
A Deterministic Analysis of Noisy Sparse Subspace Clustering for
Dimensionality-reduced Data

Yining Wang YININGWA@CS.CMU.EDU
Yu-Xiang Wang YUXIANGW@CS.CMU.EDU
Aarti Singh AARTI@CS.CMU.EDU

Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract
Subspace clustering groups data into several low-
rank subspaces. In this paper, we propose
a theoretical framework to analyze a popular
optimization-based algorithm, Sparse Subspace
Clustering (SSC), when the data dimension is
compressed via some random projection algo-
rithms. We show SSC provably succeeds if
the random projection is a subspace embedding,
which includes random Gaussian projection, uni-
form row sampling, FJLT, sketching, etc. Our
analysis applies to the most general deterministic
setting and is able to handle both adversarial and
stochastic noise. It also results in the first algo-
rithm for privacy-preserved subspace clustering.

1. Introduction
Subspace clustering groups a collection of data points into
k clusters so that data points within a single cluster lie
near some low rank subspace. It has found a wide range
of applications as many high dimensional data can be ap-
proximated by a union of low rank subspaces. Some ex-
amples include motion trajectories (Costeira & Kanade,
1998), face images (Basri & Jacobs, 2003), network hop
counts (Eriksson et al., 2012), movie ratings (Zhang et al.,
2012) and social graphs (Jalali et al., 2011).

A large body of research has been devoted to subspace clus-
tering in the last decade. Recently a class of convex opti-
mization based algorithms, in particular Low Rank Rep-
resentation (LRR, (Liu et al., 2013)) and Sparse Subspace
Clustering (SSC, (Elhamifar & Vidal, 2013)), have drawn
much interest from the literature. It is known that SSC en-
joys superb performance in practice (Elhamifar & Vidal,
2009) and have theoretical guarantee under fairly general
conditions (Soltanolkotabi et al., 2012; Wang & Xu, 2013;
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Soltanolkotabi et al., 2014).

Let X ∈ Rd×N denote the data matrix, where d is the am-
bient dimension and N is the number of data points. For
noiseless data (i.e., data points lie exactly on low-rank sub-
spaces), the exact SSC algorithm solves the optimization
problem in Eq. (1.1) for each data point xi to obtain self
regression solutions ci ∈ RN .

min
ci∈RN

‖ci‖1, s.t. xi = Xci, cii = 0. (1.1)

For noisy data, the following Lasso version of SSC is often
used in practice:

min
ci∈RN

‖xi −Xci‖22 + 2λ‖ci‖1, s.t. cii = 0. (1.2)

Although success conditions for both exact SSC and Lasso
SSC have been extensively analyzed in previous literature,
in practice it is inefficient or even infeasible to operate on
data with high dimension. Some types of dimension reduc-
tion is usually required. In this paper, we propose a theo-
retical framework that analyzes SSC under many popular
dimension reduction settings, including

• Compressive measurement: For compressive mea-
surement dimensionality-reduced data are obtained by
multiplying the original data typically with a random
Gaussian matrix. We show that SSC provably suc-
ceeds when the projected dimension is at the order of
the maximum intrinsic rank of each subspace.

• Efficient computation: By using fast Johnson-
Lindenstrauss transform (Ailon & Chazelle, 2009)
or sketching (Charikar et al., 2004; Clarkson &
Woodruff, 2013) one can computationally efficiently
reduce the data dimension while still preserving im-
portant structures in the underlying data. We prove
similar results for both FJLT and sketching.

• Handling missing data: In many applications the
data matrix may be incomplete due to measurement
and sensing limits. It is shown in this paper that when
data meet some incoherent criteria uniform feature
sampling suffices for SSC.
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• Data privacy: Privacy is an important concern in
modern machine learning applications. It was shown
that random Johnson-Lindenstrauss transform with
added Gaussian noise preserves both information-
theoretic (Zhou et al., 2009) and differential privacy
(Kenthapadi et al., 2013). We provide a utility analy-
sis which shows that SSC can achieve exact subspace
detection despite stringent privacy constraints.

A key observation is that all projections for the afore-
mentioned settings are subspace embeddings, which means
they uniformly preserve the two norm of any vector be-
longing to a low-rank subspace. Our analysis applies to the
fully deterministic setting under which both subspaces and
data points within each subspace are placed deterministi-
cally. It can also handle data corrupted by deterministic or
stochastic noise. This generalizes previous work (Heckel
et al., 2014) which only applies to semi-random models
with noiseless data 1. The fully deterministic setting poses
more challenges because the perturbation of dual directions
introduced in (Soltanolkotabi et al., 2012) cannot be easily
bounded if exact SSC is used. As a result, even for noise-
less data, we employ a Lasso SSC formulation to obtain
strong convexity in the dual problem.

2. Problem setup
Notations The uncorrupted data matrix is denoted as
Y ∈ Rd×N , where d is the ambient dimension andN is the
total number of data points. Y is normalized so that each
column has unit two norm. Each column in Y belongs to
a union of k subspaces U (1) ∪ · · · U (k). For each subspace
U (`) we write Y(`) = (y

(`)
1 , · · · ,y(`)

N`
) for all columns be-

longing to U (`), where N` is the number of data points in
U (`) and

∑k
`=1N` = N . We assume the rank of the `th

subspace U (`) is r` and define r = max` r`. In addition,
we use U(`) ∈ Rd×r` to represent an orthonormal basis
of U (`). The observed matrix is denoted by X ∈ Rd×N .
Under the noiseless setting we have X = Y; for the noisy
setting we have X = Y + Z where Z ∈ Rd×N is a noise
matrix which can be either deterministic or stochastic.

We use “−i” to denote all except the ith col-
umn in a data matrix. For example, Y−i =

(y1, · · · ,yi−1,yi+1, · · · ,yN ) and Y
(`)
−i =

(y
(`)
1 , · · · ,y(`)

i−1,y
(`)
i+1, · · · ,y

(`)
N`

). For any matrix A,
let Q(A) = conv(±a1, · · · ,±aN ) denote the symmetric
convex hull spanned by all columns in A. For any sub-
space U and vector v, denote PUv = argminu∈U‖u− v‖
as the projection of v onto U .

1 In semi/fully random models the underlying subspaces
and/or data points are distributed uniformly at random. Detailed
definitions can be found in (Soltanolkotabi et al., 2012).

Methods The first step is to perform dimensionality re-
duction on the observation matrix X. More specifically,
for a target projection dimension p < d, the projected ob-
servation matrix X̃′ ∈ Rp×N is obtained by first computing
X̃ = ΨX for some random projection matrix Ψ ∈ Rp×d
and then normalizing it so that each column in X̃′ has unit
two norm. Afterwards, Lasso self-regression as formulated
in Eq. (1.2) is performed for each column in X̃′ to obtain
the similarity matrix C = {ci}Ni=1 ∈ RN×N . Spectral
clustering is then be applied to C to obtain an explicit clus-
tering of X. In this paper we use the normalized-cut algo-
rithm (Shi & Malik, 2000) for spectral clustering.

Evaluation measures To evaluate the quality of obtained
similarity matrix C, we consider the Lasso subspace detec-
tion property defined in (Wang & Xu, 2013). More specif-
ically, C satisfies Subspace Detection Property (SDP) if
for each i ∈ {1, · · · , N} the following holds: 1) ci is a
non-trivial solution. That is, ci is not a zero vector; 2) if
cij 6= 0 then data points xi and xj belong to the same sub-
space cluster. The second condition alone is referred to as
“Self-Expressiveness Property” (SEP) in (Elhamifar & Vi-
dal, 2013). Note that we do not require cij 6= 0 for every
pair of xi,xj belonging to the same cluster. We also re-
mark that in general SEP is not necessary for spectral clus-
tering to succeed, cf. (Wang & Xu, 2013) 2.

3. Dimension reduction methods
In this section we review several popular dimensionality
reduction methods and show that they are subspace em-
beddings. A linear projection Ψ ∈ Rp×d is said to be
a subspace embedding if for some r-dimesional subspace
L ⊆ Rd the following holds:

Pr
Ψ

[‖Ψx‖ ∈ (1± ε)‖x‖,∀x ∈ L] ≥ 1− δ. (3.1)

The following proposition is a simple property of subspace
embeddings, which we prove in Appendix A.1.
Proposition 1. Fix ε, δ > 0. Suppose Ψ is a subspace
embedding with respect to B = {span(U (`)∪U (`′)); `, `′ ∈
[k]} ∪ {xi, zi; i ∈ [N ]} with parameters r′ = 2r, ε′ = ε/3
and δ′ = 2 log((k+N)/δ). Then with probability ≥ 1− δ
for all x,y ∈ U (`) ∪ U (`′) we have∣∣〈x,y〉 − 〈Ψx,Ψy〉∣∣ ≤ ε(‖x‖2 + ‖y‖2

2

)
; (3.2)

furthermore, for all x ∈ {x1, z1, · · · ,xN , zN} the follow-
ing holds:

(1− ε)‖x‖22 ≤ ‖Ψx‖22 ≤ (1 + ε)‖x‖22. (3.3)

2It is almost sufficient for perfect clustering both in prac-
tice (Elhamifar & Vidal, 2013) and in theory (Wang et al., 2015).
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3.1. Random Gaussian projection

In a random Gaussian projection matrix Ψ each entry Ψij

is generated from i.i.d. Gaussian distributionsN (0, 1/
√
p),

where p is the target dimension after projection. Using
standard Gaussian tail bounds and Johnson-Lindenstrauss
argument we have the following proposition, which is
proved in Appendix A.1.

Proposition 2. Gaussian random matrices Ψ ∈ Rp×d is a
subspace embedding with respect to B if

p ≥ 2ε−2(r+log(2k2/δ)+
√

4r log(2k2/δ)+12 log(4N/δ)).
(3.4)

3.2. Uniform row sampling

For uniform row sampling each row in the observed data
matrix X is sampled independently at random so that the
resulting matrix has p non-zero rows. Formally speaking,
each row of the projection matrix Ω is sampled i.i.d. from
the distribution Pr

[
Ωi· =

√
d
pej

]
= 1

d , where i ∈ [p],
j ∈ [d] and ej is a d-dimensional indicator vector with
only the jth entry not zero.

