Trend Filtering, Falling Factorial Basis and Locally Adaptive Statistical Estimation on Graphs

Yu-Xiang Wang

Dept. of Machine Learning Carnegie Mellon University

Collaborators: Ryan Tibshirani, James Sharpnack, Alex Smola, Veeranjaneyulu Sadhanala

Outline

Outline

1 Univariate trend filtering

2 The falling factorial basis

3 Trend filtering on Graphs

1 Univariate trend filtering
 (Tibshirani, 2013, Annals of Statistics)

Nonparametric regression

Nonparametric regression: observe $\left(x_{1}, y_{1}\right), \ldots\left(x_{n}, y_{n}\right) \in \mathbb{R} \times \mathbb{R}$ from model

$$
y_{i}=f_{0}\left(x_{i}\right)+\epsilon_{i}, \quad i=1, \ldots n
$$

Errors ϵ_{i} assumed to have zero mean. Want to estimate underlying regression function f_{0}, assumed to be smooth

Rich literature, lots of interesting work. E.g.,

- Local polynomials
- Splines
- Kernels
- Wavelets

Relative newcomer in nonparametric regression: trend filtering, a close cousin to splines

Splines

Recall: a k th degree spline is a k th degree piecewise polynomial, that has continuous derivatives of orders $0,1, \ldots k-1$ at its knots

The added (higher order) continuity constraints make the function smoother

Of course, key question is: how to choose knots?

Two canonical spline estimators

Consider regularized least squares problem:

$$
\min _{\text {functions } f} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda \cdot R(f)
$$

where $\lambda \geq 0$ is a tuning parameter, R is a roughness penalty
Smoothing splines (Wahba 1990, Green \& Silverman 1994) use $R(f)=\int\left(f^{\left(\frac{k+1}{2}\right)}(t)\right)^{2} d t$. Properties:

- Solution \hat{f} is a (natural) spline of degree k
- Knots at all input points $x_{1}, \ldots x_{n}$
- Computationally fast
- Suboptimal rate for estimating functions of heterogeneous smoothness

Two canonical spline estimators

Consider regularized least squares problem:

$$
\min _{\text {functions } f} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda \cdot R(f)
$$

where $\lambda \geq 0$ is a tuning parameter, R is a roughness penalty
Locally adaptive regression splines (Mammen \& van de Geer 1997) use $R(f)=\mathrm{TV}\left(f^{(k)}\right)$. Properties:

- Solution \hat{f} is a spline of degree k
- Knots adaptively chosen among $x_{1}, \ldots x_{n}$
- Computationally slow
- Minimax optimal for estimating functions of heterogeneous smoothness

Example: comparing methods

Locally adaptive regression spline, $\mathrm{df}=19$

Smoothing spline, $\mathrm{df}=19$

Example: comparing methods

Smoothing spline, df=30

Example: comparing methods

Example: comparing methods

Trend filtering, $\mathrm{df}=19$

Rates: $\quad n^{-(2 k+2) /(2 k+3)}$
(both)

Smoothing spline, df=30

$$
n^{-(2 k+1) /(2 k+2)}
$$

(any linear estimator)

Trend filtering

Trend filtering (Steidl et al. 2006, Kim et al. 2009, Tibshirani 2013) is a discrete approximation to locally adaptive regression splines:

$$
\min _{\beta \in \mathbb{R}^{n}}\|y-\beta\|_{2}^{2}+\lambda\left\|D^{(k+1)} \beta\right\|_{1}
$$

Preserves asymptotic properties (e.g., minimax optimality), but is much faster computationally

Rough explanation: $\operatorname{TV}\left(f^{(k)}\right) \approx \int\left|f^{(k+1)}(t)\right| d t \approx\left\|D^{(k+1)} \beta\right\|_{1}$, where $D^{(k+1)}$ is a discrete derivative operator of order $k+1$, i.e.,

$$
\begin{aligned}
D^{(1)} & =\left[\begin{array}{rrrrrr}
-1 & 1 & 0 & \cdots & 0 & 0 \\
0 & -1 & 1 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & -1 & 1
\end{array}\right], \\
D^{(k+1)} & =D^{(1)} D^{(k)} \text { for } k=1,2,3, \ldots
\end{aligned}
$$

Fast computation stems from bandedness of these operators

Trend filtering in continuous space

Intuitively, trend filtering solution $\hat{\beta}$ should exhibit the structure of k th degree piecewise polynomial (since it penalizes changes in k th derivatives across inputs)

