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Problem setup 

 Convex optimization 

 

 

 f(X) is any convex loss function, ||X||* is nuclear norm 

defined to be sum of singular values. 

 Nuclear norm is used to promote low-rank solutions. 

 It is the tight convex relaxation of rank. 

 Use it as a tractable replacement of rank. 



Matrix completion 

 When f(X) is indicator function 

 

 

 

 It is shown by Candes&Tao that under certain conditions, its 

solution is exactly the solution of 

 

 
 

 
 

 



Practical challenges  

 Noise 

 

 Corruptions (RPCA with missing data) 

 

 

 Noise and corruptions 

 

 

 

 



Practical challenges 

 Scalability 

 Divide-and-conquer (Mackey et al, NIPS11) 

 Stochastic gradient descent  

 GROUSE/GRASTA by Eriksson, Balzano, Recht. SGD on Grassmanian. 

 Parallel Stochastic Gradient 

 Jellyfish by Recht and Re 

 The later two need fixed rank hence are non-convex 

algorithms. 



This paper's contributions 

 SGD algorithm for convex nuclear norm minimization. 

 Provide rate of convergence  

 More efficient variations. 

 A very clear discussion of  

 theory and practice; 

 nuances of different low-rank promoting algorithms. 



SGD at a glance 

 Batch gradient descent vs. Stochastic Gradient Descent 



SGD at a glance 

 In expectation, SGD is converging to optimal solution. 

 It takes many more update steps, but each step is much 

cheaper than batch methods. 

 Subgradient descent the extension of gradient descent to 

non-differentiable functions. 

 Usually it requires only one subgradient in the set. 



Master theorem for SSGD 

 Solve: 

 By iterates: 



Master theorem for SSGD 



Bounded solution space 

 Additional constraint 

 

 

 

 It doesn't change the optimization because we know optimal 

solution ||X*||F < . 

 



Compute subgradient 

 SVD of X 

 

 Subgradient of nuclear norm 

 

 

 Subgradient of objective function 



SSGD for Nuclear norm 

 What is left is to provide an efficient unbiased estimator.  

 Probing Matrix Y: n*k. E(YY')=Identity. 

 We use        as an unbiased estimator of  

 

 When Y is scaled identity matrix, computation of   

  is more efficient. 



Probing matrix 
 It can be anything that satisfies 

 𝑌 ∈ 𝑅𝑛×𝑘   

  E(YY')=Identity 

 Example: 

 𝑛 = 3, 𝑘 = 2 
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Basic-SSGD 

 Here comes the algorithm. 

 

 

 

 

 

 

 

 

 Note it requires one SVD for each iteration! 



Fast-SSGD 

 A Fast-SSGD update for sum loss function and low rank X 

using QR factorization of SVD. 



Guarantee for SSGD 

 Theorem 3.3 

 

  

 Rate of convergence at 

 

 Need   to converge to error  

 Complexity of each iteration 

 Basic-SSGD: O(mn2) 

 Fast-SSGD: O(m(r(t) +k)2) 

 r(t) increases as t becomes large… 



Restrict r for fast computation 

 Solution space becomes non-convex! 

 In theory, it's NP-hard to compute. 

 But in practice, it works great. 

 Equivalent shown in http://arxiv.org/abs/1203.1570 

 Empirical evidence  

 nuclear norm regularization still useful  

 even though explicit rank constraint is imposed 

Regularized matrix factorization: 

Min ||X-UV'|| + ||U||2
F+||V||2

F 

In fact: Min ||U||2
F+||V||2

F =||UV'||F 

 

http://arxiv.org/abs/1203.1570


Experiments 

 Netflix data: 480k user, 18k movie, 10M movie ratings. 

 Movielens data: 70k user, 10k movie, 100 million movie 

ratings. 

 Results: 

 It gives faster and better results w.r.t. convex methods such as 

Soft-impute. 

 It gives slower and worse results w.r.t. non-convex factorization 

methods, e.g., Jellyfish. 

 



Experiments 

 



Discussion 

 Convex relaxation is tractable, but less desirable under noise. 

 Explicit rank will help in practice, especially when the 

physical rank of the data is known. 

 It's good to add nuclear norm regularization even if the rank 

constraint is already imposed. 



Questions from class 

 Jiaming: In algorithm I, why does it still need to select X(l) 

from 0 <= l <= T? Is the algorithm convergent? 

 That's to keep track of the solution with best objective value 

thus far. Convergence is not a problem. 

 

 Jiaming: What does it mean “For both JSH and Soft-Impute, 

we needed to go to a much larger rank to obtain a RMSE 

comparable to that”? 

 It explains the middle of Figure 2. 



Questions from class 

 Shahzor: In pdf file. 



Thank you! 

 