For uniform row sampling to work, both the observation
matrix X and the column space of the uncorrupted data
matrix Y should satisfy certain incoherence conditions. In
this paper, we apply the following two types of incoher-
ence/spikiness definitions, which are widely used in the low
rank matrix completion literature (Recht, 2011; Balzano
et al., 2010; Krishnamurthy & Singh, 2014).

Definition 3 (Column space incoherence). Suppose U is
the column space of some matrix and rank(U) = r. Let
U ∈ Rd×r be an orthonormal basis of U . The incoherence
of U is defined as

µ(U) :=
d

r
max

i=1,··· ,d
‖U(i)‖22, (3.5)

where U(i) indicates the ith row of U.

Definition 4 (Column spikiness). For a vector x ∈ Rd, the
spikiness of x is defined as

µ(x) := d‖x‖2∞/‖x‖22, (3.6)

where ‖x‖∞ = maxi |xi| denotes the vector infinite norm.

We have the following proposition for the uniform row
sampling operator Ω, which we prove in Appendix A.1.

Proposition 5. Suppose maxk`=1 µ(U (`)) ≤ µ0 and
maxNi=1 max(µ(xi), µ(zi)) ≤ µ0 for some constant µ0 >
0. The uniform sampling operator Ω is a subspace embed-
ding with respect to B if

p ≥ 8ε−2µ0(r log(4rk2/δ) + log(8N/δ)). (3.7)

3.3. FJLT and sketching

The Fast Johnson-Lindenstrauss Transform (FJLT, (Ailon
& Chazelle, 2009)) computes a compressed version of a
data matrix X ∈ Rd×N using O(d log d + p) operations
per column with high probability. The projection matix Φ
can be written as Φ = PHD, where P ∈ Rp×d is a sparse
JL matrix, H ∈ Rd×d is a deterministic Walsh-Hadamard
matrix and D ∈ Rd×d is a random diagonal matrix. Details
of FJLT can be found in (Ailon & Chazelle, 2009).

Sketching (Charikar et al., 2004; Clarkson & Woodruff,
2013) is another powerful tool for dimensionality reduction
on sparse inputs. The sketching operator S : Rd → Rp is
constructed as S = ΠΣ, where Π is a permutation matrix
and Σ is a random sign diagonal matrix. The projected vec-
tor Sx can be computed inO(nnz(x)) time, where nnz(x)
is the number of nonzero entries in x.

The following two propositions show that both FJLT and
sketching are subspace embeddings. In fact, they are obliv-
ious in the sense that they work for any low-dimensional
subspace L.

Proposition 6. (Clarkson & Woodruff, 2013) The FJLT
operator Φ is an oblivious subspace embedding if p =
Ω(r/ε2), with δ considered as a constant.

Proposition 7. (Avron et al., 2014) The sketching operator
S is an oblivious subspace embedding if p = Ω(r2/(ε2δ)).

4. Main results
We present general geometric separation conditions for
Lasso sparse subspace clustering (Eq. (1.2)) to succeed
for dimensionality-reduced data in the fully determinis-
tic setting; that is, both subspaces and data points within
subspaces are deterministically distributed. In addition,
our analysis reveals that SSC is able to robustly detect
the correct subspaces with substantially compressed data
even when the data points are adversarially perturbed,
stochastically contaminated, or subject to formal privacy
constraints. These contributions significantly expand the
previous provable results on the same subject that works
only with noiseless data generated from the “semi-random”
model (Heckel et al., 2014).

We begin our analysis with two key concepts intro-
duced in the seminal work of Soltanolkotabi and Candes
(Soltanolkotabi et al., 2012): subspace incoherence and in-
radius. Subspace incoherence characeterizes how well the
subspaces associated with different clusters are separated.
It is based on the dual direction of the optimization prob-
lem in Eq. (1.1) and (1.2), which is defined as follows:

Definition 8 (Dual direction, (Soltanolkotabi et al., 2012;
Wang & Xu, 2013)). Fix a column x of X belonging to
subspace U (`). Its dual direction ν(x) is defined as the
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solution to the following dual optimization problem: 3

max
ν∈Rd

〈x,ν〉 − λ

2
ν>ν, s.t. ‖X>ν‖∞ ≤ 1. (4.1)

Note that Eq. (4.1) has unique solution when λ > 0.

The subspace incoherence for U (`), µ`, is defined in
Eq. (4.2). Note that it is not related to the column sub-
space incoherence defined in Eq. (3.5). The smaller µ` is
the further U (`) is separated from the other subspaces.

Definition 9 (Subspace incoherence, (Soltanolkotabi et al.,
2012; Wang & Xu, 2013)). Subspace incoherence µ` for
subspace U (`) is defined as

µ` := max
x∈X\X(`)

‖V(`)>x‖∞, (4.2)

where V(`) = (v(x
(`)
1 ), · · · ,v(x

(`)
N`

)) and v(x) =
PUν(x)/‖PUν(x)‖2. ν(x) is the dual direction of x de-
fined in Eq. (4.1).

The concept of inradius characterizes how well data points
are distributed within a single subspace. More specifically,
we have the following definition:

Definition 10 (Inradius, (Soltanolkotabi et al., 2012; Wang
& Xu, 2013)). For subspace U (`), its inradius ρ` is defined
as

ρ` := min
i=1,··· ,N`

r(Q(Y
(`)
−i )), (4.3)

where r(·) denotes the radius of the largest ball inscribed
in a convex body.

The larger ρ` is the more uniformly data points are dis-
tributed in the `th subspace. Note that unlike subspace in-
coherence, the inradius is defined in terms of the uncor-
rupted data Y. We also remark that both µ` and ρ` are
between 0 and 1 because of normalization.

Success condition for exact SSC was proved in
(Soltanolkotabi et al., 2012) and was generalized to
the noisy case in (Wang & Xu, 2013). Below we cite
Theorem 6 and Theorem 8 in (Wang & Xu, 2013) for a
success condtition of Lasso SSC. In general, Lasso SSC
succeeds when there is a sufficiently large gap between
subspace incoherence and inradius. Results are restated
below, with minor simplification in our notation.

Theorem 11 ((Wang & Xu, 2013), Theorem 6 and 8). Sup-
pose X = Y + Z where Y is the uncorrupted data matrix
and Z = (z1, · · · , zN ) is a determinisitc noise matrix that
satisfies maxNi=1 ‖zi‖2 ≤ η. Define ρ := min` ρ`. If

η ≤ min
`=1,··· ,k

ρ(ρ` − µ`)
7ρ` + 2

, (4.4)

3For exact SSC simply set λ = 0.

then subspace detection property holds for the Lasso SSC
algorithm in Eq. (1.2) if the regularization coefficient λ is
in the range

max
`=1,··· ,k

η(1 + η)(2 + ρ`)

ρ` − µ` − 2η
< λ < ρ− 2η − η2. (4.5)

In addition, if Zij ∼ N (0, σ2
ij/d) are independent Gaus-

sian noise with variance σ2 := maxi,j σ
2
ij satisfying√

logN

d
σ(1 + σ) < C min

`=1,··· ,k

{
ρ, r−1/2, ρ` − µ`

}
(4.6)

for sufficiently small constant C ≥ 1/80, then with proba-
bility at least 1− 10

N the subspace detection property holds
if λ is in the range

C1σ(1 + σ)

ρ` − µ`

√
logN

d
< λ < ρ− C2σ(1 + σ)

√
logN

d
.

(4.7)
Here C1 ≤ 80 and C2 ≤ 20 are absolute constants.

In the remainder of this section we prove general success
conditions for Lasso SSC on dimensionality-reduced data.
We will first describe the result for the noiseless case and
then the results are extended to handle a small amount
of adversarial perturbation or a much larger amount of
stochastic noise. A performance guarantee under differ-
ential privacy can then be stated as a simple corollary of
the noisy recovery result. The basic idea common in all
of the upcoming results is to show that the subspace in-
coherence and inradius (therefore the geometric gap) are
approximately preserved under dimension reduction.

4.1. The noiseless case

We first bound the perturbation of dual directions when the
data are noiseless.

Lemma 12 (Perturbation of dual directions, the noiseless
case). Assume λ < 1/4. Fix a column x in X with dual
direction ν = ν(x) and v = v(x) defined in Eq. (4.1)
and (4.2). Let X̃ denote the projected data matrix ΨX
and X̃′ denote the normalized version of X̃. Suppose ν∗

and v∗ are computed using the normalized projected data
matrix X̃′. If Ψ satisfies Eq. (3.2, 3.3) with parameter ε
and ε < 1/max(1, ‖ν‖) then with probability ≥ 1− δ the
following holds for all w ∈ X\X(`):∣∣〈v,w〉 − 〈v∗, w̃′〉∣∣ ≤ 32

√
ε/λ+ 2ε. (4.8)

As a simple corollary, perturbation of subspace incoher-
ence can then be bounded as in Corollary 13.

Corollary 13 (Perturbation of subsapce incoherence, the
noiseless case). Assume the same notations in Lemma 12.
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Let µ` and µ̃` be the subspace incoherence of the `th sub-
space before and after dimension reduction. Then with
probability 1−Nδ the following holds:

µ̃` ≤ µ` + 32
√
ε/λ+ 2ε, ∀` = 1, · · · , k. (4.9)

The following lemma bounds the perturbation of inradius
for each subspace.

Lemma 14 (Perturbation of inradius). Fix ` ∈ {1, · · · , k}
and δ, ε > 0. Let Y = Y(`) = (y1, · · · ,yN`) ⊆ U

(`)

be the noiseless d×N` matrix with all columns belonging
to U (`) with unit two norm. Suppose Ỹ = ΨY ∈ Rp×N`
is the projected matrix and Ỹ′ scales every column in Ỹ
so that they have unit norm. Let ρ` and ρ̃` be the inra-
dius of subspace U (`) before and after dimensionality re-
duction, defined on Y and Ỹ′ respectively. If Ψ satisfies
Eq. (3.2,3.3) with parameter ε then with probability≥ 1−δ
the following holds:

ρ̃` ≥ ρ`/(1 + ε). (4.10)

With perturbation bounds on both subspace incoherence
and inradius we can easily prove the following main the-
orem, which gives sufficient success condition for Lasso
SSC on dimensionality-reduced noiseless data.