Constant, $k=0$
(Fused lasso)

Linear, $k=1$

Quadratic, $k=2$

This idea can be formalized using falling factorial functions (W., Smola, Tibshirani. 2014)

The falling factorial basis

Trend filtering: $\min _{\beta \in \mathbb{R}^{n}}\|y-\beta\|_{2}^{2}+\lambda \cdot \frac{1}{k!}\left\|D^{(k+1)} \beta\right\|_{1}$
Reformulation: $\min _{\alpha \in \mathbb{R}^{n}}\left\|y-H^{(k)} \alpha\right\|_{2}^{2}+\lambda \sum_{j=k+2}^{n}\left|\alpha_{j}\right|$
Continuous space embedding:

$$
\min _{f \in \mathcal{H}_{k}} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda \operatorname{TV}\left(f^{(k)}\right)
$$

Locally adaptive regression splines:

$$
\min _{f \in \mathcal{G}_{k}} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda \operatorname{TV}\left(f^{(k)}\right)
$$

The falling factorial basis

\mathcal{G}_{k} is spanned by:

$$
\begin{array}{r}
g_{1}(x)=1, \quad g_{2}(x)=x, \quad \ldots, \quad g_{k}(x)=x^{k} \\
g_{k+1}(x)=\left(x-t_{1}\right)_{+}^{k}, \quad \ldots, \quad g_{n}(x)=\left(x-t_{n-k+1}\right)_{+}^{k}
\end{array}
$$

\mathcal{H}_{k} is spanned by:

$$
\begin{aligned}
& h_{1}(x)=1, \quad h_{2}(x)=x-t_{1}, \quad \ldots, \quad h_{k}(x)=\prod_{\ell=1}^{k}\left(x-t_{\ell}\right) \\
& h_{k+1}(x)=\prod_{\ell=2}^{k+1}\left(x-t_{\ell}\right), \quad \ldots, \quad h_{n}(x)=\prod_{\ell=n-k+1}^{n}\left(x-t_{\ell}\right)_{+}^{k}
\end{aligned}
$$

Essentially replacing power functions m^{k} with falling factorial function $m(m-1) \ldots(m-k+1)$.

The falling factorial basis

- Not the same, but close enough!

The falling factorial basis

What is the advantage?

- Same statistical optimality.
- but way faster $O\left(n^{2}\right) \rightarrow O(n)$!
- Faster than FFT, Wavelet!

Challenge:

- Other applications?
- Higher order Kolmogorov-Smirnov Test.
- Some use in signal/image processing?
- Generalize to estimate multivariate functions?

2 Graph trend filtering
 (W., Sharpnack, Smola, Tibshirani, 2015 AIStats+JMLR)

Nonparametric regression on graphs

Graph smoothing: given a graph $G=(V, E)$, with vertices denoted $V=\{1, \ldots n\}$, we observe

$$
y_{i}=\mu_{i}+\epsilon_{i}, \quad i=1, \ldots n
$$

Errors ϵ_{i} assumed to have zero mean. Want to estimate underlying signal μ, assumed to be smooth with respect to edges E

In comparison to univariate case, a lot less literature. E.g.,

- Eigen-based methods
- Laplacian smoothing
- Wavelets on graphs

Newcomer in this field: graph trend filtering, an extension of the univariate technique with analogous benefits

Graph trend filtering

Graph trend filtering (W., Sharpnack, Smola, Tibshirani, 2015) solves

$$
\min _{\beta \in \mathbb{R}^{n}}\|y-\beta\|_{2}^{2}+\lambda\left\|\Delta^{(k+1)} \beta\right\|_{1}
$$

where $\Delta^{(k+1)}$ is a graph difference operator of order $k+1$, over G
Two key properties of univariate trend filtering:

- Computationally fast
- Locally adaptive

With suitably defined difference operators $\Delta^{(k+1)}, k=1,2,3, \ldots$, graph trend filtering will share these properties

Discrete differences over graphs

Given graph $G=(V, E)$ with $V=\{1, \ldots n\}$ and $E=\left\{e_{1}, \ldots e_{m}\right\}$

