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Abstract
We study the problem of unsupervised ontology learning for
semantic understanding in spoken dialogue systems, in partic-
ular, learning the hierarchical semantic structure from the data.
Given unlabelled conversations, we augment a frame-semantic
based unsupervised slot induction approach with hierarchical
agglomerative clustering to merge topically-related slots (e.g.,
both slots “direction” and “locale” convey location-related in-
formation) for building a coherent semantic hierarchy, and then
estimate the slot importance at different levels. The high-level
semantic estimation involves not only within-slot but also cross-
slot relations. The experiments show that high-level semantic
information can accurately estimate the prominence of slots,
significantly improving the slot induction performance; further-
more, a semantic decoder trained on the data with automatically
extracted slots achieves about 68% F-measure, which is close to
the one from hand-crafted grammars.
Index Terms: spoken language understanding (SLU), spoken
dialogue system (SDS), slot induction, hierarchical agglomera-
tive clustering (HAC), word embeddings.

1. Introduction
Spoken dialogue systems (SDS) rely heavily on the spoken lan-
guage understanding (SLU) component that structurally under-
stands the language from dialogue participants. More specifi-
cally, the SLU component must create a mapping from the nat-
ural language inputs to the semantic representations to capture
users’ intentions. Traditionally, the semantic ontology for SDS
is hand-crafted by domain experts or developers: this involves
defining the semantic frames, slots, and possible values that sit-
uate the domain-specific conversation scenarios before building
an SDS. There exists several issues: they might not generalize
well to real-world users, the predefined slots can be limited or
even bias the subsequent data collection and annotation, the pro-
cess can be very time-consuming and have high financial costs,
and the system maintenance costs are high when new conver-
sational data comes in [1, 2, 3, 4, 5]. To overcome generaliza-
tion and scalability issues, recent SLU works have focused on
automatic knowledge acquisition and construction of domain-
specific ontologies to reduce human effort [6, 7, 8, 9].

Unsupervised slot induction is a recently proposed task that
greatly facilitates the process of constructing a semantic ontol-
ogy [1]. Prior work has also considered leveraging external se-
mantic resources, such as Freebase, and distributional semantics
for unsupervised SLU [2, 10, 3]. Following the success of the
above approaches, recent studies have also obtained interesting
results on the tasks of relation detection [11, 12], and extending
domain coverage [13, 14]. However, note that most prior work
assumes a relatively flat semantic representation architecture —

the cross-slot, cross-frame, and the hierarchical structure of se-
mantic ontology are often ignored for simplicity considerations.
This may not be practical enough, because in reality, dialogue
systems often include slots shared by many different frames,
and moreover, the cross-slot relations and multiple levels of se-
mantic hierarchy contain important signals that are crucial to the
entire SLU process [15, 16, 17]. Some recent works improved
slot induction and SLU performance by modeling the inter-slot
dependency relations to propagate the slot importance [7, 8].
However, the semantic hierarchy is not explicitly involved so
that the topically similar slots are still treated individually, and
then the learned ontology remains relatively flat.

This paper envisions a more radical hierarchy learning ap-
proach for unsupervised ontology learning to improve slot in-
duction and SLU tasks. To do this, we show how semantic
hierarchy can be learned by differentiating the concepts in the
hierarchy, and how the slot importance scores estimated at vari-
ous levels can be used for designing an SLU component. More
specifically, we apply a hierarchical agglomerative clustering
method on continuous word embeddings trained from very large
external corpora to learn semantic hierarchy, and estimate high-
level slot importance. To evaluate the performance of our ap-
proach, we compare the automatically induced semantic slots
with the reference slots created by domain experts. Addition-
ally, we train a semantic decoder on the data labelled with in-
duced slots as the SLU component, and test it on unseen data to
comprehensively evaluate the fully unsupervised approach.