Theorem 15. Suppose X ∈ Rd×N is a noiseless in-
put matrix with subspace incoherence {µ`}k`=1 and inradii
{ρ`}k`=1. Assume µ` < ρ` for all ` ∈ {1, · · · , k}. Let X̃′

be the normalized data matrix after compression. Assume
λ < 1/4 and λ < ρ/2. If Ψ satisfies Eq. (3.2,3.3) with
parameter ε then Lasso SSC satisfies subspace detection
property with probability≥ 1− δ, if ε is upper bounded by

ε ≤ min

{
1

2
,

∆

2(2 + ρ)
, c1λ∆2

}
, (4.11)

where c1 > 0 is some absolute constant and ∆ =
min` (ρ` − µ`) is the minimum gap between subspace in-
coherence and inradius for each subspace.

We make several remarks on Theorem 15. First, an up-
per bound on ε implies a lower bound on projection di-
mension p, and exact p values vary for different data com-
pression schemes. In addition, even for noiseless data the
regularization coefficient λ cannot be too small if projec-
tion error ε is present (recall that λ → 0 corresponds to
the exact SSC formulation). This is because when λ goes
to zero the strong convexity of the dual optimization prob-
lem decreases. As a result, small perturbation on X could
result in drastic changes of the dual direction and Lemma
12 fails subsequently. On the other hand, as λ increases
the similarity graph connectivity decreases because the op-
timal solution to Eq. (1.2) becomes sparser. To guarantee
the obtained solution is nontrivial (i.e., at least one nonzero
entries in ci), λ must not exceed ρ/2.

4.2. The noisy case

When the input matrix is corrupted with noise, Lemma 14
remains unchanged because the inradius is defined in terms
of the noiseless data matrix Y. Therefore, we only need to
prove a noisy version of Lemma 12 that bounds the pertur-
bation of dual directions.
Lemma 16 (Perturbation of dual directions, the noisy
case). Suppose X = Y + Z where Y is the un-
corrupted data matrix and Z is the noise matrix with
maxi=1,··· ,n ‖zi‖2 ≤ η. Assume λ < 1/4. Fix a column x
with dual direction ν and v defined in Eq. (4.1) and (4.2).
Suppose Ỹ = ΨY is the projected noiseless data matrix
and Ỹ′ is the normalized version of Ỹ. Let X̃′ = Ỹ′ + Z̃
be the noisy observation after projection, where Z̃ = ΨZ
is the projected noise. If Ψ satisfies Eq. (3.2,3.3) with pa-
rameter ε and ε < 1/max(1, ‖ν‖) then with probability
≥ 1− δ the following holds for all w ∈ X\X(`):

∣∣〈v,w〉−〈v∗, w̃′〉∣∣ ≤ 16

√
5η2

ρ`
+

8(ε+ 3η)

λ
+2ε. (4.12)

With Lemma 16 the following corollary on subspace inco-
herence perturbation immediately follows.
Corollary 17 (Perturbation of subsapce incoherence, the
noisy case). Assume the conditions as in Lemma 16. Let
µ` and µ̃` be the subspace incoherence before and after
dimension reduction. Then with probability ≥ 1−Nδ,

µ̃` ≤ µ`+16

√
5η2

ρ`
+

8(ε+ 3η)

λ
+2ε, ∀` ∈ [k]. (4.13)

Finally, we have Theorem 18 and Theorem 19 as simple
consequences of Corollary 17 and Lemma 14.
Theorem 18 (Compressed-SSC under Deterministic
noise). Suppose X = Y + Z is a noisy input matrix with
subspace incoherence {µ`}k`=1 and inradii {ρ`}k`=1. As-
sume maxi ‖zi‖2 ≤ η and µ` < ρ` for all ` ∈ {1, · · · , k}.
Suppose X̃′ = Ỹ′ + Z̃ where Ỹ′ is the normalized uncor-
rupted data matrix after compression and Z̃ = ΨZ is the
projected noise matrix. Assume η satisfies

η ≤ min
`=1,··· ,k

ρ(ρ` − µ`)
96

. (4.14)

If Ψ satisfies Eq. (3.2,3.3) with parameter ε and λ = ρ/4,
then Lasso SSC satisfies the subspace detection property
with probability ≥ 1− δ. Here ε is upper bounded by

ε ≤ min

{
1

3
,

∆

4(2 + ρ)
,
λ

8

(
c2∆2 − 5η2

ρ

)
− 3η

}
,

(4.15)
where c2 > 0 is some absolute constant and ∆ =
min` (ρ` − µ`) is the minimum gap between subspace in-
coherence and inradius.
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Theorem 19 (Compressed-SSC under Gaussian noise).
Define the same positive quantities {µ`}k`=1, {ρ`}k`=1, ρ,∆
and projection matrix Ψ as in Theorem 18. Assume each
column of Z is sampled from N (0, σ

2

d I). Suppose Ψ is a
linear transform that satisfies Eq. (3.2,3.3) with parameter
ε, and moreover its spectral norm satisfies ‖Ψ‖ ≤ ξ

√
dp

(For Gaussian JL projection ξ ≤ 3 with high probability).
In addition, assume the noise parameter σ satisfies√

logN

p
σ(1 + σ) ≤ C

4ξ2
min

`=1,...,k

{
ρ, r−1/2, ρ` − µ`

}
(4.16)

with the same constant C as in Eq. (4.6). Then Lasso SSC
with λ = ρ/4 satisfies the subspace detection property with
probability ≥ 1− 8/N − δ, if ε is upper bounded by

ε ≤ min

{
1

3
,

∆

4(2 + ρ)
,
λ

8

(
c2∆2 − 45σ2

ρ

)
− 9σ

}
.

(4.17)
Here ∆ = min` (ρ` − µ`) is the minimum gap between
subspace incoherence and inradius.

These results put forward an interesting view of the sub-
space clustering problem in terms of resource allocation.
The critical geometric gap ∆ (called “Margin of Error” in
Wang & Xu (2013)) can be viewed as the amount of re-
source that we have for a problem while preserving the sub-
space detection property. It can be used to tolerate noise,
compress the data matrix, or alleviate the graph connectiv-
ity problem of SSC (Wang et al., 2013). For example, if the
noise level is high then it will use more of ∆ and as a result
we can only compress the data less aggressively, as shown
in Eq. (4.15) and (4.17).

4.3. Subspace clustering under privacy constraints

Another common motivation to compress the data before
data analysis is to protect data privacy. It has been for-
mally shown that random projections (at least with Gaus-
sian random matrices) protect information privacy (Zhou
et al., 2009). Stronger privacy protection can be enforced
by injecting additional noise to the dimension reduced data
(Kenthapadi et al., 2013). Algorithmically, this basically
involves adding iid Gaussian noise to the data after we ap-
ply a Johnson-Lindenstrauss transform Ψ of choice to X
and normalize every column. This procedure guarantees
differential privacy (Dwork et al., 2006; Dwork, 2006) at
the attribute level, which prevents any single entry of the
data matrix from being identified “for sure” given the pri-
vatized data and arbitrary side information. The amount
of noise to add is calibrated according to how “unsure” we
need and how “spiky” (Definition 4) each data point can be.

Due to space constraints, we will describe the detailed
definition and our technical results on differential privacy

preserved subspace clustering in the supplementary doc-
ument. We show that Lasso-SSC can still achieve exact
subspace detection despite differential privacy constraints.
To the best of our knowledge, this is the first result of its
kind for subspace clustering and it is not possible with-
out dimensionality reduction. So the knife cuts in both
sides: dimension-reduction helps in both computational ef-
ficiency and privacy protection.

On the other hand, we are not able to generalize the re-
sult to an even stronger form of differential privacy that
protects each full column in the data matrix. Such privacy
requirements make more sense if we consider each column
corresponding to an individual. In the supplementary doc-
ument we present an argument showing that it is impossi-
ble to protect differential privacy of this kind if subspace
detection property holds with high probability. This calls
for a more realistic measure of utility for subspace cluster-
ing, for example, percentage of correctly clustered points
or closeness of recovered subspaces to the ground truth.

5. Proofs
In this section we give proof sketches for the key lemmas.
Complete proofs are deferred to Appendix A.

Proof sketch of Lemma 12. Let f : Rd → R,ν ∈ Rd and
f̃ : Rp → R,ν∗ ∈ Rp denote the objective functions and
optimal solutions of the dual problem in Eq. (4.1) on the
original data and projected data, respectively. Note that for
noiseless data, ν(x) lies exactly on the subspace to which
x belongs and the same holds after linear projection. Sup-
pose ν̃′ ∈ Rp is a properly shrinked version of ν after ran-
dom projection so that ν̃′ is feasible to the projected dual
optimization problem. Since random projection preserves
inner products, one can show that with high probability
f̃(ν̃′) is close to f(ν). On the other hand, f̃(ν∗) is close to
f(ν̄′) where ν̄′ ∈ Rd is some feasible solution to the dual
problem on original data, obtained by inversely projecting
ν∗ onto the original subspace and properly shrink it so that
it is feasible. 4 In general, we have the following:

f̃(ν̃′) ≈ f(ν) < f(ν̄′) ≈ f̃(ν∗) < f̃(ν̃′). (5.1)

The difference |f̃(ν∗)−f̃(ν̃′)| can then be upper bounded
by applying Eq. (5.1). Consequently, one can bound the
dual direction perturbation ‖ν∗ − ν̃′‖ by noting that the
dual problem in Eq. (4.1) is strongly convex for both the
original data and the projected data. With the upper bound
on ‖ν∗− ν̃′‖ we can easily bound the inner product pertur-
bation |〈v,w〉 − 〈v∗, w̃′〉| because 〈ν̃′, w̃′〉 ≈ 〈ν,w〉 and
v is nothing but a normalized version of ν.

