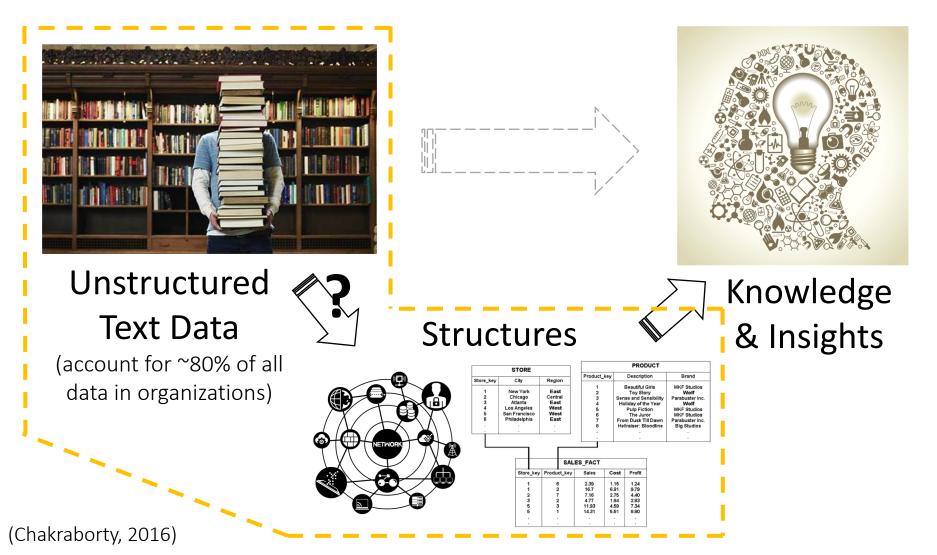
Scalable Construction and Reasoning of Massive Knowledge Bases

Xiang Ren¹ Nanyun Peng¹ William Yang Wang² University of Southern California¹ University of California, Santa Barbara²

Turning Unstructured Text Data into Structures

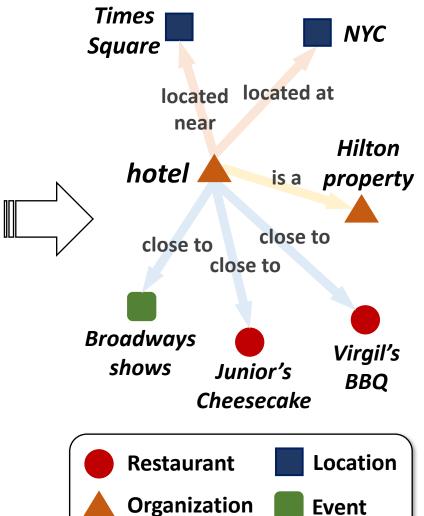


Reading the reviews: From Text to Structured Facts

This hotel is my favorite Hilton property in NYC! It is located right on 42nd street near Times Square, it is close to all subways, Broadways shows, and next to great restaurants like Junior's Cheesecake, Virgil's BBQ and many others.

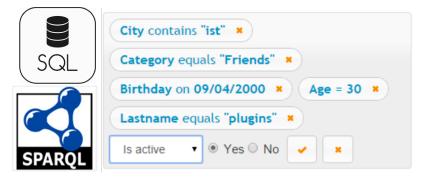
-- TripAdvisor

Structured 1. "Typed" entities Facts 2. "Typed" relationships



Why Text to Structures?

Structured Search & Exploration



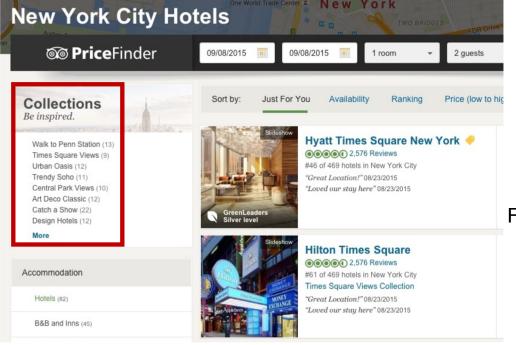
Dialog Systems

Question Answering

Scientific Inference

A Product Use Case: Finding "Interesting Hotel Collections"

Technology Transfer to TripAdvisor



Grouping hotels based on structured facts extracted from the review text

Features for "Catch a Show" collection

- broadway shows
- beacon theater

1

2

6

7

- 3 broadway dance center
- 4 broadway plays
- 5 david letterman show
 - radio city music hall
 - theatre shows

Features for "Near The High Line" collection

- 1 high line park
- 2 chelsea market
- 3 highline walkway
- 4 elevated park
- 5 meatpacking district
- 6 west side
- 7 old railway

http://engineering.tripadvisor.com/using-nlp-to-find-interesting-collections-of-hotels/

A Scientific Use Case: Precision Medicine

Molecular tumor board

Problem: Hard to scale

U.S. 2016: 1.7 million new cases, 600K deaths

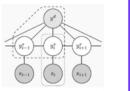
902 cancer hospitals

Memorial Sloan Kettering

Sequence: Tens of thousand Board can review: A few hundred

www.ucsf.edu/news/2014/11 /120451/bridging-gapprecision-medicine

Machine Reading



Predict Drug Combo

Better Structured Search with Reasoning Capabilities

who was the president of usa when churchill died					ال م			
All	News	Images	Videos	Shopping	More	Settings Tools		
About 16.400.000 results (0.68 seconds)								

United States of America / President (1965)	
Lyndon B. Johnson	

Text to Structures: Applications

Technology Transfer

Intelligent Personal Assistant

amazon echo

Googlenow

Facebook M

Cortana.

Siri

Medical records Scientific papers Clinical reports

Healthcare

Social media posts Web blogs News articles Computational

Social Sciences

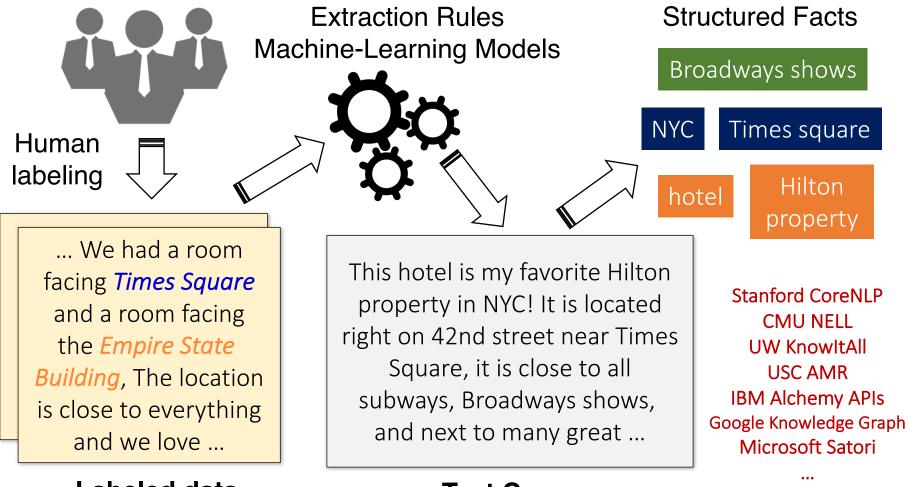
Online Education COURSERIC U UDACITY Lerr. Thirk. Do. Lerr. Thi

Corporate reports News streams Customer reviews

. . .

Business Intelligence

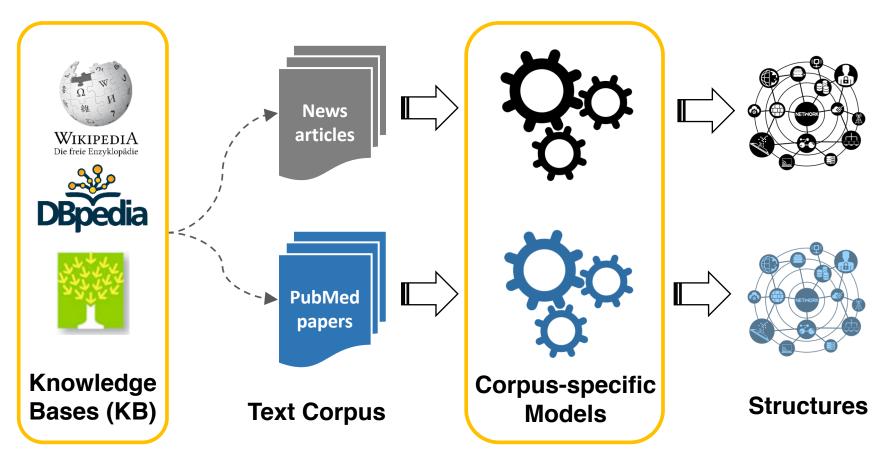
Prior Art: Extracting Structures with Repeated Human Effort



Labeled data

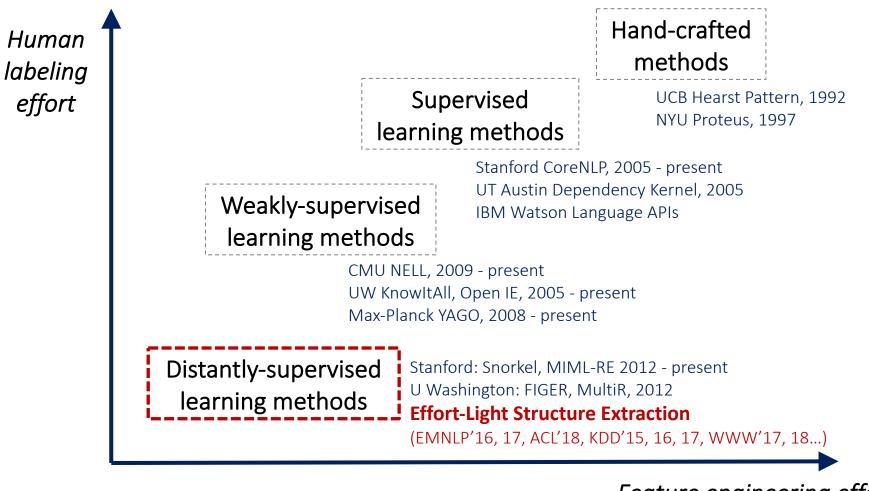
Text Corpus

Effort-Light Structure Extraction



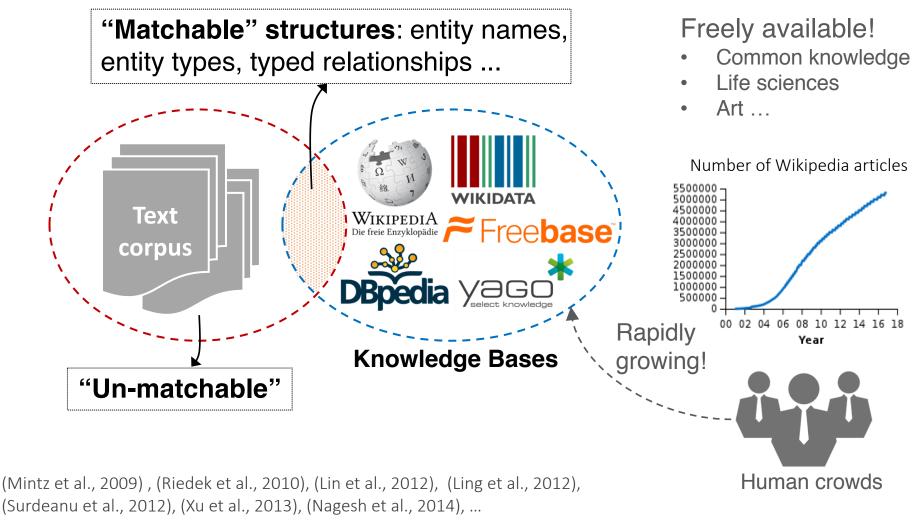
- Enables *quick* development of applications over various corpora
- Extracts complex structures without introducing human error

Effort–Light Structure Extraction : Where Are We?



