger rank to obtain a RMSE
comparable to that”?

o [t explains the middle of Figure 2.




Questions from class
* Shahzor: In pdt file.




Thank you!