4This requires uniform inner product preservation between
two low-rank subspaces. Also, there might be multiple ν̄ that
correspond to ν∗. Any of them can be taken.
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Proof sketch of Lemma 14. For notational simpicity re-
define Y = Y(−i) and Ỹ(−i) for some fixed data point
x

(`)
i . Let Q(Y) and Q(Ỹ′) denote the convex hull of the

original and (normalized) projected data. Suppose C, C′ are
the largest balls inscribed in Q(Y) and Q(Ỹ′). Let c̃ be
the point that lies at the intersecion of ∂C and ∂Q(Ỹ). By
definition, ‖c̃‖ = r(Q(Ỹ)). Suppose c lies in the origi-
nal data space and it corresponds to c̃ after projection (i.e.,
c̃ = Ψc). It is easy to prove that c does not lie at the inte-
rior ofQ(Y) and hence ‖c‖ is lower bounded by r(Q(Y)).
Subsequently, a lower bound on ‖c‖ yields a lower bound
on ‖c̃‖ because a subspace embedding preserves vector
norms uniformly on a low-rank subspace.

Proof sketch of Lemma 16. The proof is essentially similar
to the one for Lemma 12. The major difference is that under
the noisy setting a dual direction ν no longer falls exactly
onto an underlying subspace U (`) and one needs to up-
per bound the norm of the orthogonal component PU(`)⊥ν.
This can be done using, for example, Eq. (5.16) in (Wang
& Xu, 2013), which states that

‖PU(`)⊥ν‖2 ≤ λη (1/ρ` + 1) ≤ 2λη/ρ`. (5.2)

6. Related work
Heckel et al. analyzed both SSC and Threshold-based Sub-
space Clustering (TSC) on projected data (Heckel et al.,
2014). The key difference is that the analysis in (Heckel
et al., 2014) only applies to noiseless data and is limited
to the semi-random model introduced in (Soltanolkotabi
et al., 2012), which is arguably less practical. In contrast,
our analysis generalizes to fully deterministic settings. It
also applies to a broader class of dimensionality reduction
methods and can handle data corrupted by noise.

Arpit et al. proposed a novel dimensionality reduction al-
gorithm to preserve independent subspace structures (Arpit
et al., 2014). They showed that by using p = 2k one
can preserve the independence structure among subspaces.
However, their analysis only applies to noiseless and inde-
pendent subspaces. Furthermore, in our analysis the tar-
get dimension p required depends on the intrinsic subspace
rank r instead of k. Usually r is quite small in practice
(Elhamifar & Vidal, 2013; Basri & Jacobs, 2003).

Another relevant line of research is high-rank matrix com-
pletion. In (Eriksson et al., 2012) the authors proposed a
neighborhood selection based algorithm to solve multiple
matrix completion problems. Although their method does
recover points lying on the same subspace, the completion
problem is quite different from subspace clustering as we
discuss in Section 8. Furthermore, though their sampling
scheme is more practical than ours (does not need sampling
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Figure 1. Relative SEP violation on extended Yale Face B dataset.
Left: Lasso SSC (varying λ, p); rightmost two columns indicate
trivial solutions. White indicates good recovery and black indi-
cates poor recovery. Right: Lasso SSC and TSC (varying q, p).
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Figure 2. Clustering error on the Extended Yale B dataset with
five individuals (left) and ten individuals (right).

entire rows), an exponential number of data points are re-
quired. In contrast, in our analysis N only needs to scale
polynomially with r if a stochastic model is imposed.

7. Numerical results
In this section we present numerical results that validate
our theoretical findings and compare Lasso SSC with TSC
(Heckel & Bolcskei, 2013) and LRR (Liu et al., 2013).
The Lasso SSC algorithm is implemented using augmented
Lagrangian method (ALM) when the regularization coeffi-
cient λ is fixed and known. We also implement Lasso SSC
using a solution path algorithm (Tibshirani & Taylor, 2011)
to tune λ separately for each data point. The LRR imple-
mentation is obtained from (Liu, 2013). Random Gaussian
projection is used for all experiments. All algorithms are
implemented in Matlab.

We evaluate clustering results by both clustering error and
the relative violation of SEP. Clustering error is defined as
the percentage of mis-clustered data points up to permu-
tation. The relative violation of SEP characterizes how
much the obtained similarity matrix C violates the self-
expressiveness property. It was introduced in (Wang & Xu,
2013) and defined as

RelViolation(C,M) =

∑
(i,j)/∈M |C|ij∑
(i,j)∈M |C|ij

, (7.1)

where (i, j) ∈ M means xi and xj belong to the same
cluster and vice versa.
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Figure 3. Relative SEP violation (left) and clustering error for
Lasso SSC on the Hopkins-155 dataset. The rightmost two
columns in the left figure indicate trivial solutions. White indi-
cates good similarity graph or clustering and black indicates poor
similarity graph or clustering.
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Figure 4. Comparison of clustering error (left) and relative SEP
violation (right) for Lasso SSC, TSC and LRR on the Hopkins-
155 dataset.

7.1. Face Clustering

We start by evaluating the performance of Lasso SSC with
random Gaussian projection on the extended Yale B face
recognition dataset (Lee et al., 2005). We also compare
with TSC, which is known to be robust to random pro-
jection (Heckel et al., 2014), and LRR. We preprocess the
dataset by projecting face images for each individual onto
a 9D affine subsapce via PCA. Such preprocess steps were
justified in (Basri & Jacobs, 2003) and also adopted in
(Wang & Xu, 2013).

In Figure 1 we report the relative SEP violation for both
Lasso SSC and TSC. Results are averaged for 10 random
projections. We use q to denote the number of solution-
path steps taken for each self-regression solution ci. Figure
1 shows that as λ decreases the relative SEP violation for
Lasso SSC increases, which is predicted by our theoretical
analysis. In addition, Figure 1 shows that the relative SEP
violation for TSC is rather high compared to Lasso SSC.
This is because the analysis for TSC heavily relies upon the
semi-random model assumption, which rarely holds true in
real-world applications.

Figure 2 shows the clustering accuracy of Lasso SSC, TSC
and LRR. For this experiment we randomly selected 5 and
10 individuals from the dataset and report the average clus-
tering error. The total data dimension is 5 × 9 = 45 for
5 individuals and 10 × 9 = 90 for 10 individuals. We can
see that Lasso SSC significantly outperforms TSC under all
p and q settings. It outperforms LRR when the projection

dimension p is small under which LRR performance guar-
antee fails because subspaces are no longer independent.

7.2. Motion segmentation

We evaluate the performance of Lasso SSC with ran-
dom projection for motion trajectory segmentation on the
Hopkins-155 dataset (Tron & Vidal, 2007). Figure 3 shows
the mean relative SEP violation and clustering error for
SSC across all 158 video sequences in the dataset. The
ambient data dimension ranges from 112 to 240. We can
see that the relative SEP violation goes up when λ or the
projection dimension p decreases. The clustering accuracy
acts accordingly, with the exception of very large λ values
under which we get very sparse self-regression vectors and
hence connectivity of the similarity graph is affected.

In Figure 4 we report the clustering error and relative SEP
violation for Lasso SSC, TSC and LRR on Hopkins-155.
Both clustering error and relative SEP violation are aver-
aged across all 158 sequences. Unlike the face recognition
task, we set specific λ values instead of solution-path steps
(q) for Lasso SSC because the former works better on the
Hopkins-155 dataset. Figure 4 shows that Lasso SSC out-
performs TSC and LRR under various regularization and
projection dimension settings, which is consistent with pre-
vious experimental results (Elhamifar & Vidal, 2013).

8. Discussion
We discuss on the relationship between subspace clustering
and high-rank matrix completion. In general, if one can
complete a high-rank matrix then exact subspace clustering
algorithms can be applied to obtain subspace clusters. On
the other hand, once the perfect subspace clustering result
is availble we can run separate low-rank matrix completion
for each cluster to complete the entire matrix.

However, we remark that under the missing data setting
subspace clustering is easier than matrix completion in two
ways. First, most matrix completion algorithms require
both row and column spaces of a matrix to be incoherent
(Recht, 2011), while for subspace clustering we only as-
sume incoherence on the column space. Furthermore, the
uniform sampling scheme proposed in Section 3 is a pas-
sive sampling scheme because the probability of observ-
ing a particular matrix entry is fixed a priori. Although it
suffices for the purpose of subspace clustering, it is shown
in (Krishnamurthy & Singh, 2014) that any passive sam-
pling scheme fails to complete a column space coherent
matrix unless it observes a constant fraction of matrix en-
tries. Adaptive sampling is required to complete a low-
rank matrix with coherent column space (Krishnamurthy
& Singh, 2014; Chen et al., 2013).
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In this document, we provide detailed technical proofs of our main results, as well as the additional results (differentially
private subspace clustering), experiments and dicussions that do not fit into the paper due to space constraint.

Appendix A contains proofs for our main results. The proofs are sorted in the order that their corresponding statements
appear in the paper. Appendix B formalizes our claims in the paper about attribute privacy and the corresponding utility
theorem and includes additional discussions on the difficulty of a stronger user-level privacy claim. Appendix C contains
numerical simulations on the performance of compressed SSC under fully random models. Appendix D summarizes a few
concentration bounds that we used in the paper.

Lastly, for readers’ easy reference, we compile a table of symbols and notations used.

A. Proofs of the main results
A.1. Proofs of propositions in Section 3

In this section we prove that a subspace embedding enjoys the property detailed in Proposition 1. We also prove that
both random Gaussian projection and uniform row sampling are subspace embeddings with respect to B = {span(U (`) ∪
U (`′)); `, `′ ∈ [k]} ∪ {xi, zi; i ∈ [N ]}.

Proof of Proposition 1. Fix `, `′ ∈ {1, · · · , k} and let U = span(U (`) ∪ U (`′)) denote the subspace spanned by the union
of the two subspaces U (`) and U (`′). By assumption, the rank of U (`) ∪ U (`′), r′, satisfies r′ ≤ r` + r`′ ≤ 2r. For any
x ∈ U (`) and y ∈ U (`′) we have

〈x,y〉 =
1

4

(
‖x+ y‖22 − ‖x− y‖22

)
; (A.1)

subsequently, ∣∣〈x,y〉 − 〈Ψx,Ψy〉∣∣ ≤ 1

4

(∣∣‖x+ y‖2 − ‖Ψ(x+ y)‖2
∣∣+
∣∣‖x− y‖2 − ‖Ψ(x− y)‖2

∣∣) . (A.2)

Since Ψ is a subspace embedding, the following holds for all x+ y,x+ y ∈ span(U (`) ∪ U (`′)):

(1− ε)2‖x+ y‖2 ≤ ‖Ψ(x+ y)‖2 ≤ (1 + ε)2‖x+ y‖2,
(1− ε)2‖x− y‖2 ≤ ‖Ψ(x− y)‖2 ≤ (1 + ε)2‖x− y‖2.