Feature engineering effort

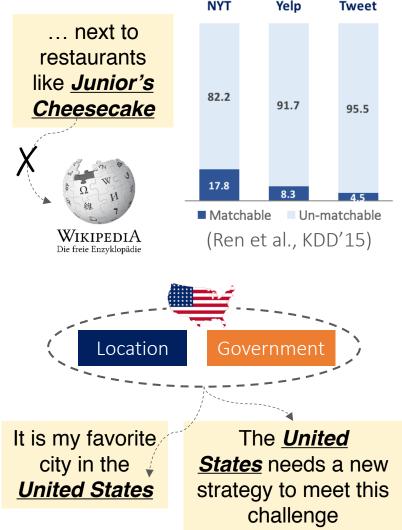
"Distant" Supervision: What Is It?



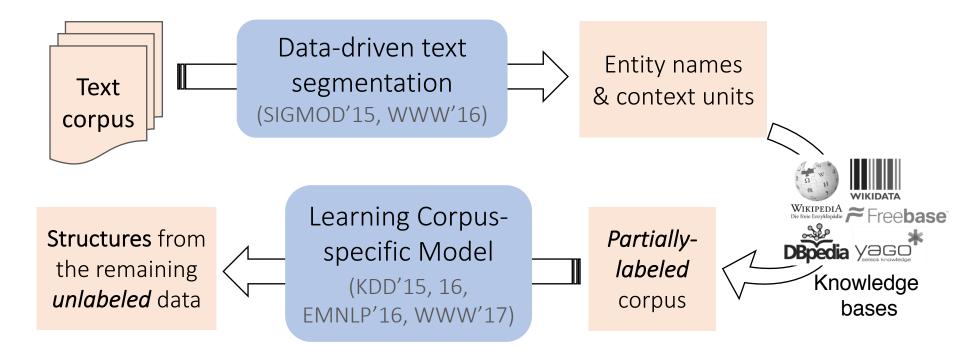
https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia

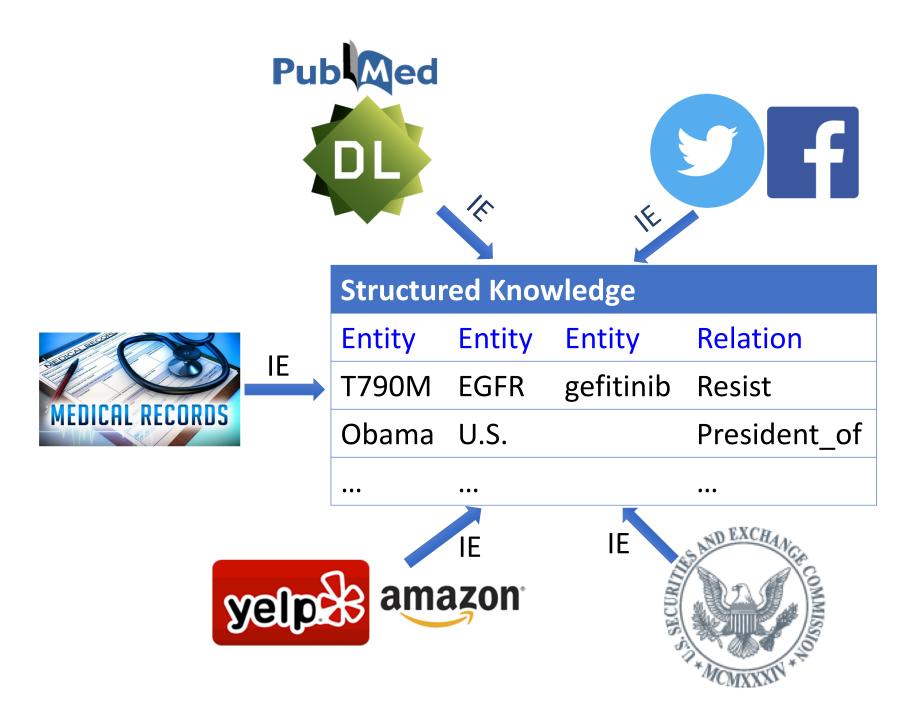
Learning with Distant Supervision: Challenges

- 1. Sparsity of "Matchable"
 - Incomplete knowledge bases
 - Low-confidence matching
- 2. Accuracy of "Expansion"
 - For "matchable": Are all the labels assigned accurately?
 - For "un-matchable": How to perform inference accurately?



Effort-Light StructMine: Methodology



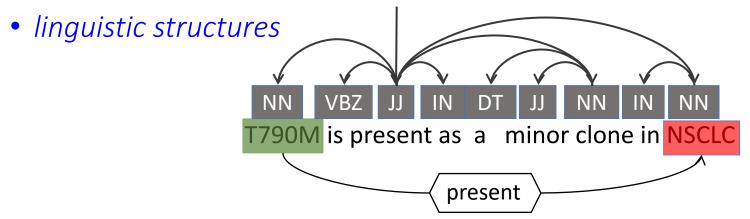


Challenges of Obtaining Training Data

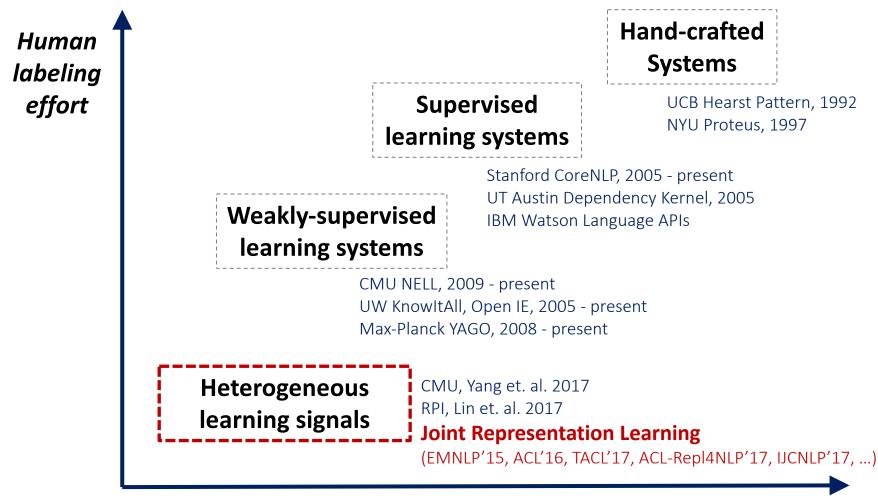
- Constructing data sets is labor intensive
- Many different
 - Languages
 - Domains
 - Modalities

Joint representation learning

- Learning comprehensive representations from *heterogeneous sources.*
 - unlabeled data
 - annotations for *related tasks, domains, languages*.
- Encoding structured knowledge to learn robust representations and make *holistic decisions*.



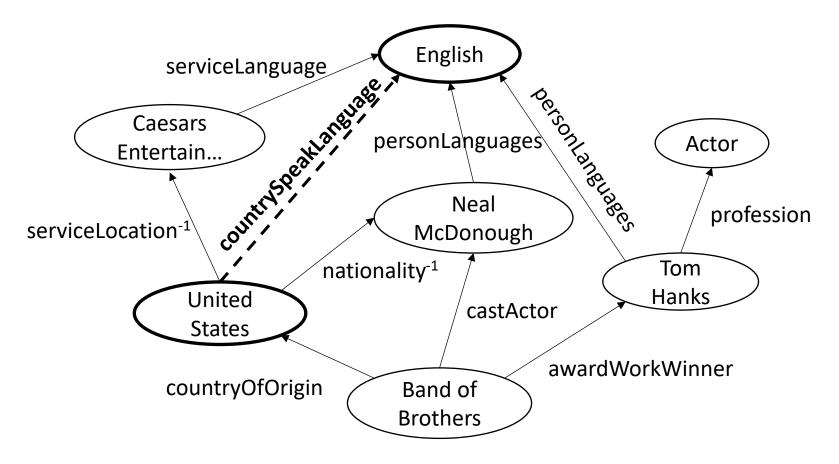
Low-resource IE: Another Way to Reduce Human Effort



A Review of Previous Efforts

Feature engineering effort

Knowledge Bases are Highly Incomplete



Query Start Node: "United States" *Query End Node*: "English" *Query*: ?(United States, English)

Knowledge Base Reasoning

• Question: can we infer missing links based on background KB?

Path-based methods

- Path-Ranking Algorithm (PRA), Lao et al. 2011
- RNN + PRA, Neelakantan et al, 2015
- Chains of Reasoning, Das et al, 2017

Embedding-based methods

- RESCAL, Nickel et al., 2011
- TransE, Bordes et al, 2013
- TransR/CTransR, Lin et al, 2015

Integrating Path and Embedding-Based Methods

- DeepPath, Xiong et al, 2017
- MINERVA, Das et al, 2018
- DIVA, Chen et al., 2018

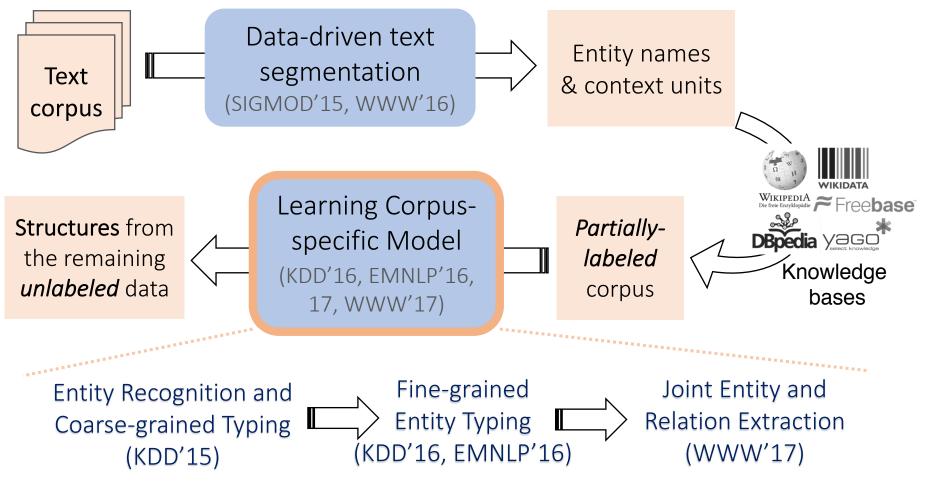
Tutorial Outline

- Introduction
- Part I: Effort–Light Structure Extraction
 - Tea break at 10:00am
- Part II: Low-resource IE
- Part III: Knowledge Base Reasoning
- Summary & Future Directions