To the best of our knowledge, we are among the first to
learn semantic hierarchy for unsupervised ontology learning in
SDSs. For slot induction, the major difference between our
work and previous studies is that, instead of estimating the
slot importance only based on frames in a flat architecture, we
merge topically-similar slots to induce semantic hierarchy, and
differentiate the slot importance at different levels. Finally, a
multi-level integration strategy significantly improves the per-
formance of slot induction and the SLU component on a real-
world SDS dataset.

2. The Proposed Framework
We build our approach on top of the recent success of an
unsupervised slot induction with frame-semantic parsing ap-
proach [1, 3]. Briefly, the main motivation of prior work is to
adapt the FrameNet-style frame-semantic parses to the seman-
tic slots in the target semantic space, so that they can be used
practically in the SDS, reducing development cost. Chen et al.
formulated the semantic mapping and adaptation as a ranking
problem, and proposed the slot importance estimation to differ-
entiate the generic semantic concepts from the target semantic
space for task-oriented dialogue systems. To consider the com-
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Figure 1: The proposed framework for unsupervised spoken language understanding.

plex relations among different slots that can be highly restricted
by the frame-semantic parser’s outputs, this paper proposes to
improve the semantic adaptation process by learning the under-
lying semantic hierarchy from data, and integrating multi-level
slot importance estimation in the hierarchical structure. The
proposed framework is shown in Figure 1.

The first component performs frame-semantic parsing on
ASR-decoded utterances in our unlabelled corpus, and extracts
all frames from the parses as slot candidates, where the words
corresponding to the frames are extracted as slot-fillers [18, 19].
FrameNet is a linguistically semantic resource that offers an-
notations of predicate-argument semantics, and associated lex-
ical units [20], developed based on Frame Semantics [21].
The theory holds that the meaning of most words can be ex-
pressed on the basis of semantic frames. For example, a pars-
ing result of an ASR-decoded utterance “can i have a cheap
restaurant” includes three frames (capability, expensiveness,
and locale by use) and corresponding lexical units (“can i”,
“cheap”, and “restaurant”).

With the list of slot candidates, slot importance estimators
are performed to estimate the prominence of these slot candi-
dates at various levels. The key slots for understanding the
specific domain should be scored higher to be used in domain-
specific dialogue systems. Instead of estimating the prominence
of each slot based on a flat architecture, this paper focuses on a
semantic hierarchy learner, namely, the low-level and high-level
estimators, to share the importance across slots. Then the esti-
mates from multiple levels can be integrated. In the end, the in-
duced slots are used to automatically label the corpus for train-
ing an SLU component in an unsupervised manner, and then
the trained model is able to decode the new utterances into the
semantic representations.

3. Low-Level Slot Importance Estimation
With slot candidates from semantic parses, the model estimates
their importance by integrating two scores [3]: 1) the normal-
ized frequency of each slot candidate in the corpus, since slots
with higher frequency may be more important. 2) the coherence
of slot-fillers corresponding to the slot. Assuming that domain-
specific concepts focus on fewer topics, the coherence of the
slot-fillers can help measure the prominence of the slots.

w0(s) = (1− α) · log f(s) + α · log h(s), (1)

where w0(s) is the low-level importance score for the slot can-
didate s, f(s) is the frequency of s from all parses, h(s) is the
coherence measure of s, and α is the weighting parameter.

For each slot s, we have a set of corresponding slot-fillers,
V (s), constructed from the utterances including the slot s in
the parsing results. Note that V (s) may include multiple same
fillers. The coherence measure h(s) is computed as the av-
erage pair-wise semantic similarity of slot-fillers to evaluate
if slot s corresponds to centralized or scattered topics, where

the semantic similarity is measured as the cosine similarity be-
tween slot-fillers’ word embeddings trained on the large exter-
nal data [3, 22]. The slot s with higher h(s) usually focuses on
fewer topics, which is more specific and more likely to be a slot
for dialogue systems.