The bound for
∣∣〈x,y〉 − 〈Ψx,Ψy〉∣∣ then follows by noting that (1 − ε)2 ≥ 1 − 3ε, (1 + ε)2 ≤ 1 + 3ε and ‖x + y‖2 +

‖x−y‖2 = 2(‖x‖2 + ‖y‖2). Finally, a union bound over all k2 subspaces and 2N data points yields the proposition.

Proof of Proposition 2. Fix U ⊆ Rd to be any subspace of dimension at most r′ and let U ∈ Rd×r be an orthonormal
basis of U . Let Ψ̃ =

√
pΨ denote the unnormalized version of Ψ. Since each entry in Ψ̃ follows i.i.d. standard Gaussian

distribution and U is orthogonal, the projected matrix Ψ̃U ∈ Rp×r′ follows an entrywise standard Gaussian distribution,
too. By Lemma 28 (taking t =

√
2δ and scale the matrix by 1/

√
p), the singular values of the Gaussian random matrix Ψ

obey

1−

√
r′

p
−

√
2 log(1/δ)

p
≤ σr′(Ψ) ≤ σ1(Ψ) ≤ 1 +

√
r′

p
+

√
2 log(1/δ)

p
(A.3)

with probability at least 1− δ. Let ε :=
√

r′

p +
√

2 log(1/δ)
p , then with the same probability, (supposing x = Uα ∈ U)∣∣‖x‖22 − ‖Ψx‖22∣∣ =
∣∣α>U>Uα−α>U>Ψ>ΨUα

∣∣
≤ ‖α‖22‖U>U−U>Ψ>ΨU‖2
= ‖x‖22‖Ir′×r′ −U>Ψ>ΨU‖2
≤ ε‖x‖22. (A.4)

Subsequently,
(1− ε)‖x‖ ≤

√
1− ε‖x‖ ≤ ‖Ψx‖ ≤

√
1 + ε‖x‖ ≤ (1 + ε)‖x‖. (A.5)
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Proof of Proposition 5. Let Ω ⊆ {1, · · · , d}, |Ω| = p be the subsampling indices of Ω. By definition, Pr[Ω(j) = i] = 1/d
for every i ∈ {1, · · · , d} and j ∈ {1, · · · , p}. Fix any subspace U ⊆ Rd of dimension at most r′ with incoherence level
bounded by µ(U) ≤ µ0. Let U ∈ Rd×r′ be an orthonormal basis of U . By definition, U>U = Ir′×r′ .

For any x ∈ U , there exists α ∈ Rr′ such that x = Uα. Subsequently, we have∣∣‖x‖2 − ‖Ωx‖2∣∣ =
∣∣α>α−α>(ΩU)>(ΩU)α

∣∣ ≤ ‖α‖2 · ‖I− (ΩU)>(ΩU)‖. (A.6)

Our next objective is to bound the norm ‖I− (ΩU)>(ΩU)‖ with high probability. First let UΩ := (uΩ(1), · · · ,uΩ(p)) =√
p
d (ΩU)> be the unnormalized version of subsampled orthogonal operators. By definition we have

‖(ΩU)>(ΩU)− I‖ =
d

p

∥∥∥UΩU>Ω −
p

d
I
∥∥∥ . (A.7)

With Eq. (A.7), we can use noncommutative Matrix Berstein inequality (?Recht, 2011) to bound ‖UΩU>Ω −
p
dI‖ and

subsequently obtain an upper bound for the rightmost term in Eq. (A.6). The proof is very similar to the one presented
in (Balzano et al., 2010; Krishnamurthy & Singh, 2014), where an upper bound for ‖(UΩU>Ω)−1‖ is obtained. More
specifically, let B1, · · · ,Bp be i.i.d. random matrices such that Bj = uΩ(j)u

>
Ω(j) −

1
dI. We then have

UΩU>Ω −
p

d
I =

p∑
j=1

Bj (A.8)

and furthermore,

E
[
UΩU>Ω −

p

d
I
]

= p

(
d∑
i=1

uiu
>
i − I

)
= 0. (A.9)

To use Matrix Bernstein, we need to upper bound the range and variance parameters of Bj . Under the matrix incoherence
assumption Eq. (3.5) the range of Bj can be bounded as

‖Bj‖ ≤ max
i

∥∥∥∥uiu>i − 1

d
I

∥∥∥∥ ≤
√
r′2µ0

d
+

1

d
≤ r′µ0

d
+

1

d
≤ 2r′µ0

d
=: R. (A.10)

The last inequality is due to the fact that 1 ≤ µ(U) ≤ d
r′ for any subspace U of rank r′. For the variance, we have

‖E[B>j Bj ]‖ = ‖E[BjB
>
j ]‖ =

∥∥∥∥E [(uΩ(j)u
>
Ω(j) −

1

d
I

)(
uΩ(j)u

>
Ω(j) −

1

d
I

)]∥∥∥∥
=

∥∥∥∥E [uΩ(j)u
>
Ω(j)uΩ(j)u

>
Ω(j)

]
− 1

d2
I

∥∥∥∥
≤

∥∥∥E [uΩ(j)u
>
Ω(j)uΩ(j)u

>
Ω(j)

]∥∥∥+
1

d2

≤ µ0

√
r′2

d2
‖E[uΩ(j)u

>
Ω(j)]‖+

1

d2

≤ µ0r
′

d2
+

1

d2
≤ 2µ0r

′

d2
.

As a result, we can define σ2 := 2µ0r
′/d2 such that σ2 ≥ max{‖E[BjB

>
j ]‖, ‖E[B>j Bj ]‖} for every j. Using Lemma 27,

for every t > 0 we have

Pr
[
‖UΩU>Ω −

p

d
I‖ ≥ t

]
≤ 2r exp

(
− t2/2

σ2p+Rp/3

)
= 2r′ exp

(
− t2/2

2µ0r′

d2 p+ 2µ0r′

d t/3

)
. (A.11)

For ε < 1 set t = p
dε and p = 8ε−2µ0r

′ log(2r′/δ). Then with probability ≥ 1− δ we have∥∥∥UΩU>Ω −
p

d
I
∥∥∥ ≤ p

d
ε. (A.12)

The proof is then completed by multiplying both sides in Eq. (A.12) by d
p .
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A.2. Proof of the main theorems in Section 4

In this section we give rigorous proofs of the three key lemmas in Section 4. We also prove Theorem 15 and 18, which are
simple corollaries of Lemma 12, 14 and 16.

Proof of Lemma 12. Fix ` ∈ [k] and one column xi in X. Let U (`) and Ũ (`) denote the low-rank subspaces to which xi
belongs before and after compression. That is, Ũ (`) = {Ψx : x ∈ U (`)}.

First note that (1 − 2λ)2 ≤ ‖ν‖2 ≤ 1/(2λ). ‖ν‖ ≥ 1 − 2λ because 〈x,ν〉 − 2λ‖ν‖2 ≤ ‖ν‖ and putting ν = x we
obtain a solution with value 1− 2λ. On the other hand, 〈x,ν〉 − 2λ‖ν‖2 ≤ ‖ν‖− 2λ‖ν‖2 and putting ν = 0 we obtain a
solution with value 0. Also, under the noiseless setting ν ∈ U (`), if x ∈ U (`).

Define ν̃′ =
√

1−ε
1+εmax(1,‖ν‖) · ν̃, where ν̃ = Ψν. Let f(ν) = 〈ν,x〉 − λ

2 ‖ν‖
2
2 and f̃(ν̃′) = 〈ν̃′, x̃′〉 − λ

2 ‖ν̃
′‖22 denote

the values of the optimization problems. The first step is to prove that ν̃ is feasible and nearly optimal to the projected
optimization problem; that is, f̃(ν̃′) is close to f̃(ν∗).

We first show that ν̃′ is a feasible solution with high probability. By Proposition 1, the following bound on |x̃>i ν̃| holds:

|x̃>i ν̃| ≤ |xi,ν|+ ε · ‖xi‖+ ‖ν‖
2

≤ 1 + εmax(1, ‖ν‖). ∀xi ∈ X. (A.13)

Furthermore, with probability ≥ 1− δ
‖x̃i‖22 ≥ (1− ε)‖xi‖22 = 1− ε. (A.14)

Consequently, by the definition of ν̃′ one has

‖X̃′>ν̃′‖∞ ≤
1√

1− ε
·

√
1− ε

1 + εmax(1, ‖ν‖)
‖X̃>ν̃‖∞ ≤ 1. (A.15)

Next, we compute a lower bound on f̃(ν̃′), which serves as a lower bound for f̃(ν∗) because ν∗ is the optimal solution to
the dual optimization problem on the projected data.

f̃(ν̃′) = 〈x̃′, ν̃′〉 − λ

2
‖ν̃′‖22

≥
√

1− ε
1 + ε

〈x̃, ν̃〉
1 + εmax(1, ‖ν‖)

− λ

2
(1− ε)‖ν̃‖22

≥ (1− ε)(1− εmax(1, ‖ν‖)) (〈x,ν〉 − εmax(1, ‖ν‖))− λ

2
(1− ε)(1 + ε)‖ν‖2

≥ 〈x,ν〉 − εmax(1, ‖ν‖)− ε (〈x,ν〉 − εmax(1, ‖ν‖))− λ

2
‖ν‖2

≥ f(ν)− 2εmax(1, ‖ν‖). (A.16)