Scalable Construction and Reasoning of Massive Knowledge Bases

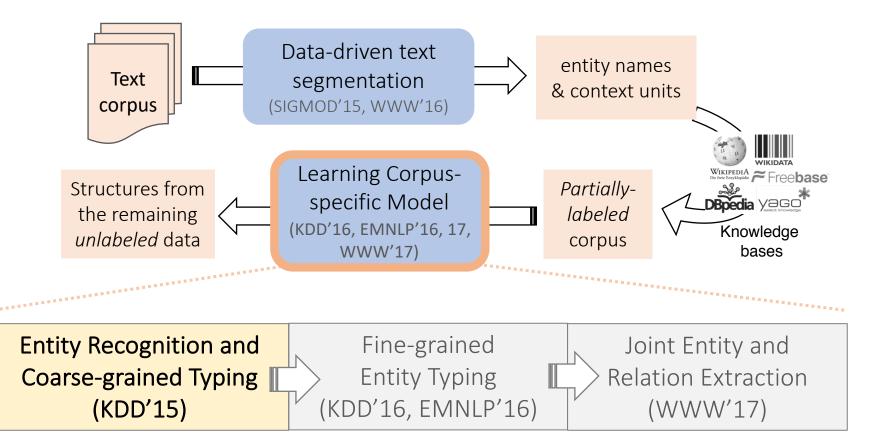
Part I: Effort-Light Structure Extraction

Framework Overview



Corpus to Structured Network: The Roadmap

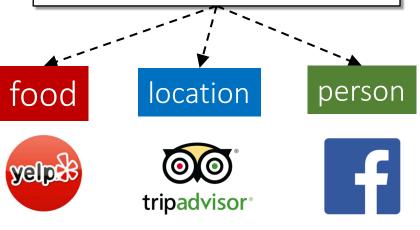
Corpus to Structured Network: The Roadmap



Recognizing Entities of Target Types in Text

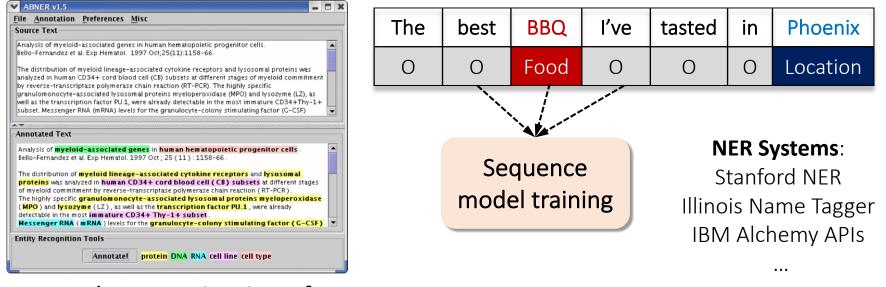
The best BBQ I've tasted in Phoenix! I had the pulled pork sandwich with coleslaw and baked beans for lunch. The owner is very nice. ...

The best *BBQ* I've tasted in *Phoenix* ! I had the *pulled pork sandwich* with *coleslaw* and *baked beans* for lunch. The owner is very nice. ...



Traditional Named Entity Recognition (NER) Systems

- Heavy reliance on corpus-specific human labeling
- Training sequence models is slow

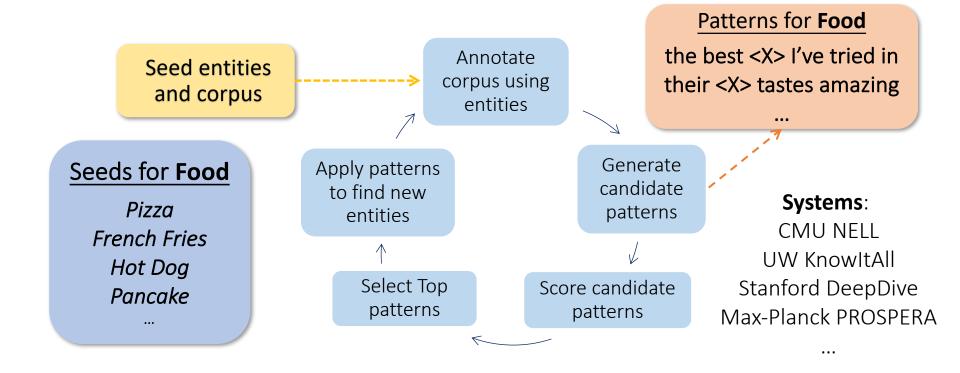


A manual annotation interface

e.g., (McMallum & Li, 2003), (Finkel et al., 2005), (Ratinov & Roth, 2009), ...

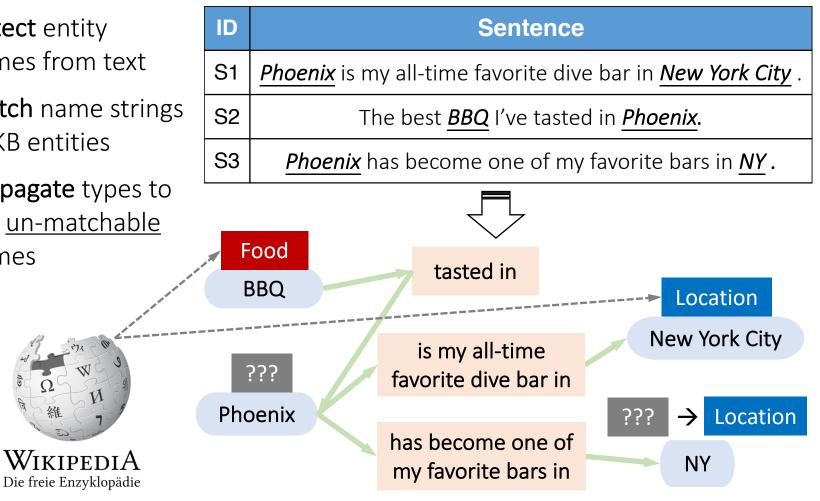
Weak-Supervision Systems: Pattern-Based Bootstrapping

Requires manual seed selection & mid-point checking



Leveraging Distant Supervision

- 1. **Detect** entity names from text
- Match name strings 2. to KB entities
- 3. **Propagate** types to the <u>un-matchable</u> names



(Lin et al., 2012), (Ling et al., 2012), (Nakashole et al., 2013)

Current Distant Supervision: Limitation

- 1. Context-agnostic type prediction
 - Predict types for each mention regardless of context
- 2. Sparsity of contextual bridges

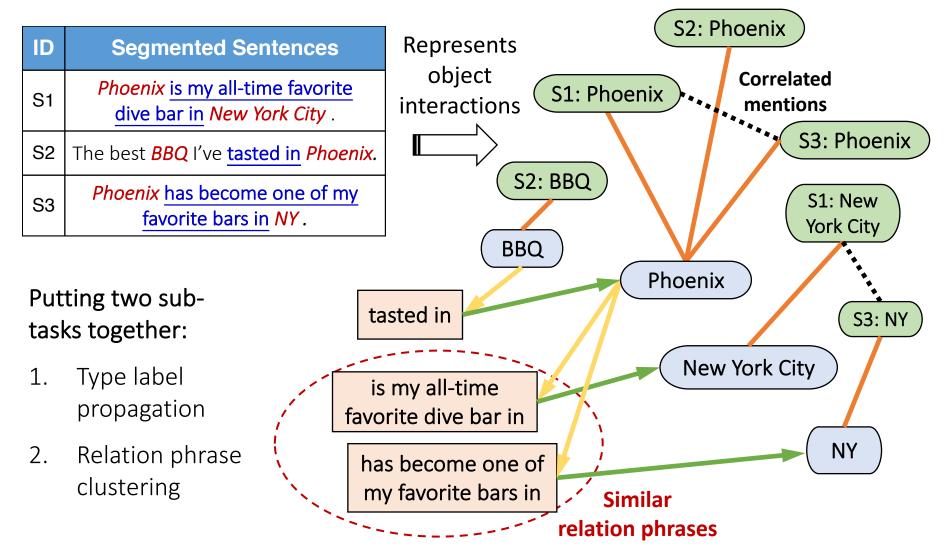
ID	Sentence	
S1	Phoenix is my all-time favorite dive bar in New York City.	
S2	The best BBQ I've tasted in Phoenix .	ıoe
S3	Phoenix has become one of my favorite bars in NY.	

Current Distant Supervision: Limitation

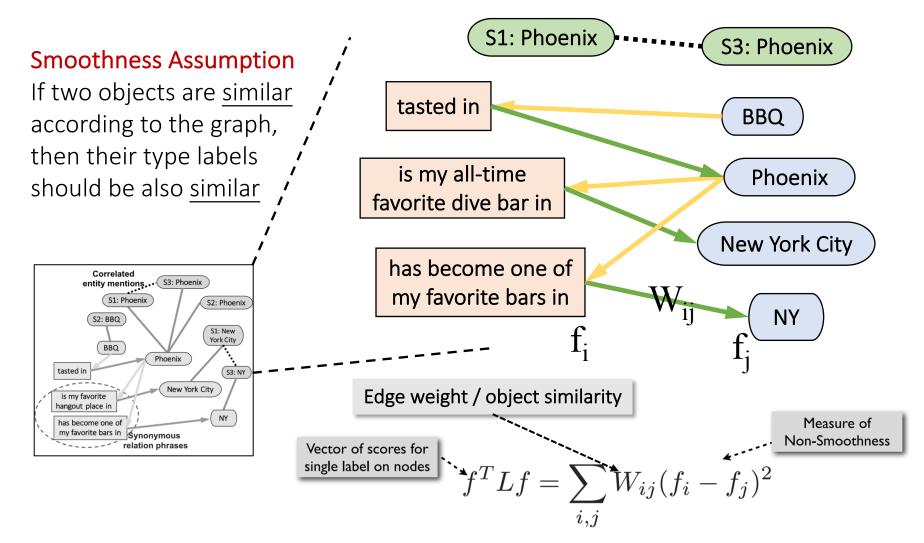
- 1. Context-agnostic type prediction
- 2. Sparsity of contextual bridges
 - Some relational phrases are infrequent in the corpus
 → ineffective type propagation

ID	Sentence
S1	Phoenix is my all-time favorite dive bar in New York City.
S3	Phoenix has become one of my favorite bars in NY.