- Define the first order graph difference operator $\Delta^{(1)}$ to be the edge incidence matrix of G, an $m \times n$ matrix, whose ℓ th row is
if the ℓ th edge is $e_{\ell}=\{i, j\}$
- For higher orders, use the recursion:

$$
\Delta^{(k+1)}= \begin{cases}\left(\Delta^{(1)}\right)^{T} \Delta^{(k)} & \text { for } k \text { odd } \\ \Delta^{(1)} \Delta^{(k)} & \text { for } k \text { even }\end{cases}
$$

I.e., for D the edge incidence matrix, and $L=D^{T} D$ the Laplacian:

$$
\Delta^{(1)}=D, \quad \Delta^{(2)}=L, \quad \Delta^{(3)}=D L, \quad \Delta^{(4)}=L^{2}, \ldots
$$

Constant order

The penalty for constant order graph trend filtering:

$$
\left\|\Delta^{(1)} \beta\right\|_{1}=\|D \beta\|_{1}=\sum_{\{i, j\} \in E}\left|\beta_{i}-\beta_{j}\right|
$$

Estimate $\hat{\beta}$ is piecewise constant over G
(This is also known as the graph fused lasso)

Linear order

The penalty for linear order graph trend filtering:

$$
\left\|\Delta^{(2)} \beta\right\|_{1}=\|L \beta\|_{1}=\sum_{i=1}^{n} n_{i}\left|\beta_{i}-\frac{1}{n_{i}} \sum_{\{i, j\} \in E} \beta_{i}\right|
$$

Estimate $\hat{\beta}$ is "piecewise linear" over G

Quadratic order

The penalty for quadratic order graph trend filtering:

$$
\left\|\Delta^{(2)} \beta\right\|_{1}=\|D L \beta\|_{1}=\sum_{\{i, j\} \in E}\left|\left(n_{i} \beta_{i}-\sum_{\{i, \ell\} \in E} \beta_{\ell}\right)-\left(n_{j} \beta_{j}-\sum_{\{j, \ell\} \in E} \beta_{\ell}\right)\right|
$$

Estimate $\hat{\beta}$ is "piecewise quadratic" over G

Discrete differences over graphs

To sum up:

- For odd k, the $(k+1)$ st order differences are given by taking first differences of k th differences:

$$
\Delta^{(k+1)}=D \Delta^{(k)}
$$

- For even k, the $(k+1)$ st order differences are given by taking second differences of $(k-1)$ st order differences

$$
\Delta^{(k+1)}=L \Delta^{(k-1)}
$$

For the chain graph, with edges $E=\{\{i, i+1\}: i=1, \ldots n\}$, this construction exactly gives the difference operators in the univariate case (modulo boundary terms)

Example: comparing methods

Example: comparing methods

Mean squared errors (averaged over 10 simulations):

Examples of extensions

Logistic/Poisson Graph Trend Filtering:

$$
\begin{equation*}
\hat{\beta}=\underset{\beta \in \mathbb{R}^{n}}{\arg \min } f(y, \beta)+\lambda_{1}\left\|\Delta^{(k+1)} \beta\right\|_{1}, \tag{1}
\end{equation*}
$$

Sparse Graph Trend filtering:

$$
\begin{equation*}
\hat{\beta}=\underset{\beta \in \mathbb{R}^{n}}{\arg \min } \frac{1}{2}\|y-\beta\|_{2}^{2}+\lambda_{1}\left\|\Delta^{(k+1)} \beta\right\|_{1}+\lambda_{2}\|\beta\|_{1}, \tag{2}
\end{equation*}
$$

Graph Trend Completion (interpolation):

$$
\begin{equation*}
\hat{\beta}=\underset{\beta \in \mathbb{R}^{n}}{\arg \min } \frac{1}{2}\|w \circ(y-\beta)\|_{2}^{2}+\lambda\left\|\Delta^{(k+1)} \beta\right\|_{1} \tag{3}
\end{equation*}
$$

Event detection based on New York City Taxi counts

Event detection based on New York City Taxi counts

Event detection on New York City Taxi counts

Sparse Laplacian smoothing

Graph-based Transductive Learning

$$
\hat{\beta}=\underset{\beta \in \mathbb{R}^{n}}{\arg \min } \frac{1}{2}\|w \circ(y-\beta)\|_{2}^{2}+\lambda\left\|\Delta^{(k+1)} \beta\right\|_{1}
$$

Input: partially labelled data

Output: full labels

Graph-based Transductive Learning

Examples of this in Interactive Image Segmentation (Li. et. al., 2008)