On the other hand, since ν∗ ∈ Ũ (`), there exists ν̄ ∈ U (`) such that ν∗ = Ψν̄. Let ν̄′ be a scaled version of ν̄ so that it
is a feasible solution to the optimization problem in Eq. (4.1) before projection. Using essentially similar analysis one can
show that f(ν̄′) ≥ f̃(ν∗) − 2εmax(1, ‖ν∗‖). Consequently, the following bound on the gap between f̃(ν̃′) and f̃(ν∗)
holds: ∣∣f̃(ν̃′)− f̃(ν∗)

∣∣ ≤ 4εmax(1, ‖ν‖, ‖ν∗‖). (A.17)

Because the dual problem in Eq. (4.1) is strongly convex with parameter λ (this holds for both the projected and the original
problem), we can bound the perturbation of dual directions ‖ν̃′ − ν∗‖ by the bounds on their values |f̃(ν̃′)− f̃(ν∗)| as

‖ν̃′ − ν∗‖2 ≤

√
2|f̃(ν̃′)− f̃(ν∗)|

λ
≤
√

8εmax(1, ‖ν‖, ‖ν∗‖)
λ

. (A.18)

Next, note that ν̃′,ν∗ ∈ Ũ (`). Also note that for any two vector a, b the following holds:∥∥∥∥ a

‖a‖
− b

‖b‖

∥∥∥∥ =

∥∥∥∥ a

‖a‖
− b

‖a‖
+

b

‖a‖
− b

‖b‖

∥∥∥∥
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≤ ‖a− b‖
‖a‖

+
‖b‖ ·

∣∣‖a‖ − ‖b‖∣∣
‖a‖‖b‖

≤ ‖a− b‖
‖a‖

+
‖a− b‖
‖a‖

=
2‖a− b‖
‖a‖

.

By symmetry we also have ‖ a
‖a‖ −

b
‖b‖‖ ≤

2‖a−b‖
‖b‖ . Therefore,∥∥∥∥ a

‖a‖
− b

‖b‖

∥∥∥∥ ≤ 2‖a− b‖
max(‖a‖, ‖b‖)

. (A.19)

Now we can bound ‖ṽ′ − v∗‖ as follows:

‖ṽ′ − v∗‖ =

∥∥∥∥ ν̃′

‖ν̃′‖
− ν∗

‖ν∗‖

∥∥∥∥
≤ 2‖ν̃′ − ν∗‖

max(‖ν̃′‖, ‖ν∗‖)
≤ 2‖ν̃′ − ν∗‖

max(‖ν‖/4, ‖ν∗‖)

≤
16
√

2εmax(1, ‖ν‖, ‖ν∗‖)√
λmax(‖ν‖, ‖ν∗‖)

≤ 16

√
2ε

λ
max

(
1,

1

‖ν‖
,

1

‖ν∗‖

)

≤ 16

√
2ε

λ(1− 2λ)
≤ 32

√
ε

λ
.

Note that after normalization ṽ′ is exactly the same with ṽ. Subsequently, for any y ∈ X\X(`) we have∣∣〈v,y〉 − 〈v∗, ỹ′〉∣∣ ≤ ∣∣〈ṽ′, ỹ′〉 − 〈v∗, ỹ′〉∣∣+
∣∣〈ṽ′, ỹ′〉 − 〈v,y〉∣∣

≤ ‖ṽ′ − v∗‖‖ỹ′‖+
∣∣〈ṽ, ỹ′〉 − 〈v,y〉∣∣

≤ ‖ṽ′ − v∗‖+

∣∣∣∣ 1

‖Ψv‖‖Ψy‖
〈Ψv,Ψy〉 − 〈v,y〉

∣∣∣∣
≤ 32

√
ε

λ
+

(
1− 1

‖Ψv‖‖Ψy‖

)
‖Ψv‖‖Ψy‖+

∣∣〈Ψv,Ψy〉 − 〈v,y〉∣∣
≤ 32

√
ε

λ
+

(
1− 1

1 + ε

)
(1 + ε) + ε

= 32

√
ε

λ
+ 2ε.

Proof of Lemma 14. For notational simplicity re-define Y = Y(−i) and Ỹ′ = Ỹ′(−i) for some fixed data point x(`)
i . Let

C, C̃ be the largest Euclidean balls inscribed in Q(Y) and Q(Ỹ). Since both Q(Y) and Q(Ỹ) are symmetric convex
bodies with respect to the origin, the centers of C and C̃ are the origin. Let c̃ be any point in C̃ ∩ ∂Q(Ỹ). By definition,
r(Q(Ỹ)) = ‖c̃‖. Since c̃ ∈ Ũ (`), we can find c ∈ U (`) such that c̃ = Ψc. By Proposition 1, we have (with probability
≥ 1− δ)

‖c̃‖ ≥ 1√
1 + ε

‖c‖. (A.20)

On the other hand, c is not contained in the interior of Q(Y). Otherwise, we can find a scalar a > 1 such that ac ∈ Q(Y)

and hence ac̃ ∈ Q(Ỹ), contradicting the fact that c̃ ∈ ∂Q(Ỹ). Consequently, we have ‖c‖ ≥ r(Q(Y)) by definition.
Therefore,

r(Q(Ỹ)) = ‖c̃‖ ≥ 1√
1 + ε

‖c‖ ≥ r(Q(Y))√
1 + ε

. (A.21)
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Next, we need to lower bound r(Q(Ỹ′)) in terms of r(Q(Ỹ)). This can be easily done by noting that the maximum
column norm in Ỹ is upper bounded by

√
1 + ε. Consequently, we have

r(Q(Ỹ′)) ≥ r
(
Q
(

1√
1 + ε

Ỹ

))
≥ r(Q(Y))

1 + ε
. (A.22)

Proof of Lemma 16. Fix ` ∈ {1, 2, · · · , k} and a particular column x = xi. Suppose ν is the optimal solution to the
original dual problem in Eq. (4.1). Define ν‖ = PU(`)ν and ν⊥ = PU(`)⊥ν. Let f(·) be the objective value of the dual
problem under a specific solution. Then it is easy to observe that

f(ν‖) ≥ f(ν)− 〈x⊥,ν⊥〉 ≥ f(ν)− η‖ν⊥‖2. (A.23)

We then cite the following upper bound for ‖ν⊥‖, which appears as Eq. (5.16) in (Wang & Xu, 2013).

‖ν⊥‖2 ≤ λη

(
1

r(Q(Y
(`)
−i ))

+ 1

)
≤ 2λη

ρ`
. (A.24)

Let ν̃ = Ψν‖ and ν̃′ =
√

1−ε
1+(η+ε) max(1,‖ν‖) · ν̃. It is easy to verify that ν̃′ is a feasible solution to the projected dual

problem. Define η′ := maxi=1,··· ,n ‖z̃i‖2. Since Ψ is well behaved, η′ ≤
√

1 + εη with high probability. Applying
essentially the same chain of argument as in the proof of Lemma 12 we obtain

f̃(ν̃′) = 〈x̃′, ν̃′〉 − λ

2
‖ν̃′‖22

= 〈ỹ′, ν̃′〉+ 〈z̃, ν̃′〉 − λ

2
‖ν̃′‖22

≥ 〈y,ν‖〉 −
λ

2
‖ν‖‖2 − 2(ε+ η) max(1, ‖ν‖)− ‖z̃‖2‖ν̃′‖2

≥ 〈y,ν‖〉 −
λ

2
‖ν‖‖2 − 2(ε+ η) max(1, ‖ν‖)− η′ ·

√
(1− ε)(1 + ε)

1 + εmax(1, ‖ν‖)
‖ν‖

≥ 〈y,ν‖〉 −
λ

2
‖ν‖‖2 − 2(ε+ η) max(1, ‖ν‖)−

√
1 + εη‖ν‖

≥ 〈x,ν‖〉 −
λ

2
‖ν‖‖2 − 2(ε+ η) max(1, ‖ν‖)−

√
1 + εη‖ν‖ − η‖ν‖

≥ f(ν‖)− (2ε+ 5η) max(1, ‖ν‖)

≥ f(ν)− 2λη2

ρ`
− (2ε+ 5η) max(1, ‖ν‖).

Similarly, one can show that

f̃(ν∗) ≤ f(ν) +
2λη′2

ρ`
+ (2ε+ 5η′) max(1, ‖ν∗‖) ≤ f(ν) +

3λη2

ρ`
+ (2ε+ 6η) max(1, ‖ν∗‖). (A.25)

Consequently, noting that f̃(ν̃′) ≤ f̃(ν∗) one has

∣∣f̃(ν∗)− f̃(ν̃′)
∣∣ ≤ 5λη2

ρ`
+ 4(ε+ 3η) max(1, ‖ν‖, ‖ν∗‖). (A.26)

Since both dual problems (before and after projection) are strongly convex with parameter λ, the following perturbation
bound on ‖ν∗ − ν̃′‖ holds:

‖ν∗ − ν̃′‖ ≤

√
2|f̃(ν∗)− f̃(ν̃′)|

λ
≤

√
5η2

ρ`
+

8(ε+ 3η) max(1, ‖ν‖, ‖ν∗‖)
λ

. (A.27)
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Subsequently,

‖ṽ′ − v∗‖ ≤ 8‖ν̃′ − ν∗‖
max(‖ν‖, ‖ν∗‖)

≤ 8

√
5η2

ρ` max(‖ν‖2, ‖ν∗‖2)
+

8(ε+ 3η)

λmax(1, ‖ν‖2, ‖ν∗‖2)

≤ 8

√
5η2

ρ`(1− 2λ)2
+

8(ε+ 3η)

λ(1− 2λ)2

≤ 16

√
5η2

ρ`
+

8(ε+ 3η)

λ
.