4. High-Level Slot Importance Estimation
Since the low-level slot importance estimator only considers the
slot-fillers within a single slot (frame) outputted by the frame-
semantic parser, the cross-slot relations are not included during
the estimation. Thus, this work uses hierarchical agglomerative
clustering to learn a semantic hierarchy, and utilizes high-level
semantic representations to improve SLU.

4.1. Hierarchical Agglomerative Clustering

Hierarchical clustering builds nested clusters by merging or
splitting them successively [23, 24, 25]. The agglomerative
clustering algorithm performs hierarchical clustering using a
bottom-up approach: each observation starts in its own clus-
ter, and clusters are successively merged together based on the
merge strategy. The linkage criterion determines the distance
between sets of observations as a function of the pairwise dis-
tances between observations. A commonly used linkage crite-
rion between two sets of observations A and B is average link-
age:

1

|A||B|
∑
a∈A

∑
b∈B

d(a, b), (2)

where d(a, b) is the distance between observations a and b, so
it allows the algorithm to minimize the average of the distances
between all observations of pairs of clusters [26]. We perform
the algorithm at different levels to build a hierarchical structure.

4.1.1. Word-Level Clustering

Before running the algorithm, we use all slot-fillers as seeds
to expand the words based on the word representations trained
on the external data. The rationale behind the word expansion
includes: 1) the data collection may be too narrow in the spe-
cific domain to differentiate between domain-specific and gen-
eral concepts, so word expansion based on the external data may
help measure the difference; 2) the words in the evoked frames
may be limited by FrameNet, so it is necessary to borrow exter-
nal words to help bridge the slot-fillers for constructing a hierar-
chical structure. The observations for word-level clustering are
word embeddings, and d(a, b) in (2) is measured as the cosine
distance between word embeddings of a and b.

Given the word set W after word expansion and specified
number of clusters M , the clustering algorithm outputs c(w)
for each word w ∈ W , which is defined as the cluster label
including the word w. The clustering results should group the
words with similar topics together, because word embeddings
based on distributional semantics contain topical information.



4.1.2. Slot-Level Clustering

The observations for slot-level clustering are slot vectors
built on word-level clustering results from Section 4.1.1.
Here for the slot s, we build a slot vector rs =
[rs(1), ..., rs(m), ..., rs(M)], where M is the number of clus-
ters, and the m-th element of rs is defined as the number of
words clustered into group m with normalization:

rs(m) =
1

|V (s)|
∑

w∈V (s)

I[c(w) = m], (3)

where V (s) is the slot-filler set defined in Section 3, and
I[c(w) = m] is an indicator function equal to 1 if the wordw is
grouped into them-th cluster, 0 otherwise. Here the constructed
slot vectors embed the semantic information provided by word-
level clustering results, which can be generalized to higher lev-
els. The distance between two slots for slot-level clustering can
be measured as their slot vectors’ cosine similarity.

Given the slot vectors, the algorithm outputs ĉh(s) as the
cluster label for the slot s at the h-th level. The clustering pro-
cedure tends to merge topically-related slots, where the smaller
distance between two slots means that they contain some words
belonging to the same cluster but unnecessarily include the
same slot-filler. For example, the slot candidate expensive-
ness contains the fillers “cheap”, “cost”, “expensive”, and so
on. Another example commerce scenario includes fillers
such as “price” and “prices”. They would be merged together
by the algorithm because most words from them are labelled the
same by word-level clustering, even though they do not contain
any fillers in common.

4.2. Bottom-Up Slot Importance Estimation

With clustered slots as the high-level semantics, we estimate
the slot importance scores at different levels via a bottom-up
method:

wh+1(s) =
1

|Ĉh(s)|

∑
ĉh(sk)=ĉh(s)

wh(sk), (4)

where wh(s) is the slot importance from the h-th level (w0(s)

is estimated in (1)), Ĉh(s) includes all slots labelled as ĉh(s)
at the h-th level, so |Ĉh(s)| is the size of the cluster including
the slot s. That is, wh+1(s) averages the slot importance within
the cluster ĉh(s) from the previous level as its high-level slot
importance (at the (h+1)-th level), which considers not a single
slot but multiple topically-related slots. Note that wh+1(si) =
wh+1(sj) if ĉh(si) = ĉh(sj).

