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Problem setup 

 Convex optimization 

 

 

 f(X) is any convex loss function, ||X||* is nuclear norm 

defined to be sum of singular values. 

 Nuclear norm is used to promote low-rank solutions. 

 It is the tight convex relaxation of rank. 

 Use it as a tractable replacement of rank. 



Matrix completion 

 When f(X) is indicator function 

 

 

 

 It is shown by Candes&Tao that under certain conditions, its 

solution is exactly the solution of 

 

 
 

 
 

 



Practical challenges  

 Noise 

 

 Corruptions (RPCA with missing data) 

 

 

 Noise and corruptions 

 

 

 

 



Practical challenges 

 Scalability 

 Divide-and-conquer (Mackey et al, NIPS11) 

 Stochastic gradient descent  

 GROUSE/GRASTA by Eriksson, Balzano, Recht. SGD on Grassmanian. 

 Parallel Stochastic Gradient 

 Jellyfish by Recht and Re 

 The later two need fixed rank hence are non-convex 

algorithms. 



This paper's contributions 

 SGD algorithm for convex nuclear norm minimization. 

 Provide rate of convergence  

 More efficient variations. 

 A very clear discussion of  

 theory and practice; 

 nuances of different low-rank promoting algorithms. 



SGD at a glance 

 Batch gradient descent vs. Stochastic Gradient Descent 



SGD at a glance 

 In expectation, SGD is converging to optimal solution. 

 It takes many more update steps, but each step is much 

cheaper than batch methods. 

 Subgradient descent the extension of gradient descent to 

non-differentiable functions. 

 Usually it requires only one subgradient in the set. 



Master theorem for SSGD 

 Solve: 

 By iterates: 



Master theorem for SSGD 



Bounded solution space 

 Additional constraint 

 

 

 

 It doesn't change the optimization because we know optimal 

solution ||X*||F < . 

 



Compute subgradient 

 SVD of X 

 

 Subgradient of nuclear norm 

 

 

 Subgradient of objective function 



SSGD for Nuclear norm 

 What is left is to provide an efficient unbiased estimator.  

 Probing Matrix Y: n*k. E(YY')=Identity. 

 We use        as an unbiased estimator of  

 

 When Y is scaled identity matrix, computation of   

  is more efficient. 



Probing matrix 
 It can be anything that satisfies 

 𝑌 ∈ 𝑅𝑛×𝑘   

  E(YY')=Identity 

 Example: 

 𝑛 = 3, 𝑘 = 2 

 𝑌 =
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Basic-SSGD 

 Here comes the algorithm. 

 

 

 

 

 

 

 

 

 Note it requires one SVD for each iteration! 



Fast-SSGD 

 A Fast-SSGD update for sum loss function and low rank X 

using QR factorization of SVD. 



Guarantee for SSGD 

 Theorem 3.3 

 

  

 Rate of convergence at 

 

 Need   to converge to error  

 Complexity of each iteration 

 Basic-SSGD: O(mn2) 

 Fast-SSGD: O(m(r(t) +k)2) 

 r(t) increases as t becomes large… 



Restrict r for fast computation 

 Solution space becomes non-convex! 

 In theory, it's NP-hard to compute. 

 But in practice, it works great. 

 Equivalent shown in http://arxiv.org/abs/1203.1570 

 Empirical evidence  

 nuclear norm regularization still useful  

 even though explicit rank constraint is imposed 

Regularized matrix factorization: 

Min ||X-UV'|| + ||U||2
F+||V||2

F 

In fact: Min ||U||2
F+||V||2

F =||UV'||F 

 

http://arxiv.org/abs/1203.1570


Experiments 

 Netflix data: 480k user, 18k movie, 10M movie ratings. 

 Movielens data: 70k user, 10k movie, 100 million movie 

ratings. 

 Results: 

 It gives faster and better results w.r.t. convex methods such as 

Soft-impute. 

 It gives slower and worse results w.r.t. non-convex factorization 

methods, e.g., Jellyfish. 

 



Experiments 

 



Discussion 

 Convex relaxation is tractable, but less desirable under noise. 

 Explicit rank will help in practice, especially when the 

physical rank of the data is known. 

 It's good to add nuclear norm regularization even if the rank 

constraint is already imposed. 



Questions from class 

 Jiaming: In algorithm I, why does it still need to select X(l) 

from 0 <= l <= T? Is the algorithm convergent? 

 That's to keep track of the solution with best objective value 

thus far. Convergence is not a problem. 

 

 Jiaming: What does it mean “For both JSH and Soft-Impute, 

we needed to go to a much larger rank to obtain a RMSE 

comparable to that”? 

 It explains the middle of Figure 2. 



Questions from class 

 Shahzor: In pdf file. 



Thank you! 

 