The ClusType Approach (KDD'15)



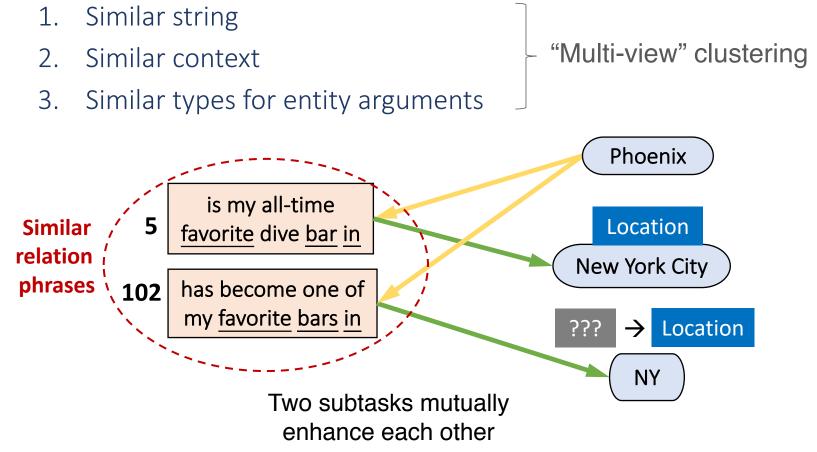
Type Propagation in ClusType



(Belkin & Partha, NIPS'01), (Ren et al., KDD'15)

Relation Phrase Clustering in ClusType

• Two relation phrases should be grouped together if:



ClusType: Comparing with State-of-the-Art Systems (F1 Score)

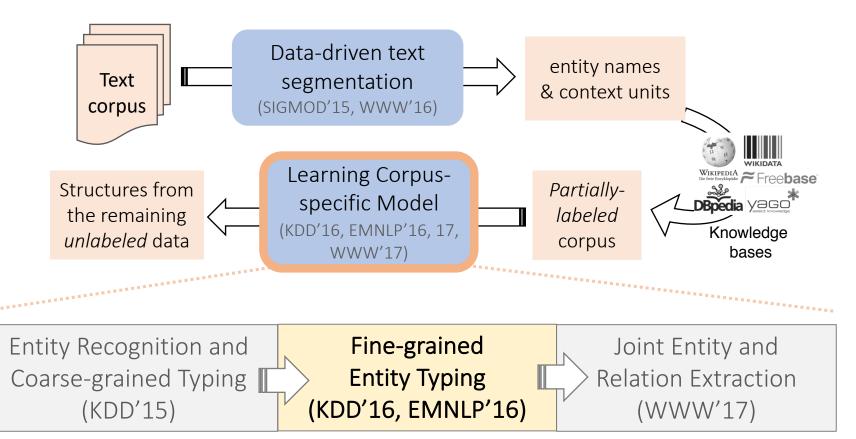
	Methods	NYT	Yelp	Tweet
Bootstrapping –	Pattern (Stanford, CONLL'14)	0.301	0.199	0.223
	SemTagger (U Utah, ACL'10)	0.407	0.296	0.236
Label	NNPLB (UW, EMNLP'12)	0.637	0.511	0.246
propagation	APOLLO (THU, CIKM'12)	0.795	0.283	0.188
Classifier with	FIGER (UW, AAAI'12)	0.881	0.198	0.308
linguistic features	ClusType (KDD'15)	0.939	0.808	0.451

- vs. **bootstrapping**: context-aware prediction on "un-matchable"
- vs. label propagation: group similar relation phrases
- vs. FIGER: no reliance on complex feature engineering

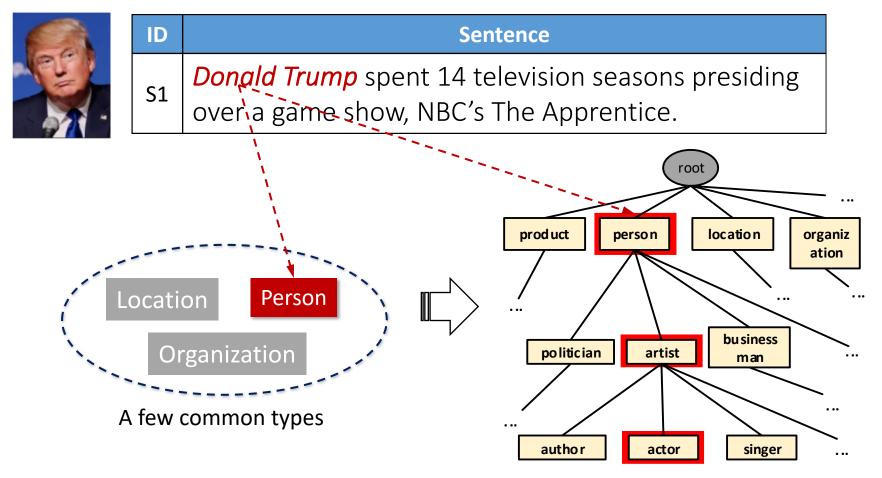
NYT: 118k news articles (1k manually labeled for evaluation); **Yelp**: 230k business reviews (2.5k reviews are manually labeled for evaluation); **Tweet**: 302 tweets (3k tweets are manually labeled for evaluation)

 $Precision (P) = \frac{\#Correctly-typed mentions}{\#System-recognized mentions}, Recall (R) = \frac{\#Correctly-typed mentions}{\#ground-truth mentions}, F1 score = \frac{2(P \times R)}{(P+R)}$

Corpus to Structured Network: **The Roadmap**



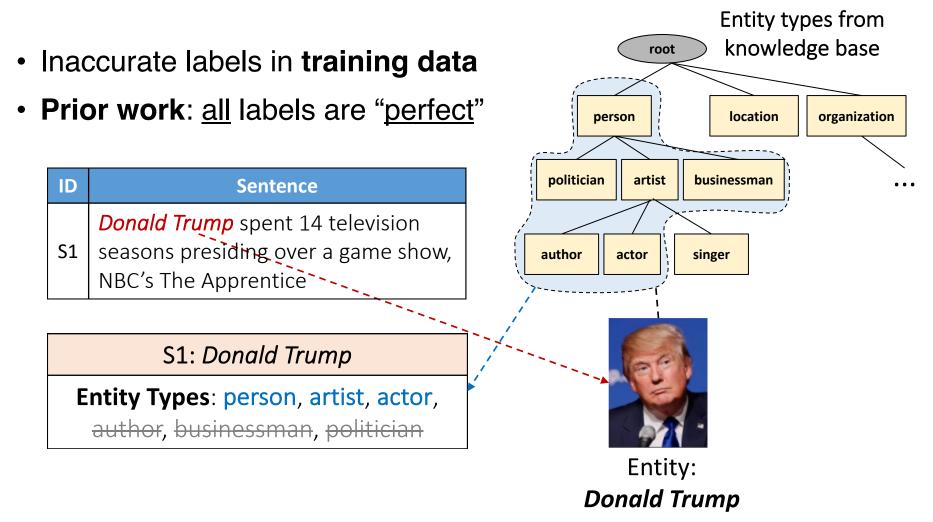
From Coarse-Grained Typing to **Fine-Grained Entity Typing**



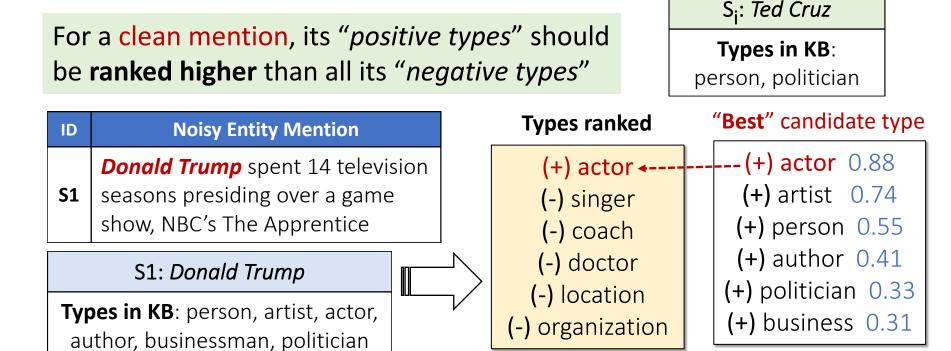
A type hierarchy with 100+ types (from knowledge base)

(Ling et al., 2012), (Nakashole et al., 2013), (Yogatama et al., 2015)

Current Distant Supervision: Context-Agnostic Labeling

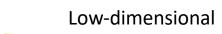


Modeling Clean and Noisy Mentions Separately



For a noisy mention, its "<u>best</u> candidate type" should be **ranked higher** than all its "non-candidate types"

Hierarchical Type Inference



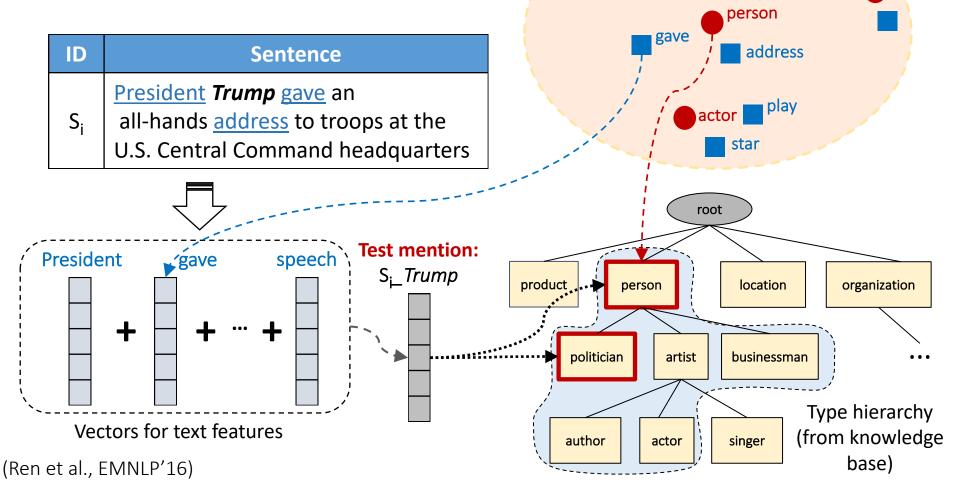
president

politician

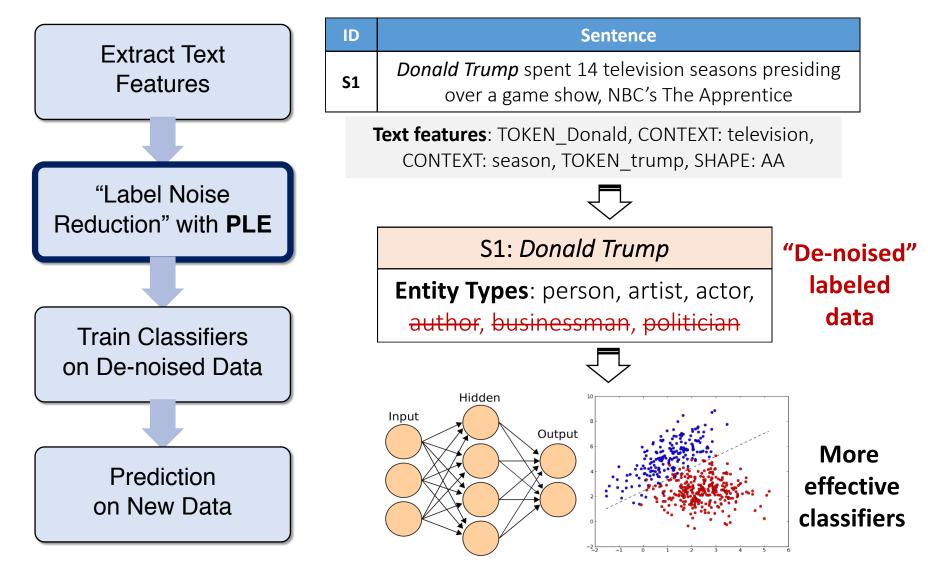
senator

vector space

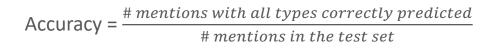
 Top-down nearest neighbor search in the given type hierarchy