5. Multi-Level Slot Ranking
Considering that different slots may score differently even if
they are topically related to each others, the final weight of the
slot s is computed as

w(s) =

H∑
h=0

λh · wh(s). (5)

Here the semantics from different levels are integrated for mea-
suring the final prominence of the slot (

∑
h λh = 1). We rank

the slot candidates by the final scores, and tune a threshold θ to
output the induced slots in a fully unsupervised fashion. Note
that the reason for integrating scores from different levels is to
make the measurement more robust, since the performance of

a high-level slot estimator relies on a good and accurate hier-
archy. Considering that the learned hierarchy may not be per-
fect, combination of the estimators from different levels pro-
duces more robust results. Hence, wh+1(si) 6= wh+1(sj) even
if ĉh(si) = ĉh(sj), because we differentiate them by involving
their individual low-level importance.

6. Semantic Decoder Training
While semantic slot induction is essential for providing seman-
tic categories and imposing semantic constraints, we are also
interested in understanding the performance achieved by our in-
duced slots. Therefore, after slot induction, we use the original
corpus as the training data and the automatically extracted slots
as the pseudo training labels for building a semantic decoder
(a.k.a. SLU component). The features for training are gener-
ated by word confusion network, where confusion network fea-
tures are shown to be useful in developing more robust systems
for SLU [27, 28, 26]. We build a vector representation of an
utterance as u = [x1, ..., xj , ...].

xj = E[Cu(n-gramj)]
1/|n-gramj |, (6)

where Cu(n-gramj) counts how many times n-gramj occurs in
the utterance u, E(Cu(n-gramj)) is the expected frequency of
n-gramj in u, and |n-gramj | is the length of n-gramj .

For each slot candidate si, we generate a pseudo training
data Di to train a binary classifierMi for predicting the exis-
tence of si given an utterance,Di = {(uk, l

i
k) | uk ∈ R+, lik ∈

{−1,+1}}Kk=1, where lik = +1 when the utterance uk contains
the slot candidate si in its semantic parse, lik = −1 otherwise,
and K is the number of utterances. The trained model can be
used to decode the semantic representations from testing utter-
ances.

7. Experiments
To evaluate the effectiveness of our approach, we performed
two experiments. First, we directly examine the slot induction
performance by comparing the ranked list of frame-semantic
parsing induced slots with the reference slots created by system
developers [29]. Secondly, we examine the performance of the
unsupervised SLU model to analyze whether induced slots can
be used for practical SLU tasks.

7.1. Experimental Setup

In this experiment, we used the Cambridge University SLU cor-
pus [28, 30]. The domain of the corpus is about restaurant rec-
ommendation in Cambridge. The corpus contains a total num-
ber of 2,166 dialogues (1,522 for training; 644 for testing), and
we only use 11,288 utterances with semantic tags (7,634 for
training; 3,654 for testing) in the experiments. The vocabulary
size is 1868. An ASR system was used to transcribe the speech;
the word error rate was reported as 37%. There are 10 slots
created by domain experts: addr, area, food, name, phone,
postcode, pricerange, signature, task, and type. The pa-
rameters α in (1), λh in (5), θ for thresholding the slots, and the
number of clusters M can be tuned on a development set (1/10
of training data). Note that our unsupervised approaches does
not use any labelled data, and training data is for self-training.
Here we set the number of semantic levels to 2 since the data
has a relatively simple semantic hierarchy.