Finally, the perturbation of the angle between v and y can be bounded by

∣∣〈v,y〉 − 〈v∗, ỹ′〉∣∣ ≤ ‖ṽ′ − ṽ∗‖+ 2ε ≤ 16

√
5η2

ρ`
+

8(ε+ 3η)

λ
+ 2ε. (A.28)

Proof of Theorem 15. Let µ̃`, ρ̃` denote the subspace incoherence and inradius of subspace U (`) after dimensionality re-
duction. Theorem 11 shows that Lasso SSC satisfies the subspace detection property if µ̃` < ρ̃` for every ` and λ < ρ̃. By
Lemma 14, ρ̃ ≥ ρ/2 with high probability. Note also that ρ̃` ≥ ρ`

1+ε ≥ ρ`(1 − ε). Subsequently, the following inequality
yields µ̃` < ρ̃` for every `:

µ` + 32
√
ε/λ+ (2 + ρ`)ε < ρ`, ∀` = 1, · · · , k. (A.29)

Taking 32
√
ε/λ < ∆/2 and (2 +ρ`)ε < ∆/2 where ∆ = min`(ρ`−µ`), Eq. (A.29) is subsequently satisfied. This yields

ε < min

{
∆

2(2 + ρ)
, c1λ∆2

}
(A.30)

for some absolute constant c1. The ε < 1/2 term comes from the ε < 1/‖ν‖ condition in Lemma 12.

Proof of Theorem 18. Define ∆̃ := min`(ρ̃`− µ̃`) to be the maximum margin of error after dimensionality reduction. First
we prove that with λ = ρ/4 < 1/4 and the upper bound in Eq. (4.15) we have ∆̃ ≥ ∆/2. Essentially, this requires

16

√
5η2

ρ`
+

8(ε+ 3η)

λ
<

∆

4
, (A.31)

2ε+ ρε <
∆

4
. (A.32)

This amounts to

ε < min

{
∆

4(2 + ρ)
,
λ

8

(
c2∆2 − 5η2

ρ

)
− 3η

}
, (A.33)

where c2 > 0 is an absolute constant.

Next we verify that Eq. (4.5) are satisfied after dimensionality reduction. Let η̃ denote the noise level after projection, that
is, maxi{‖z̃i‖} ≤ η̃. Because ε < 1/3, by Proposition 1 η̃ ≤ 2η with high probability. Consequently, η < ρ

96 in Eq.
(4.14) implies (ρ̃ = min` ρ̃` and µ̃ = max` µ̃`)

ρ̃− 2η̃ − η̃2 ≥ ρ(1− ε)− 6η ≥ 2ρ

3
− 6ρ

18
=
ρ

3
≥ ρ

4
= λ. (A.34)

Hence the upper bound on λ in Eq. (4.5) is satisfied. For the lower bound, note that η � 1, ρ̃` < 1 and hence

η̃(1 + η̃)(2 + ρ̃`)

ρ̃` − µ̃` − 2η̃
≤ 6η̃

∆̃
≤ 12η

∆/2
=

24η

∆
<
ρ

4
= λ. (A.35)

The last inequality is due to Eq. (4.14).
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Proof of Theorem 19. Let the JL transform matrix be Ψ. Since it is a linear transformation, zi ∼ N (0, σ
2

d I) implies that
Ψzi ∼ N (0, σ

2

d ΨΨ>). Using the fact that this algorithm is invariant to arbitrary unitary transformations, we can apply
the rotation that diagonalizes the covariance matrix σ2

d ΨΨ> to every column of the projected (and renormalized) data.
This decouples the noise matrix Z such that every coordinate is independent Gaussian. Moreover, the maximum entrywise
variance is upper bounded by

max
ij

σ2
ij

p
≤ ‖Ψ‖2σ

2(1 + ε)2

d
≤ ξ2 d

p

σ2(1 + ε)2

d
≤ ξ2σ

2(1 + ε)2

p
≤ 2ξ2σ

2

p
,

where ε is the JL parameter included to acount for the renormalization of the y part. The last inequality holds because
ε > 1/3 by our assumption.

Applying the same argument as in the proof of Theorem 18 we get ∆̃ = min` (ρ̃` − µ̃`) ≥ ∆/2 when Eq. (4.17) is
satisfied.

The proof is then completed by invoking the second part of Theorem 11 on the compressed problem with the bounded
entrywise independent Gausian noise, we get the condition that√

logN

p
σ(1 + σ) ≤ C

4ξ2
min

`=1,...,k

{
ρ, r−1/2, ρ` − µ`

}
as claimed in (4.6).

Note that for random Gaussian transforms Ψ, by Lemma 28, ‖Ψ‖ ≤ 3
√
d/p (hence ξ2 ≤ 9) with high probability.

B. Privacy preserved subspace clustering
In this section, we formalize the claims on attribute-level differential privacy and the corresponding utility guarantee in the
paper.

Privacy Claim In classic statistical privacy literature, transforming data set X by taking X̃ = AX+∆ for some random
matrix A and ∆ is called matrix masking. (Zhou et al., 2009) show that random compression allows the mutual information
of the output X̃ and raw data X to converge to 0 with rate O(p/d) even when ∆ = 0, their result directly applies to our
problem. The guarantee suggests that the amount of information in the compressed output X̃ about the raw data X goes to
0 as the ambient dimension d gets large.

On the other hand, if ∆ 6= 0 is an iid Gaussian noise matrix, we can protect the (ε, δ)-differential privacy of every data
entry. Such attribute differential privacy notion is defined below.

Definition 20 (Attribute Differential Privacy). Suppose O is the set for all possible outcomes. We say a randomized
algorithm A : Rd×N → O is (ε, δ)-differential private at attribute level if

P(A(X) ∈ S) ≤ eεP(A(X′) ∈ S) + δ

for any measurable outcome S ⊂ O, any X and X′ that differs in only one entry.

This is a well-studied setting in (Kenthapadi et al., 2013). It is weaker than protecting the privacy of individual users,
which remains an open question, but much stronger than the average protection via mutual information. In fact, it forbids
any feature of an individual user from being identified “for sure” by an adversary with arbitrary side information.

Theorem 21. Assume the data (and all other users that we need to protect) satisfy column spikiness conditions with
parameter µ0 as in Definition 4. Let Ψ be a Johnson-Lindenstrauss transform with parameter ε. Releasing compressed

data X̃′ = Normalize(ΨX) + N (0, σ2Ip×d) with σ = 1+ε
1−ε

√
32µ0 log(1.25/δ)

dε2 preserves attribute-level (ε, δ)-differential
privacy.

The proof involves working out the `2-sensitivity of the operator Normalize(Ψ(·)) in terms of column incoherence µ0

and apply “Gaussian Mechanism”. By the closeness to post-processing property of differential privacy, the subsequent
subspace clustering results protects the same level of privacy. Details are given as follows.
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Proof of Theorem 21. Let X and X′ differs by only one entry, w.l.o.g, assume it is the ith column and jth row,

‖Ψ(X−X′)‖F = ‖Ψ(Xi −X′i)‖2 ≤ ‖Ψej‖|Xji −X′ji| ≤ 2

√
µ

d
‖Ψej‖.

Now we derive the `2-sensitivity of Normalize(Ψ(·)).

‖Normalize(ΨX)− Normalize(ΨX′)‖F

=

∥∥∥∥ ΨXi

‖ΨXi‖
− ΨX′i
‖ΨX′i‖

∥∥∥∥
2

=

∥∥∥∥ ΨXi

‖ΨXi‖
− ΨX′i
‖ΨXi‖

+
ΨX′i
‖ΨXi‖

− ΨX′i
‖ΨX′i‖

∥∥∥∥
2

=

∥∥∥∥Ψ(Xi −X′i)

‖ΨXi‖
+ ΨX′i

(
1

‖ΨXi‖
− 1

‖ΨX′i‖

)∥∥∥∥
≤‖Ψ(Xi −X′i)‖2

‖ΨXi‖
+ ‖ΨX′i‖

|‖ΨX′i‖ − ‖ΨXi‖|
‖ΨXi‖‖ΨX′i‖

≤2‖Ψ(Xi −X′i)‖2
‖ΨXi‖

≤ 4

√
µ0

d

‖Ψej‖
‖ΨXi‖

≤ 4

√
µ0

d

1 + ε

1− ε
.

The last step uses the fact that Ψ is JL with parameter ε.

Lemma 22 (Gaussian Mechanism, (Kenthapadi et al., 2013)). Let ∆2f be the `2 sensitivity of f , Let ε ∈ (0, 1) be arbitrary.
The procedure that output f(X) +N (0, σ2I) with σ ≥ ∆2f

√
2 log(1.25/δ)/ε is (ε, δ)-differentially private.

Our claim follows by applying Gaussian Mechanism and the closedness to postprocessing property of data privacy.

Utility Claim It turns out that if column spikiness µ0 is a constant, Lasso-SSC is able to provably detect the correct
subspace structures, despite privacy constraints.

Corollary 23. Let the raw data X be compressed and privatized data X̃′ using the above described mechanism. Assume
the same set of notations and assumptions in Theorem 15. Suppose Ψ is a JL transform with parameter ε. Let B :=
min`=1,...,k{ρ, r−1/2, ρ` − µ`}, and C be the constant in Theorem 15 and 19. If the privacy parameter ε is set to

ε >

√
512µ0 log(1.25/δ)

d
max

{
(p logN)1/4

(CB)1/2
,

√
logN

CB

}
.

Then the solution to Lasso-SSC using obeys the subspace detection property with probability 1− 8/N − δ.

The idea is simple. We are now injecting artificial Gaussian noise to a compressed subspace clustering problem with fixed
input, and Theorem 19 ( Theorem 8 in (Wang & Xu, 2013) ) directly addresses that. All we have to do is to replace the
geometric quantities in µ` and ρ` by their respective bound after compression in Corollary 13 and Lemma 14.

Proof of Corollary 23. The proof involves applying Theorem 19 with ξ = 1 and

σ =
1 + ε

1− ε

√
32pµ0 log(1.25/δ)

dε2
≤
√

128pµ0 log(1.25/δ)

dε2

according to Theorem 21 and rearranging the expressions in terms of the limit for privacy requirement ε.

Note that the noise here is added after the compression and normalization, but the effect is the same as adding Gaussian
noise in the original dimension and scaled orthogonal random projection on a noise. In fact, we can replace C/4 with C
because there is no renormalization here.

Denote B := min`=1,...,k{ρ, r−1/2, ρ` − µ`}, and C to be the same as in Theorem 19, the conditions for success is

σ(1 + σ) < CB

√
p

logN
, (B.1)
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which holds if

σ < min

{
CB

2

√
p

logN
,

√
CB

2

p1/4

(logN)1/4

}
.