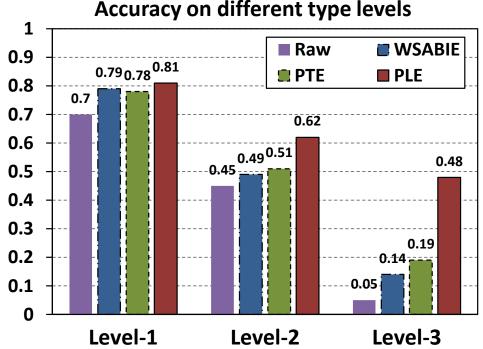


Partial Label Embedding (KDD'16)



Performance of Fine-Grained Entity Typing



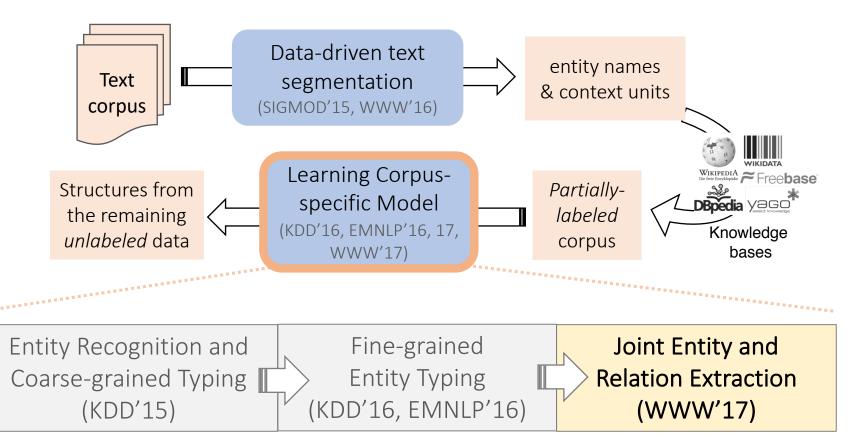


Accuracy on different type levels

- Raw: candidate types from distant supervision
- WSABIE (Google, ACL'15): joint feature and type embedding
- Predictive Text Embedding (MSR, WWW'15): joint mention, feature and type embedding
 - Both WASBIE and PTE suffer from "noisy" training labels
- **PLE** (KDD'16): partial-label loss for context-aware labeling

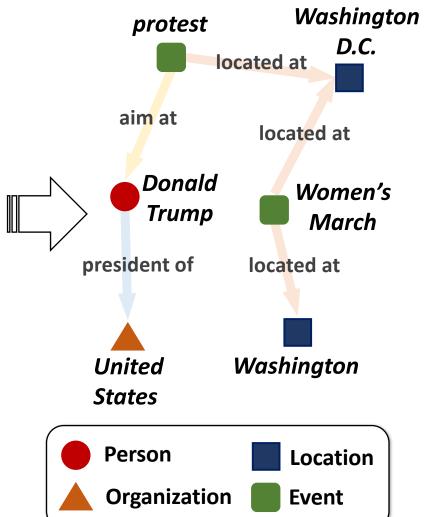
OntoNotes public dataset (Weischedel et al. 2011, Gillick et al., 2014): 13,109 news articles, 77 annotated documents, 89 entity types

Corpus to Structured Network: **The Roadmap**

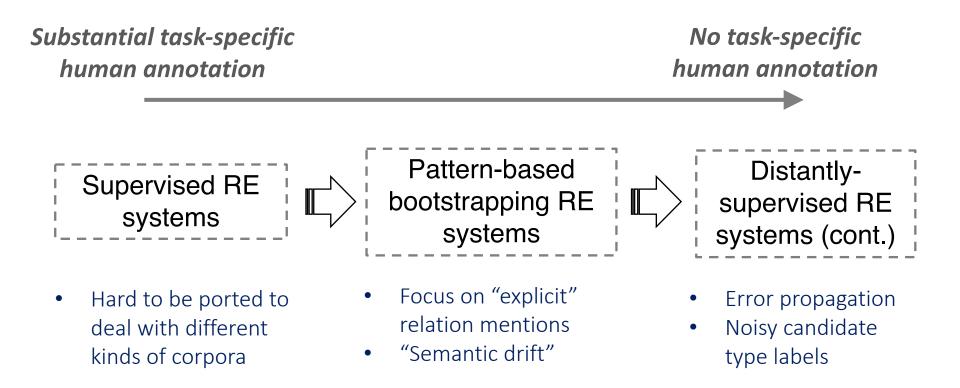


Joint Extraction of Typed Entities and Relations

The Women's March was a worldwide protest on January 21, 2017. The protest was aimed at Donald Trump, the recently inaugurated president of the United States. The first protest was planned in Washington, D.C., and was known as the Women's March on Washington.



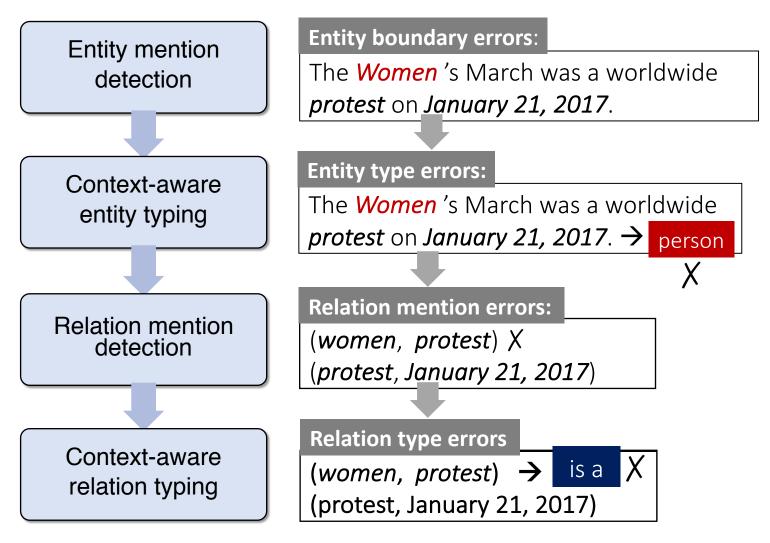
Prior Work: Relation Extraction (RE)



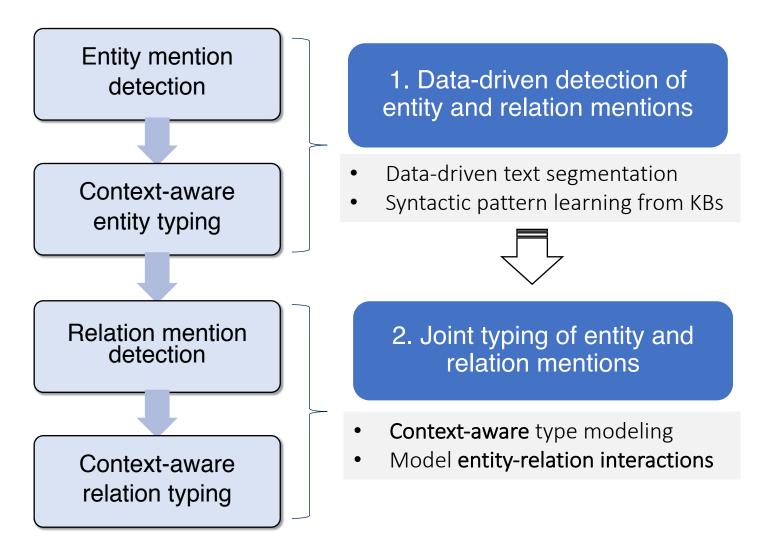
Mintz et al. *Distant supervision for relation extraction without labeled data*. ACL, 2009. Etzioni et al. *Web-scale information extraction in knowitall*. WWW, 2004. Surdeanu et al. *Multi-instance multi-label learning for relation extraction*. EMNLP, 2012.

Prior Work: An "Incremental" System Pipeline

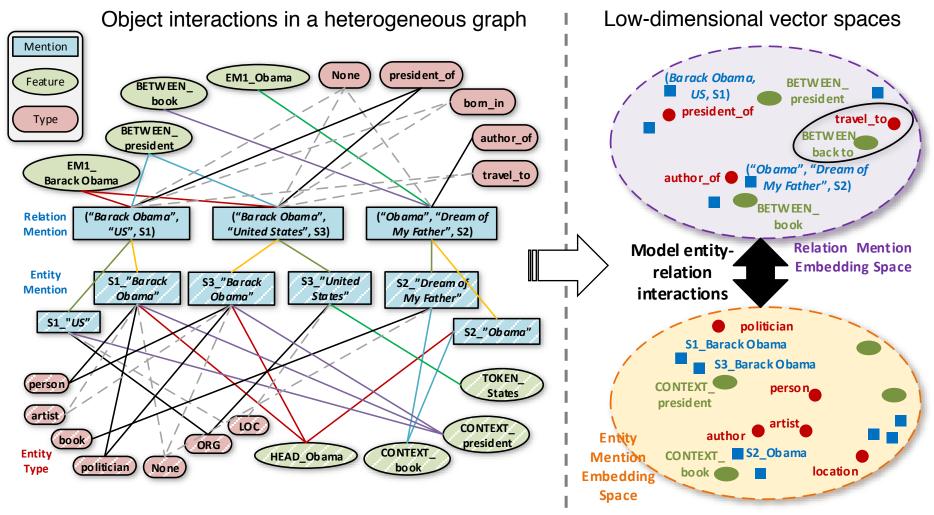
Error propagation cascading down the pipeline



The CoType Approach (WWW'17)



CoType: Co-Embedding for Typing Entities and Relations



(Ren et al. WWW'17)

Modeling Entity-Relation Interactions

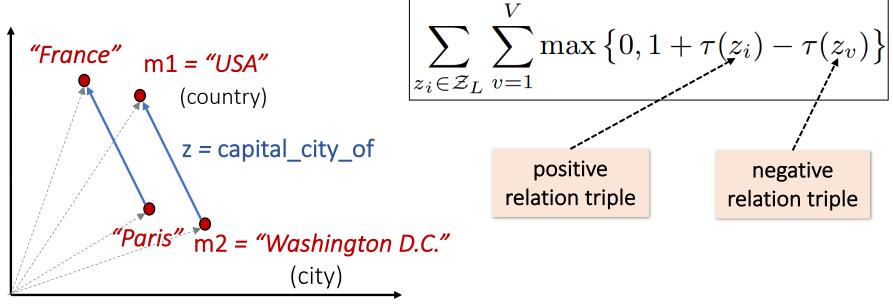
Object "Translating" Assumption

For a relation mention **z** between entity arguments **m1** and **m2**:

