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Outline

1 Univariate trend filtering

2 The falling factorial basis

3 Trend filtering on Graphs
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1 Univariate trend filtering
(Tibshirani, 2013, Annals of Statistics)
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Nonparametric regression

Nonparametric regression: observe (x1, y1), . . . (xn, yn) ∈ R× R
from model

yi = f0(xi) + εi, i = 1, . . . n

Errors εi assumed to have zero mean. Want to estimate underlying
regression function f0, assumed to be smooth

Rich literature, lots of interesting work. E.g.,

• Local polynomials

• Splines

• Kernels

• Wavelets

Relative newcomer in nonparametric regression: trend filtering, a
close cousin to splines
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Splines

Recall: a kth degree spline is a kth degree piecewise polynomial,
that has continuous derivatives of orders 0, 1, . . . k − 1 at its knots

The added (higher order) continuity constraints make the function
smoother

Of course, key question is: how to choose knots?
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Two canonical spline estimators

Consider regularized least squares problem:

min
functions f

n∑
i=1

(
yi − f(xi)

)2
+ λ ·R(f)

where λ ≥ 0 is a tuning parameter, R is a roughness penalty

Smoothing splines (Wahba 1990, Green & Silverman 1994) use

R(f) =
∫ (
f (

k+1
2

)(t)
)2
dt. Properties:

• Solution f̂ is a (natural) spline of degree k

• Knots at all input points x1, . . . xn

• Computationally fast

• Suboptimal rate for estimating functions of heterogeneous
smoothness
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Two canonical spline estimators

Consider regularized least squares problem:

min
functions f

n∑
i=1

(
yi − f(xi)

)2
+ λ ·R(f)

where λ ≥ 0 is a tuning parameter, R is a roughness penalty

Locally adaptive regression splines (Mammen & van de Geer 1997)

use R(f) = TV(f (k)). Properties: R(f) =
∫ (
f (

k+1
2

)(t)
)2
dt

• Solution f̂ is a spline of degree k

• Knots adaptively chosen among x1, . . . xn

• Computationally slow

• Minimax optimal for estimating functions of heterogeneous
smoothness
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Example: comparing methods
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Locally adaptive regression spline, df=19
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Smoothing spline, df=19

Rates: n−(2k+2)/(2k+3) n−(2k+1)/(2k+2)

any linear estimator
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Example: comparing methods
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Locally adaptive regression spline, df=19
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Smoothing spline, df=30

Rates: n−(2k+2)/(2k+3) n−(2k+1)/(2k+2)

any linear estimator
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Example: comparing methods
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Locally adaptive regression spline, df=19
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Smoothing spline, df=30

Rates: n−(2k+2)/(2k+3) n−(2k+1)/(2k+2)

(any linear estimator)
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Example: comparing methods
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Trend filtering, df=19

Locally adaptive splines
Trend filtering
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Smoothing spline, df=30

Rates: n−(2k+2)/(2k+3) n−(2k+1)/(2k+2)

(both) (any linear estimator)

12 / 54



Trend filtering

Trend filtering (Steidl et al. 2006, Kim et al. 2009, Tibshirani 2013)
is a discrete approximation to locally adaptive regression splines:

min
β∈Rn

‖y − β‖22 + λ‖D(k+1)β‖1

Preserves asymptotic properties (e.g., minimax optimality), but is
much faster computationally

Rough explanation: TV(f (k)) ≈
∫
|f (k+1)(t)| dt ≈ ‖D(k+1)β‖1,

where D(k+1) is a discrete derivative operator of order k + 1, i.e.,

D(1) =

[ −1 1 0 . . . 0 0
0 −1 1 . . . 0 0

. . .
0 0 0 . . . −1 1

]
,

D(k+1) = D(1)D(k) for k = 1, 2, 3, . . .

Fast computation stems from bandedness of these operators
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Trend filtering in continuous space

Intuitively, trend filtering solution β̂ should exhibit the structure of
kth degree piecewise polynomial (since it penalizes changes in kth
derivatives across inputs)
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This idea can be formalized using falling factorial functions
(W., Smola, Tibshirani. 2014)
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The falling factorial basis

Trend filtering: min
β∈Rn

‖y − β‖22 + λ · 1

k!
‖D(k+1)β‖1

Reformulation: min
α∈Rn

‖y −H(k)α‖22 + λ

n∑
j=k+2

|αj |

Continuous space embedding:

min
f∈Hk

n∑
i=1

(yi − f(xi))
2 + λTV(f (k))

Locally adaptive regression splines:

min
f∈Gk

n∑
i=1

(yi − f(xi))
2 + λTV(f (k))
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The falling factorial basis

Gk is spanned by:

g1(x) = 1, g2(x) = x, ..., gk(x) = xk

gk+1(x) = (x− t1)k+, ..., gn(x) = (x− tn−k+1)
k
+

Hk is spanned by:

h1(x) = 1, h2(x) = x− t1, ..., hk(x) =

k∏
`=1

(x− t`)

hk+1(x) =

k+1∏
`=2

(x− t`), ..., hn(x) =

n∏
`=n−k+1

(x− t`)k+

Essentially replacing power functions mk with falling factorial
function m(m− 1)...(m− k + 1).
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The falling factorial basis

Truncated Power Basis Falling Factorial Basis Zoom-in FF basis

• Not the same, but close enough!
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The falling factorial basis

What is the advantage?