To include distributional semantics information, we use
pre-trained word embeddings [22, 31]. The word vectors are
trained on 109 words from Google News using the continuous
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Table 1: The performance of induced slots and SLU models(%)

Approach
Slot Induction SLU Model
AP AUC F-Measure

Baseline Low-Level 62.19 79.50 60.27

Proposed
High-Level 76.60 81.28 67.94
Multi-Level 76.21 82.00 68.13

bag of words architecture. The resulting vectors have dimen-
sionality 300, vocabulary size is 3 × 106; the entities contain
both words and automatically derived phrases.

7.2. Slot Induction Evaluation

We perform our approaches on the training data to generate a
slot ranking list. To evaluate the accuracy of the induced slots,
we measure their quality as the proximity between induced slots
and reference slots. The right part of Figure 2(b) shows the
mappings that indicate semantically related induced slots and
reference slots [1]. For example, “expensiveness → price”,
“food → food”, and “direction → area” show that these in-
duced slots can be mapped into the reference slots defined by
experts and carry important semantics in the target domain for
developing the task-oriented SDS. With the ranked list of in-
duced slots, we can use the standard average precision (AP)
and area under the ROC curve (AUC) as our metrics, where
the induced slot is counted as correct when it has a mapping to
a reference slot.

Table 1 shows the results, where the baseline is the result
using low-level slot importance [3]. Proposed approaches in-
clude the result using only the high-level slot importance and
the one using multiple levels. We find that high-level semantics
significantly helps slot induction performance in terms of both
AP and AUC. Furthermore, Figure 2(a) analyzes the perfor-
mance balancing the low-level and high-level slot importance,
λ0 and λ1 respectively in (5), to examine the contribution of the
high-level semantics on the slot induction task. It shows that
for both AP and AUC, high-level semantics improve the per-
formance significantly. Also, the best weight for λ1 is about
0.7− 0.9 in terms of both metrics, and this means that the pro-
posed hierarchical structure can induce domain-specific slots
more effectively, since it considers the cross-slot relations. In
addition, we show some slot-level clustering examples on the
left part of Figure 2(b) to analyze high-level semantics. Here

it is obvious that some slots with the same semantics can be
successfully grouped together (referring to the oracle mapping),
indicating that our hierarchical structure helps the semantics es-
timation effectively.

7.3. SLU Model Evaluation

An unsupervised SLU model trained on the training data with
pseudo labels is used to decode the semantic representations on
the test data, where an SVM with linear kernel is applied to clas-
sify if an utterance contain a certain slot or not. To evaluate our
SLU model, we compute a micro F-measure by comparing the
automatically-decoded and reference semantic representations.

From Table 1, by comparing the results of the proposed
approaches and the baseline, high-level semantics significantly
improve the performance (from 60% to 68% on F-measure).
The difference between the high-level and the multi-level ap-
proach is not significant, which shows that our learned semantic
hierarchy is accurate enough to provide a better high-level slot
estimator. Overall, the proposed high-level and multi-level ap-
proaches estimate the slot importance more accurately and out-
perform that only using low-level semantics; this demonstrates
the effectiveness of considering a semantic hierarchy to improve
slot induction for unsupervised SLU. The 77% of AP and 82%
of AUC indicate that our proposed approach can generate good
coverage for domain-specific slots in a real-world SDS. The
68% of F-measure is close to the performance of hand-crafted
grammars (about 69% of F-measure) on the same dataset [28].
Therefore, this paper shows the feasibility of applying our ap-
proach to SDS development with lower labor cost.

8. Conclusion
This paper proposes an unsupervised approach unifying seman-
tics from different levels for automatic slot induction and SLU
modeling. Our work makes use of a state-of-the-art semantic
parser, and adapts the generic FrameNet representation to a se-
mantic space characteristic of a domain-specific SDS using a
hierarchical structure. With the incorporation of high-level se-
mantics from a learned hierarchy, we show that our automat-
ically induced semantic slots align better with reference slots.
We also show the feasibility of training an SLU component
based on automatically induced slots and its promising perfor-
mance.
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