 $vec(m1) \approx vec(m2) + vec(z)$

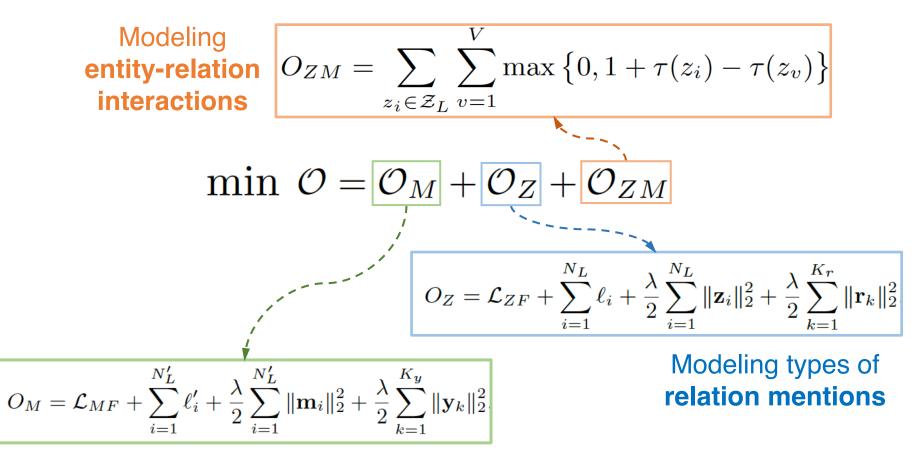
Error on a relation triple (z, m1, m2):

$$au(z) = \|\mathbf{m}_1 + \mathbf{z} - \mathbf{m}_2\|_2^2$$



Low-dimensional vector space

Reducing Error Propagation: A Joint Optimization Framework

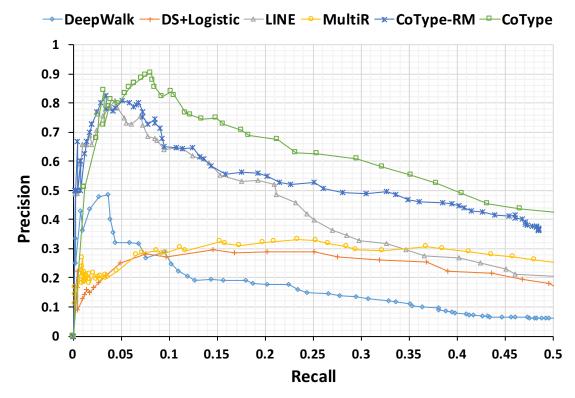


Modeling types of entity mentions

(Ren et al., WWW'17)

CoType: Comparing with State-of-the-Arts RE Systems

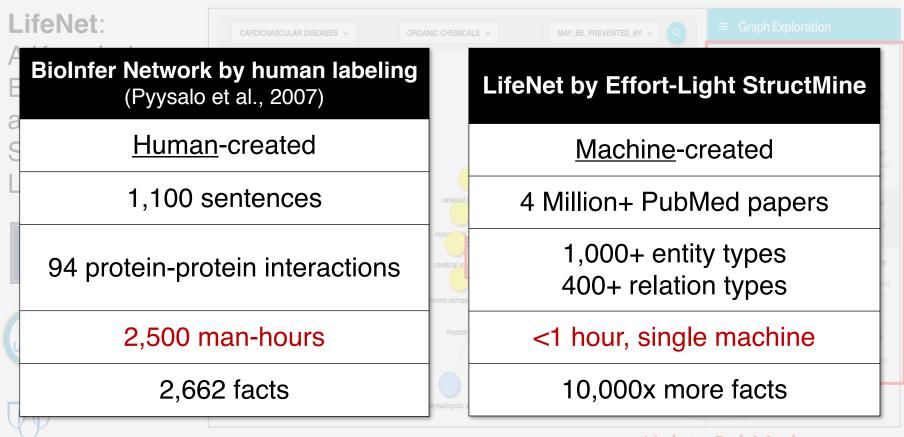
• Given candidate relation mentions, predict its relation type if it expresses a relation of interest; otherwise, output "None"



- DS+Logistic (Stanford, ACL'09): logistic classifier on DS
- MultiR (UW, ACL'11): handles inappropriate labels in DS
- DeepWalk (StonyBrook, KDD'14): homogeneous graph embedding
- LINE (MSR, WWW'15): joint feature & type embedding
- CoType-RM (WWW'17): only models relation mentions
- CoType (WWW'17): models entity-relation interactions

NYT public dataset (Riedel et al. 2010, Hoffmann et al., 2011): 1.18M sentences in the corpus, 395 manually annotated sentences for evaluation, 24 relation types

An Application to Life Sciences



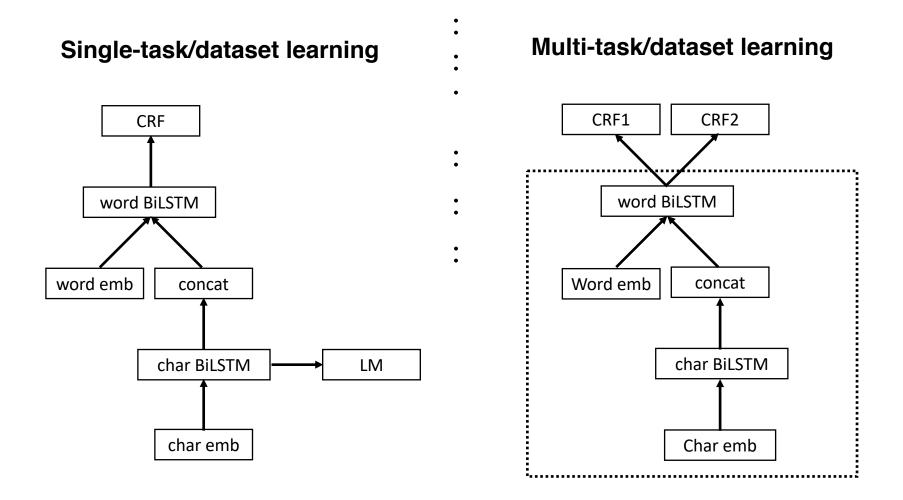
Link to PubMed papers

(Pyysalo et al., BMC Bioinformatics'07) (Ren et al., ACL'17 demo) Performance evaluation on BioInfer: Relation Classification Accuracy = 61.7% (11%个 over the best-performing baseline)

Towards Automated Structure Extraction

End-to-end	Unifying heterogeneous
extraction models	forms of weak
(Zheng et al., ACL'17), (Xu et	supervisions
al., 2017), (Liu et al., 2017)	(Liu et al., EMNLP'17)
Indirection supervision from auxiliary tasks (Wu et al., WSDM'18)	Leveraging rich language patterns to facilitate NLU (Qu et al., 2018), (Liu et al., AAAI'18)

Biomedical Named Entity Recognition by Multi-tasking different datasets



(Liu et al., AAAI'18)

(Wang et al., 2018)

State-of-the-art Biomed Entity Tagger

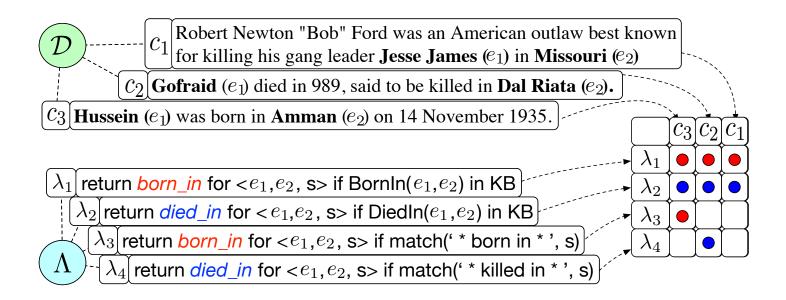
- One tagger for many biomed entity types (gene, disease, chemical, etc.)
- State-of-the-art performance on several benchmark datasets

Table 2. Performances of baseline neural network models and the MTM-CW model. Significance test is performed on the F1 values. Bold: best scores, *: significantly worse than the MTM-CW model ($p \le 0.05$), **: significantly worse than the MTM-CW model ($p \le 0.01$).

		Dataset Benchmark	Crichton et al.	Lample <i>et al.</i> Habibi <i>et al.</i>	Ma and Hovy	Liu <i>et al.</i> STM	MTM-CW	
BC2GM (Exact)	Precision	-	-	78.99	83.33	83.07	83.98	
	Recall	-	-	78.16	81.25	82.02	82.32	
	F1	-	73.17**	78.57**	82.28**	82.54*	83.14	
BC2GM (Alternative)	Precision	88.48	-	86.11	83.50	88.21	89.45	
	Recall	85.97	-	86.96	87.13	87.43	88.67	
	F1	87.21**	84.41**	86.53**	85.27**	87.82*	89.06	
BC4CHEMD	Precision	89.09	-	87.83	90.59	89.55	90.51	
	Recall	85.75	-	85.45	82.63	84.62	86.18	
	F1	87.39	83.02**	86.62*	86.43*	87.01*	88.29	
BC5CDR	Precision	89.21	-	86.82	88.24	87.41	87.69	
	Recall	84.45	-	86.40	78.79	83.05	87.17	
	F1	86.76	83.90**	86.61*	83.24**	85.18**	87.43	
NCBI-Disease	Precision	85.10	-	86.43	84.33	84.84	85.00	
	Recall	80.80	-	82.92	83.77	85.39	87.80	
	F1	82.90**	80.37**	84.64**	84.04**	85.10**	86.37	
JNLPBA	Precision	69.42	-	71.35	72.88	72.29	72.72	
	Recall	75.99	-	75.74	75.98	77.25	77.83	
	F 1	72.55**	70.09**	73.48**	74.40*	74.69*	75.19	

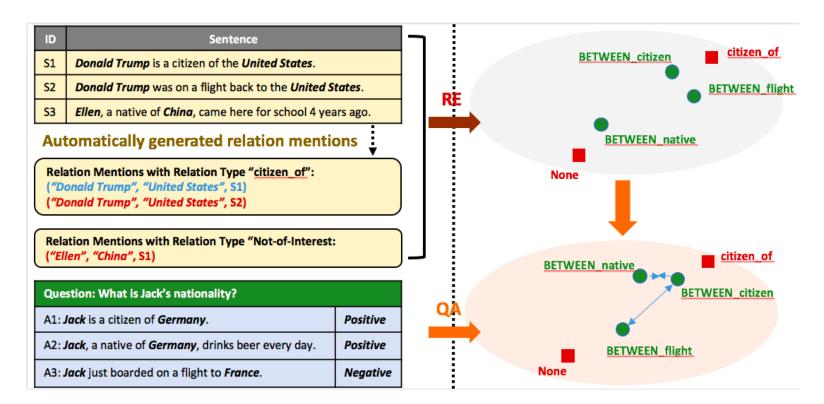
Heterogeneous Supervision for Relation Extraction

- A principled I framework to **unify** KB-supervision, manual rules, crowd-sourced labels, etc.
- Multiple "labeling functions" annotate one instance → resolve conflicts & redundancy → "expertise" of each labeling function

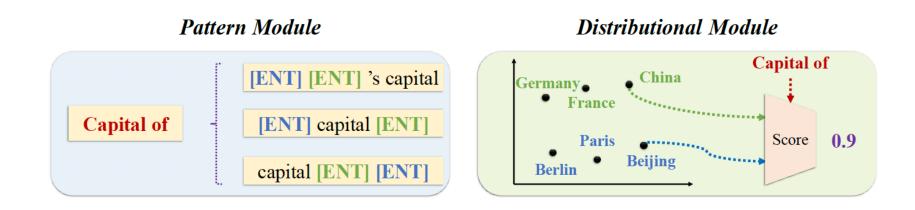


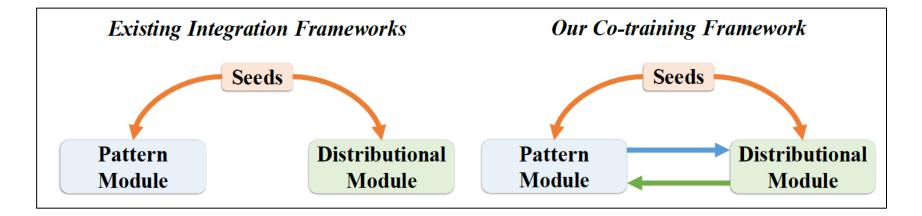
Indirect Supervision for Relation Extraction – using QA Pairs