• Same statistical optimality.

• but way faster O(n2)→ O(n)!

• Faster than FFT, Wavelet!

Challenge:

• Other applications?

• Higher order Kolmogorov-Smirnov Test.

• Some use in signal/image processing?

• Generalize to estimate multivariate functions?
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2 Graph trend filtering
(W., Sharpnack, Smola, Tibshirani, 2015 AIStats+JMLR)
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Nonparametric regression on graphs

Graph smoothing: given a graph G = (V,E), with vertices denoted
V = {1, . . . n}, we observe

yi = µi + εi, i = 1, . . . n

Errors εi assumed to have zero mean. Want to estimate underlying
signal µ, assumed to be smooth with respect to edges E

In comparison to univariate case, a lot less literature. E.g.,

• Eigen-based methods

• Laplacian smoothing

• Wavelets on graphs

Newcomer in this field: graph trend filtering, an extension of the
univariate technique with analogous benefits
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Graph trend filtering

Graph trend filtering (W., Sharpnack, Smola, Tibshirani, 2015)
solves

min
β∈Rn

‖y − β‖22 + λ‖∆(k+1)β‖1

where ∆(k+1) is a graph difference operator of order k + 1, over G

Two key properties of univariate trend filtering:

• Computationally fast

• Locally adaptive

With suitably defined difference operators ∆(k+1), k = 1, 2, 3, . . .,
graph trend filtering will share these properties
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Discrete differences over graphs

Given graph G = (V,E) with V = {1, . . . n} and E = {e1, . . . em}

• Define the first order graph difference operator ∆(1) to be the
edge incidence matrix of G, an m×n matrix, whose `th row is

D` = (0, . . .−1
↑
i

, . . . 1
↑
j

, . . . 0)

if the `th edge is e` = {i, j}
• For higher orders, use the recursion:

∆(k+1) =

{
(∆(1))T∆(k) for k odd,

∆(1)∆(k) for k even

I.e., for D the edge incidence matrix, and L=DTD the Laplacian:

∆(1) = D, ∆(2) = L, ∆(3) = DL, ∆(4) = L2, . . .
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Constant order

The penalty for constant order graph trend filtering:

‖∆(1)β‖1 = ‖Dβ‖1 =
∑
{i,j}∈E

|βi − βj |

Estimate β̂ is piecewise
constant over G

(This is also known as
the graph fused lasso)
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Linear order

The penalty for linear order graph trend filtering:

‖∆(2)β‖1 = ‖Lβ‖1 =

n∑
i=1

ni

∣∣∣∣βi − 1

ni

∑
{i,j}∈E

βi

∣∣∣∣

Estimate β̂ is “piecewise
linear” over G
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Quadratic order

The penalty for quadratic order graph trend filtering:

‖∆(2)β‖1 = ‖DLβ‖1 =
∑
{i,j}∈E

∣∣∣∣(niβi−∑
{i,`}∈E

β`

)
−
(
njβj−

∑
{j,`}∈E

β`

)∣∣∣∣

Estimate β̂ is “piecewise
quadratic” over G
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Discrete differences over graphs

To sum up:

• For odd k, the (k + 1)st order differences are given by taking
first differences of kth differences:

∆(k+1) = D∆(k)

• For even k, the (k + 1)st order differences are given by taking
second differences of (k − 1)st order differences

∆(k+1) = L∆(k−1)

For the chain graph, with edges E = {{i, i+ 1} : i = 1, . . . n}, this
construction exactly gives the difference operators in the univariate
case (modulo boundary terms)
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Example: comparing methods

Truth Data Trend filter, 80 df

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.056
0.111
0.167
0.223
0.278
0.334
0.389
0.445
0.501
0.556
0.612
0.667
0.723
0.779
0.834
0.89
0.945
1.001
1.057
1.112

Lap smooth, 80 df Lap smooth, 134 df Wavelets, 313 df

27 / 54



Example: comparing methods

Mean squared errors (averaged over 10 simulations):
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Examples of extensions

Logistic/Poisson Graph Trend Filtering:

β̂ = arg min
β∈Rn

f(y, β) + λ1‖∆(k+1)β‖1, (1)

Sparse Graph Trend filtering:

β̂ = arg min
β∈Rn

1

2
‖y − β‖22 + λ1‖∆(k+1)β‖1 + λ2‖β‖1, (2)

Graph Trend Completion (interpolation):

β̂ = arg min
β∈Rn

1

2
‖w ◦ (y − β)‖22 + λ‖∆(k+1)β‖1 (3)
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Event detection based on New York City Taxi counts