Substitute the expression of σ into (B.1) and rewrite it in terms of ε, we get our claim:

ε >

√
512µ0 log(1.25/δ)

d
max

{
(p logN)1/4

(CB)1/2
,

√
logN

CB

}
.

B.1. Discussion of user-level privacy and its impossiblity under perfect subspace detection property

As we described in the main results, attribute-level differential privacy is a much weaker notion of privacy. While it is easy
to handle a small group of attributes (in the order of O(

√
d/p) if we consider B = O(1/r)) by the composition rule, it

does not protect any individual user’s complete information. However, this is arguably the best we can do if our measure
of utility is in terms of (perfect) subspace detection property.

Let us define formally the user-level differential privacy.
Definition 24 (User-Level Differential Privacy). We say a randomized algorithm A : Rd×N → O is (ε, δ)-differential
private at attribute level if

P(A(X) ∈ S) ≤ eεP(A(X′) ∈ S) + δ

for any measurable outcome S ⊂ O, any X,X′ ∈ Xn that differs in only one column.

The only difference to the attribute differential privacy is how X and X′ may differ. Note that we can arbitrarily replace
any single point in X with any x ∈ X , to form X′.
Proposition 25. User-level differential privacy is NOT possible for any 0 ≤ ε <∞ if we assume perfect subspace detection
property, or perfect clustering results. In addition, If an algorithm achieves perfect clustering or subspace detection with
probability 1− δ, user-level differential privacy is NOT possible for any ε < log

(
1−δ
δ

)
.

Proof. First of all, if a data point can be arbitrarily chosen, then we can change it entirely into a different subspace. Let’s
first ignore the gap from subspace detection property and perfect clustering. Assume that the output is the clustering result
and it is always correct. then if we arbitrarily change the kth data point from one Subspace A to Subspace B, the result must
reflect the change and cluster this data point correctly to its new subspace and the probability of observing an output that
has kth data point clustered into Subspace A will change from 1 to 0, which blatantly violates the definition of differential
privacy.

The same line of arguments holds if we treat the output as the graph embedding. Note that having subspace detection
property for data point k in Subspace A (connected only to a set of points) and having subspace detection for data point
k in Subspace B (connected only to another set of points) are two disjoint measurable events. With a perturbation that
changes a data point from one subspace to another will blow the likelihood ratio of observing one of these two event to
infinity.

The high probability statement holds because

P(SDP according to X|X)

P(SDP according to X|X′)
≥ 1− δ

δ
≥ elog( 1−δ

δ ).

The reason why attribute-level privacy will work is because the promise is much weaker. Also our assumption that the
columns are non-spiky ensures that perturbing any attribute of any user will not inject too much error. Intuitively, random
projection and the injected dense Gaussian noise makes sure that it is not possible to identify any small changes in one
attribute of a single user.

To be fair, the same problem still exists, namely, differential privacy breaks whenever the clustering can be shown to be
always correct. What attribute-differential privacy ensures is that it is not possible to tell if a specific attribute of this user
used in coming up with the result is actually the same or close to what it truly is.
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Figure 5. Relative Violation (top) and clustering accuracy (bottom) of Lasso-SSC on noiseless and noisy synthetic datasets. Left: noise-
less; right: σ/

√
d = 0.1. λ ranges from 10−1 to 10−8 and the projected data dimension (p) ranges from 5 to 60. For each figure the

rightmost columns indicate trivial solutions.
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Figure 6. Relative violation of Lasso-SSC on noiseless and noisy synthetic datasets with varying number of clusters (k). Top row: λ
ranges from 10−8 to 1; data dimension after random projection (p) is set to 25; rightmost columns indicate trivial solutions. Bottom
row: p ranges from 5 to 50; λ is set to 10−2. Left: noiseless; right: σ/

√
d = 0.1.

User-level privacy for subspace clustering and for privacy in general remains an important open problem. What we know
for sure is that, we need to come up with a different/soft measure of utility other than exact clustering or subspace detection
property.

C. Numerical results on synthetic datasets
We generate synthetic datasets to verify and extend theoretical findings in this paper. All subspaces and data points within
each subspace are generated uniformly at random. We fix the ambient dimension (d) to be 100 and generate 50 data points
per cluster. The intrinsic rank of each subspace is fixed to r = 5.

In the first set of experiments we generate K = 10 clusters and plot the relative violation of SEP as well as clustering
accuracy with respect to different λ and p values in Figure 5. It can be shown that when the projected dimension p is
smaller than the rank of the union of subspaces (i.e., p < kr) the performance of Lasso SSC degrades as λ decreases. This
holds even for the noiseless case, which nicely justifies our theoretical findings. Note that when p is large (e.g., p > kr)
both Lasso SSC and exact SSC (λ → 0) succeeds when the input data matrix is not corrupted with noise. On the other
hand, when λ is too large we obtain trivial solutions and clustering fails immediately.

In Figure 6 we report the relative violation of SEP and clustering accuracy with varying number of clusters k. It can be seen
that even when there are a large number of clusters (e.g., k = 50) SEP still holds for a wide range of tuning parameters λ.
In addition, the bottom two plots in Figure 6 show that the choice of projection dimension p is insensitive to the number of
clusters (k).

D. Some tail inequalities
Lemma 26 (Matrix Gaussian and Rademacher Series, the general case (?)). Let {Bk}k be a finite sequence of fixed
matrices with dimensions d1×d2. Let {γk}k be a finite sequence of i.i.d. standard normal variables. Define the summation
random matrix Z as

Z =
∑
k

γkBk. (D.1)
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Define the variance parameter σ2 as
σ2 := max{‖E[ZZ>]‖, ‖E[Z>Z]‖}. (D.2)

Then for every t > 0 the following concentration inequality holds:

Pr [‖Z‖ ≥ t] ≤ (d1 + d2)e−t
2/2σ2

. (D.3)

Lemma 27 (Noncommutative Matrix Berstein Inequality, (?Recht, 2011)). Let B1, · · · ,Bp be independent zero-mean
square r × r random matrices. Suppose σ2

j = max{‖E[BjB
>
j ]‖, ‖E[B>j Bj ]‖} and ‖Bj‖ ≤ R almost surely for every j.

Then for any t > 0 the following inequality holds:

Pr

∥∥∥∥∥∥
p∑
j=1

Bj

∥∥∥∥∥∥
2

> t

 ≤ 2r exp

(
− t2/2∑p

j=1 ρ
2
j +Rt/3

)
. (D.4)

Lemma 28 (Spectrum bound of a Gaussian random matrix,(?)). Let A be an m × n (m > n) matrix with i.i.d standard
Gaussian entries. Then, its largest and smallest singular values s1(A) and sn(A) obeys

√
m−

√
n ≤ Esn(A) ≤ Es1(A) ≤

√
m+

√
n,

moreover, √
m−

√
n− t ≤ sn(A) ≤ s1(A) ≤

√
m+

√
n+ t,

with probability at least 1− 2 exp(−t2/2) for all t > 0.

The expectation result is due to Gordon’s inequality and the concentration follows from the concentration of measure
inequality in Gauss space by the fact that s1 and sn are both 1-Lipchitz functions. Take t =

√
n in the above inequality we

get

1− 2

√
n

m
− ε ≤ sn(A/

√
m) ≤ s1(A/

√
m) ≤ 1 + 2

√
n

m

with probability 1− 2 exp(−n2/2).
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Table of symbols and notations

Table 1. Summary of symbols and notations
| · | Either absolute value or cardinality
‖ · ‖; ‖ · ‖2 2 norm of a vector/spectral norm of a matrix
‖ · ‖1 1 norm of a vector
‖ · ‖∞ Infinity norm (maximum absolute value) of a vector
〈·, ·〉 Inner product of two vectors
‖A‖(i) The ith row of matrix A
σ1(·), σr(·) The largest and rth largest singular value of a matrix
N Number of data points (number of columns in X)
k Number of subspaces (clusters)
d The ambient dimension (number of rows in X)
N`, r` for ` = 1, · · · , k Number of data points and instrinsic dimension for each subspace
r Largest intrinsic dimension across all subspaces
X Observed data matrix
Y Uncorrupted (noiseless) data matrix
Z Noise matrix, can be either deterministic or stochastic
X̃, Ỹ, Z̃ Projected matrices of X,Y,Z

X̃′, Ỹ′, Z̃′ Normalized projected matrices of X,Y,Z
U (`), U(`) Subspace and its orthonormal basis of the `th cluster
X−i, Y−i, Z−i All columns in X,Y,Z except the ith column.
X(`),Y(`),Z(`) All columns in X,Y,Z associated with the `th subspace
X

(`)
−i ,Y

(`)
−i ,Z

(`)
−i All columns in X(`),Y(`),Z(`) except the ith column

Q(·),conv(·) (Symmetric) convex hull of a set of vectors
r(·) Radius of the largest ball inscribed in a convex body
PU (·) Projection onto subspace U
p Target dimension after random projection
ε Approximation error of random projection methods
δ Failure probability
Ψ,Ω,Φ,S Projection operators for random Gaussian projection, uniform sampling, FJLT and sketching
µ0 Column space incoherence or column spikiness
µ`, ρ` for ` = 1, · · · , k Subspace incoherence and inradius for each subspace
µ̃`, ρ̃` for ` = 1, · · · , k Subspace incoherence and inradius on the projected data
f(·), f̃(·) Objective functions of Eq. (4.1) on the original data and projected data
ν,v Unnormalized and normalized dual direction
ν̃ Random projection of ν
ν̃′ A shrinked version of ν̃ such that it is feasible for Eq. (4.1) on projected data
ν∗ Optimal solution to Eq. (4.1) on projected data
ν̄ A vector in the original space that corresponds to ν∗ after projection
ν̄′ A shrinked version of ν̄ such that it is feasible for Eq. (4.1) on the original data
λ Regularization coefficient for Lasso SSC
∆ Margin of error (i.e., min` ρ` − µ`)
η, η̃ Noise level for deterministic noise, before and after projection
σ, σ̃ Noise level for random Gaussian noise, before and after projection
C Similarity matrix
q Number of nonzero entries in regression solutions. Used in solution path algorithms.