- Questions \rightarrow positive / negative answers
- pos pairs \rightarrow similar relation; neg pairs \rightarrow distinct relations



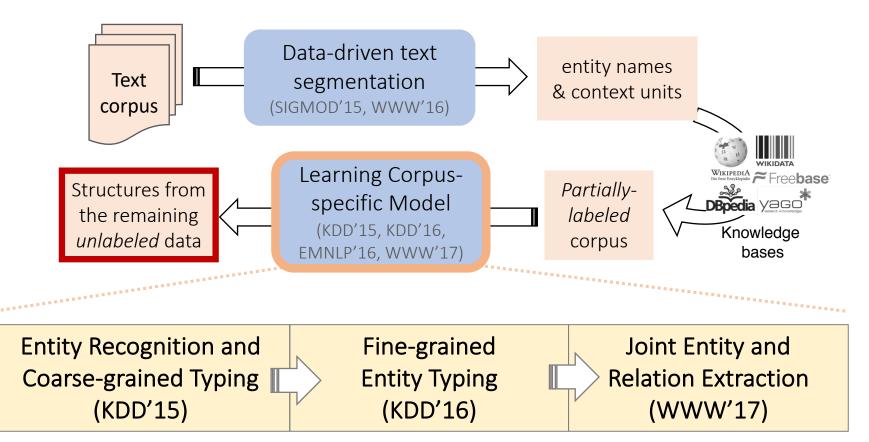
Pattern-enhanced Distributional Representation Learning





(Qu et al., WWW'18)

Corpus to Structured Network: **The Roadmap**



References I

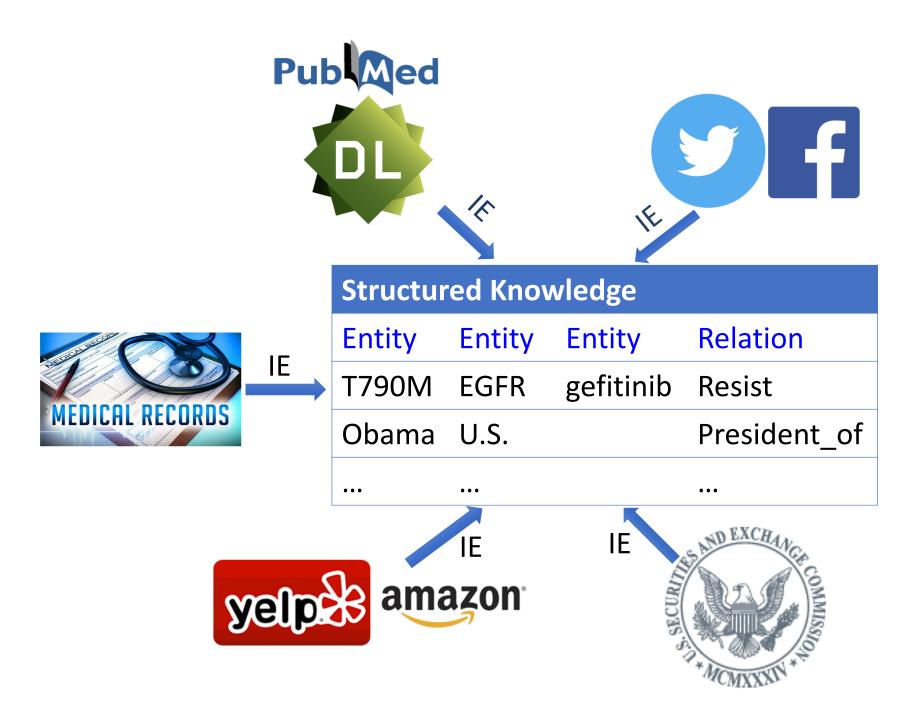
- Xiang Ren, Zeqiu Wu, Wenqi He, Meng Qu, Clare R. Voss, Heng Ji, Tarek F. Abdelzaher, Jiawei Han. CoType: Joint Extraction of Typed Entities and Relations with Knowledge Bases. WWW, 2017.
- Xiang Ren, Ahmed El-Kishky, Heng Ji, and Jiawei Han. Automatic Entity Recognition and Typing in Massive Text Data (Conference Tutorial). SIGMOD, 2016.
- Xiang Ren*, Wenqi He*, Meng Qu, Lifu Huang, Heng Ji, Jiawei Han. AFET: Automatic Fine-Grained Entity Typing by Hierarchical Partial-Label Embedding. EMNLP, 2016.
- Xiang Ren*, Wenqi He*, Meng Qu, Heng Ji, Clare R. Voss, Jiawei Han. Label Noise Reduction in Entity Typing by Heterogeneous Partial-Label Embedding. KDD, 2016.
- Xiang Ren, Wenqi He, Ahmed El-Kishky, Clare R. Voss, Heng Ji, Meng Qu, Jiawei Han. Entity Typing: A Critical Step for Mining Structures from Massive Unstructured Text (Invited Paper). MLG, 2016.
- Xiang Ren, A. El-Kishky, C. Wang, F. Tao, C. R. Voss, H. Ji, J. Han. ClusType: Effective Entity Recognition and Typing by Relation Phrase-Based Clustering. KDD, 2015.
- Xiang Ren, Tao Cheng. Synonym Discovery for Structured Entities on Heterogeneous Graphs. WWW, 2015.
- Meng Qu, Xiang Ren, Yu Zhang, Jiawei Han. Weakly-supervised Relation Extraction by Pattern-enhanced Embedding Learning. WWW, 2018.
- Ellen Wu, Xiang Ren, Frank Xu, Ji Li, Jiawei Han. Indirect Supervision for Relation Extraction using Question-Answer Pairs WSDM, 2018.
- Liyuan Liu*, Xiang Ren*, Qi Zhu, Shi Zhi, Huan Gui, Heng Ji, Jiawei Han. Heterogeneous Supervision for Relation Extraction: A Representation Learning Approach. EMNLP, 2017.
- Tarique A. Siddiqui*, Xiang Ren*, Aditya Parameswaran, Jiawei Han. FacetGist: Collective Extraction of Document Facets in Large Technical Corpora. CIKM, 2016.

References II

- Jialu Liu, Jingbo Shang, Chi Wang, Xiang Ren, Jiawei Han. Mining Quality Phrases from Massive Text Corpora. SIGMOD, 2015.
- Marina Danilevsky, Chi Wang, Nihit Desai, Xiang Ren, Jingyi Guo, and Jiawei Han. Automatic Construction and Ranking of Topical Keyphrases on Collections of Short Documents. SDM, 2014
- Xiang Ren, Yuanhua Lv, Kuansan Wang, Jiawei Han. Comparative Document Analysis for Large Text Corpora. WSDM, 2017.
- Jialu Liu, Xiang Ren, Jingbo Shang, Taylor Cassidy, Clare R. Voss, Jiawei Han. Representing Documents via Latent Keyphrase Inference. WWW, 2016.
- Hyungsul Kim, Xiang Ren, Yizhou Sun, Chi Wang, and Jiawei Han. Semantic Frame-Based Document Representation for Comparable Corpora. ICDM, 2013.
- Xiang Ren, J. Liu, X. Yu, U. Khandelwal, Q. Gu, L. Wang, and J. Han. ClusCite: Effective Citation Recommendation by Information Network-Based Clustering. KDD, 2014.
- X. Yu, Xiang Ren, Y. Sun, B. Sturt, U. Khandelwal, Q. Gu, B. Norick, and J. Han. Personalized Entity Recommendation: A Heterogeneous Information Network Approach. WSDM 2014a.
- Xiang Ren, Yujing Wang, Xiao Yu, Jun Yan, Zheng Chen, Jiawei Han. Heterogeneous Graph-Based Intent Learning from Queries, Web Pages and Wikipedia Concepts. WSDM 2014b.
- X. Yu, Xiang Ren, Y. Sun, B. Sturt, U. Khandelwal, Q. Gu, B. Norick, and J. Han. HeteRec: Entity Recommendation in Heterogeneous Information Networks with Implicit User Feedback. RecSys, 2013..
- Xiao Yu, Xiang Ren, Quanquan Gu, Yizhou Sun and Jiawei Han. Collaborative Filtering with Entity Similarity Regularization in Heterogeneous Information Networks. IJCAI-HINA, 2013.

Scalable Construction and Reasoning of Massive Knowledge Bases

Part II: Joint Representation Learning for Low-resource Information Extraction



Challenges of Obtaining Training Data

- Constructing data sets is labor intensive
- Many different
 - Languages
 - Domains
 - Modalities

Joint representation learning models for *low-resource* IE.

- Learning comprehensive representations from *heterogeneous sources.*
 - unlabeled data
 - annotations for *related tasks, domains and languages*.
- Encoding structured knowledge to learn robust representations and make *holistic decisions*.
 - linguistic structures

Named Entity Recognition (NER)

 Identifying entities (in social media domain, usually person, organization, location and GPE) boundaries and their type from the plain text.

成都(GPE.NAM)电信(ORG.NAM)到底有没的时间观念 哦,一托再托,日妈(PER.NOM)我们时间就不是时间哇 ,等了你两天啥子速度。

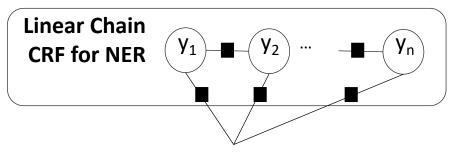
Chengdu(GPE.NAM) Telecom(ORG.NAM) do you have no concept of time, delay again and again, mother(PER.NOM) (curse word) our time is not time, waited for you for two days what a speed.

Structured Model for NER

• Sequence Tagging Models:

成都(GPE.NAM)电信(ORG.NAM) 到底有没的时间观念

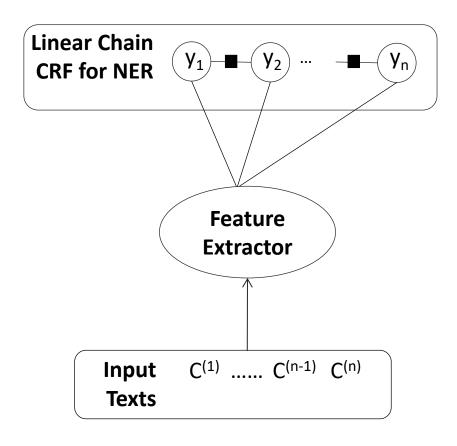
Beginning of entities Inside of entities Outside of entities



$$P(y \mid x) = \frac{1}{Z(x)} \prod_{t=1}^{T} \exp\{\sum_{k=1}^{K} \theta_k f_k(y_t, y_{t-1}, x_t)\}$$

make joint decisions over a sequence

Representation Learning for NER



- Recurrent Neural Networks (RNNs) for Representation :
 - Automatically learns data representations for features
 - Model input dependencies.