Graph-based Transductive Learning on UCI Datasets

We apply to plain classification problems:

Theory

Assume $y \sim \beta_{0}+\mathcal{N}(0, I),\|\Delta \beta\|_{1}$ is small.
How well can we estimate β_{0} by solving a generalized lasso problems:

$$
\begin{equation*}
\hat{\beta}=\underset{\beta \in \mathbb{R}^{n}}{\arg \min } \frac{1}{2}\|y-\beta\|_{2}^{2}+\lambda\|\Delta \beta\|_{1}, \tag{4}
\end{equation*}
$$

Theory

Assume $y \sim \beta_{0}+\mathcal{N}(0, I),\|\Delta \beta\|_{1}=O(1)$.
How well can we estimate β_{0} by solving a generalized lasso problems:

$$
\begin{equation*}
\hat{\beta}=\underset{\beta \in \mathbb{R}^{n}}{\arg \min } \frac{1}{2}\|y-\beta\|_{2}^{2}+\lambda\|\Delta \beta\|_{1}, \tag{5}
\end{equation*}
$$

Three general recipes in our paper:

- Basic error bound (using $\left\|\Delta^{+}\right\|_{2, \infty}$)
- Strong error bound 1 (using incoherence)
- Strong error bound 2 (using entropy)

Challenges in Theory

Hard to specialize to different graph structures. Case study:

- Specialize to a chain graph, minimax rate is $O\left(n^{-\frac{2 k+2}{2 k+3}}\right)$
- Basic error bound: Suboptimal $O\left(n^{-1 / 2}\right)$.

Challenges in Theory

- Strong error bound 1: Minimax rate!

Proof: k-D grids are constant incoherent,

- Strong error bound 2: Minimax rate!

Proof: Manually construct a ϵ-cover set.
Other graphs? A lot of open questions.

Successes and challenges

Successes:

- As defined, the graph difference operators are structured (Laplacian-based) and permit efficient computation
- Empirical examples show superiority of graph trend filtering over other linear estimators like Laplacian smoothing

Challenges:

- Theoretically, we have a few general recipes for proving estimation bound. Not sure how sharp these bounds are except that it attains minimax rate for the chain graph
- Continuous space interpretations are difficult. is there a set of basis functions for each graph?
- Multidimensional (Euclidean) trend filtering is an open topic in general

How to solve the Trend filtering problem?

A clever ADMM decomposition (Ramdas \& Tibshirani,2014):

$$
\begin{aligned}
& \min _{\beta \in \mathbb{R}^{n}} \frac{1}{2}\|y-\beta\|_{2}^{2}+\lambda\left\|D^{(1)} \alpha\right\|_{1} \\
& \text { s.t } \alpha=D^{(k)} \beta
\end{aligned}
$$

Solve subroutine using dynamic programming. GLM loss via Prox. Newton.
glmgen software package in R and C on github! Falling factorial basis operations in C with Matlab interface on my homepage.

Efficient GTF implementation to come soon!

Challenges in GTF computation

Solve linear systems:

$$
\left(\lambda L^{k}+I\right) x=b
$$

- This is SDD when $k=1$, not SDD for $k \geq 2$.
- Fast algorithm exists for grids. Fast DCT.
- No clue in general.

Summary

Takeaway points:

- Trend filtering methods are computationally fast and locally adaptive
- The regularization scheme is also transparent (easy to extend, easy to adapt)
- Many challenges remain (e.g., conducting proper inference)
- But there are several promising leads as well

Acknowledgements

James Sharpnack
Alex Smola

Ryan Tibshirani
Thank you for listening!

GTF computation

- $k=0$ Solving Graph Fused Lasso:

Parametric max flow (Chambolle et. al., 2011)

- $k=1$ Projected Newton on the dual with SDD solver.
- $k=2$ Special ADMM with Chambolle's solver as prox.

Fast computation

Computational experiments on TV denoising.

ADMM vs. Projected Newton

GTF with $k=1$

Naive ADMM vs. Special ADMM
GTF with $k=2$

Example: comparing methods

Real graph, from Allegheny County (Pittsburgh). Simulated signal:

Example: comparing methods

Noisy realization:

Example: comparing methods

Quadratic graph trend filtering, 80 df :

Example: comparing methods

Laplacian smoothing, 80 df :

Example: comparing methods

Laplacian smoothing, 134 df :

Example: comparing methods

Wavelet smoothing, 313 df :