NYC 2013 Gay Pride Parade
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Event detection based on New York City Taxi counts
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Event detection on New York City Taxi counts

-74.01 -74 -73.99 -73.98 -73.97 -73.96 -73.95 -73.94 -73.93 -73.92 -73.91

40.72

40.74

40.76

40.78

40.8

40.82

40.84

40.86

-74.01 -74 -73.99 -73.98 -73.97 -73.96 -73.95 -73.94 -73.93 -73.92 -73.91

40.72

40.74

40.76

40.78

40.8

40.82

40.84

40.86

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Sparse trend filtering Sparse Laplacian smoothing

32 / 54



Graph-based Transductive Learning

β̂ = arg min
β∈Rn

1

2
‖w ◦ (y − β)‖22 + λ‖∆(k+1)β‖1

Input: partially labelled data Output: full labels
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Graph-based Transductive Learning

Examples of this in Interactive Image Segmentation (Li. et. al., 2008)

.
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Graph-based Transductive Learning on UCI Datasets

We apply to plain classification problems:
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Theory

Assume y ∼ β0 +N (0, I), ‖∆β‖1 is small.

How well can we estimate β0 by solving a generalized lasso
problems:

β̂ = arg min
β∈Rn

1

2
‖y − β‖22 + λ‖∆β‖1, (4)

36 / 54



Theory

Assume y ∼ β0 +N (0, I), ‖∆β‖1 = O(1).

How well can we estimate β0 by solving a generalized lasso
problems:

β̂ = arg min
β∈Rn

1

2
‖y − β‖22 + λ‖∆β‖1, (5)

Three general recipes in our paper:

• Basic error bound ( using ‖∆+‖2,∞)

• Strong error bound 1 (using incoherence)

• Strong error bound 2 (using entropy)
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Challenges in Theory

Hard to specialize to different graph structures. Case study:

- Specialize to a chain graph, minimax rate is O(n−
2k+2
2k+3 )

• Basic error bound: Suboptimal O(n−1/2).
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Challenges in Theory

• Strong error bound 1: Minimax rate!
Proof: k-D grids are constant incoherent,

• Strong error bound 2: Minimax rate!
Proof: Manually construct a ε-cover set.

Other graphs? A lot of open questions.
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Successes and challenges

Successes:

• As defined, the graph difference operators are structured
(Laplacian-based) and permit efficient computation

• Empirical examples show superiority of graph trend filtering
over other linear estimators like Laplacian smoothing

Challenges:

• Theoretically, we have a few general recipes for proving
estimation bound. Not sure how sharp these bounds are
except that it attains minimax rate for the chain graph

• Continuous space interpretations are difficult. is there a set of
basis functions for each graph?

• Multidimensional (Euclidean) trend filtering is an open topic
in general
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How to solve the Trend filtering problem?

A clever ADMM decomposition (Ramdas & Tibshirani,2014):

min
β∈Rn

1

2
‖y − β‖22 + λ‖D(1)α‖1

s.t α = D(k)β

Solve subroutine using dynamic programming.
GLM loss via Prox. Newton.

glmgen software package in R and C on github!
Falling factorial basis operations in C with Matlab interface on my
homepage.

Efficient GTF implementation to come soon!
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Challenges in GTF computation

Solve linear systems:

(λLk + I)x = b

• This is SDD when k = 1, not SDD for k ≥ 2.

• Fast algorithm exists for grids. Fast DCT.

• No clue in general.

42 / 54



Summary

Takeaway points:

• Trend filtering methods are computationally fast and locally
adaptive

• The regularization scheme is also transparent (easy to extend,
easy to adapt)

• Many challenges remain (e.g., conducting proper inference)

• But there are several promising leads as well
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GTF computation

• k = 0 Solving Graph Fused Lasso:
Parametric max flow (Chambolle et. al., 2011)

• k = 1 Projected Newton on the dual with SDD solver.

• k = 2 Special ADMM with Chambolle’s solver as prox.

45 / 54



Fast computation

Computational experiments on TV denoising.
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ADMM vs. Projected Newton
GTF with k = 1

0 5 10 15 20 25 30
10

−6

10
−4

10
−2

10
0

10
2

10
4

Clock time in second

 

 

ADMM residual
ProjNewton duality gap

47 / 54



Naive ADMM vs. Special ADMM
GTF with k = 2

0 20 40 60 80 100 120
10

−3

10
−2

10
−1

10
0

10
1

Clock time in second

 

 

Special ADMM residual
Naive ADMM residual

48 / 54



Example: comparing methods

Real graph, from Allegheny County (Pittsburgh). Simulated signal:
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Example: comparing methods

Noisy realization:
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Example: comparing methods

Quadratic graph trend filtering, 80 df:
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Example: comparing methods

Laplacian smoothing, 80 df:
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Example: comparing methods

Laplacian smoothing, 134 df:
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Example: comparing methods

Wavelet smoothing, 313 df:
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