Representation Learning for NER

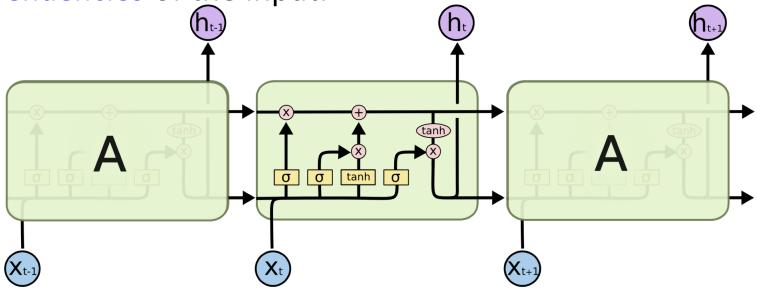
Recurrent Neural Networks (RNNs)



Very deep neural network, back propagation training

Long-Short Term Memory Networks (LSTMs)

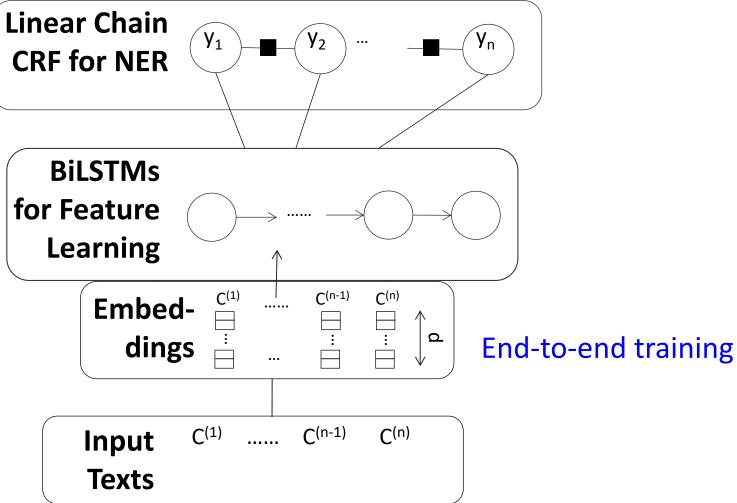
LSTMs are special RNNs that use gates to control the information flow and essentially capture *long-term dependencies* of the input.



Very deep neural network, back propagation training

Picture credit: colah's blog, 2015

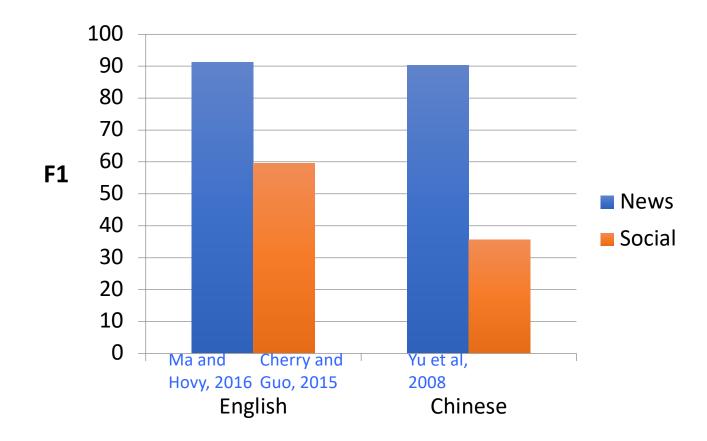
Neural Sequence Tagging Models



Huang et. al., 2015 Lample et. al., 2016 Ma and Hovy., 2016

Challenges for low-resource settings

- HUGE gap on social media (noisy) v.s news text:
 - informal language and insufficient annotations.

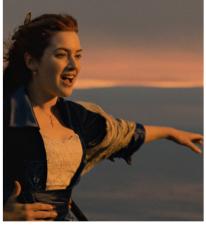


Ideas

- Leverage existing resources to learn representations that generalize across multiple types of data.
 - Multi-task Learning.
 - Domain Adaptation.
 - Cross-lingual Transfer.

Distributional Similarity of Words Generalizability

Rose



Violet

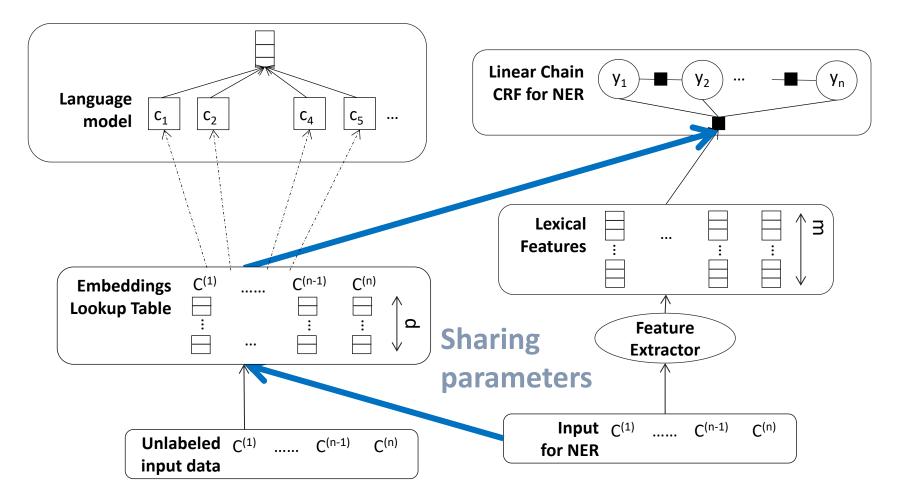
Peng and Dredze, 2015

Joint Learning of Word Embeddings and Named Entity Recognition

Model for Learning Word Representations

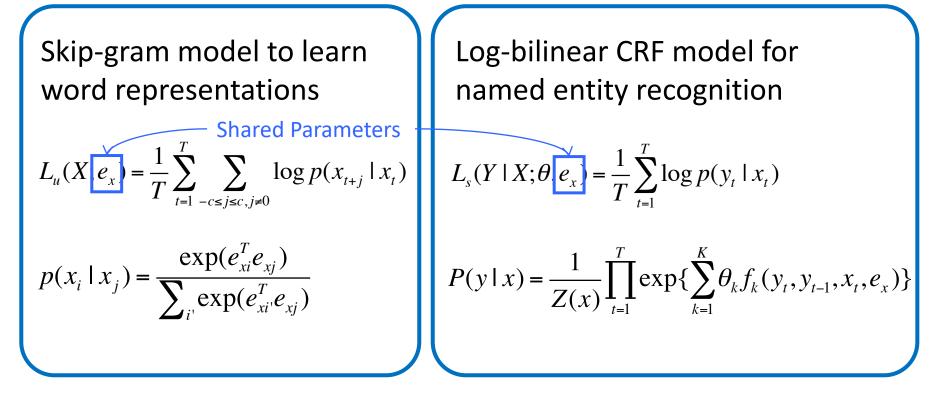
Model for Named Entity Recognition

Joint Learning of Word Embeddings and Named Entity Recognition



Peng and Dredze, 2015

Joint Learning of Word Embeddings and Named Entity Recognition



2 millions of unannotated weibo message for training 1350 NER annotated weibo message for training

Chinese Word Boundaries

成都(GPE.NAM)电信(ORG.NAM)到底有没的时间观念 哦,一托再托,日妈(PER.NOM)我们时间就不是时间哇,等了你两天啥子速度。

Chengdu(GPE.NAM) Telecom(ORG.NAM) do you have no concept of time, delay again and again, mother(PER.NOM) (curse word) our time is not time, waited for you for two days what a speed.

成都(GPE.NAM) / 电信(ORG.NAM) / 到底/ 有/ 没的/ 时间 / 观念/ 哦/,/ 一/ 托/ 再/ 托/,/ 日/ 妈(PER.NOM) / 我 们/ 时间/ 就/ 不/ 是/ 时间/ 哇/,/ 等/ 了/ 你/ 两/ 天/ 啥 子/ 速度/。/

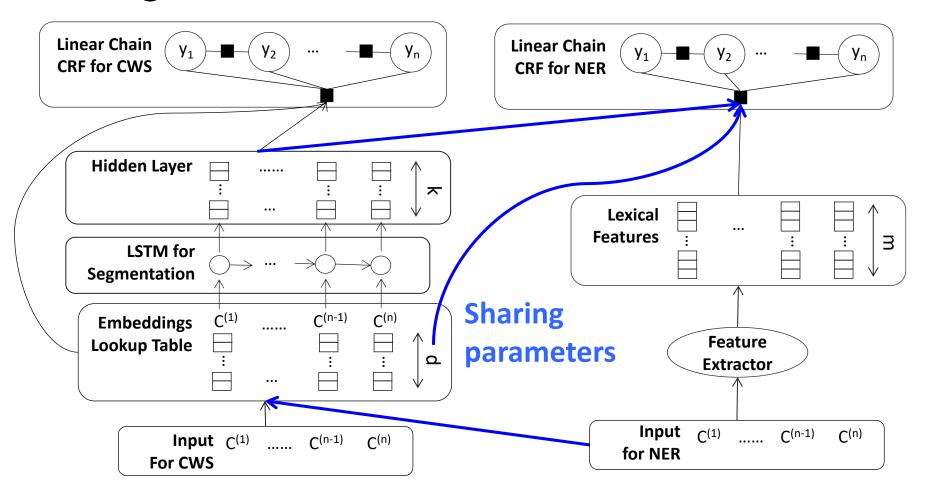
Peng and Dredze, 2016

Multi-task Learning of Word Segmentation and Named Entity Recognition

Model for Chinese Word Segmentation Model for Named Entity Recognition

http://www.cs.jhu.edu/~npe

Multi-task Learning of Word Segmentation and Named Entity Recognition



Peng and Dredze, 2016

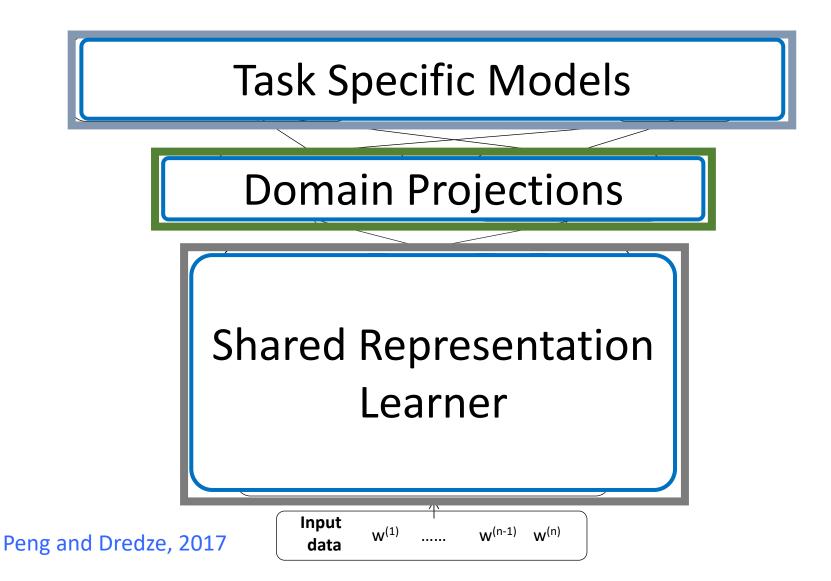
Domains for Languages

McDonald 's Seeks Its Fast-Food Soul

- NYTimes 3/7/2015

Nivre and *McDonald* (2008) used the output of one dependency **parser** to provide features for another. - Stacking Dependency Parsers, Martins+ (EMNLP 2008)

Multi-task Multi-domain Learning



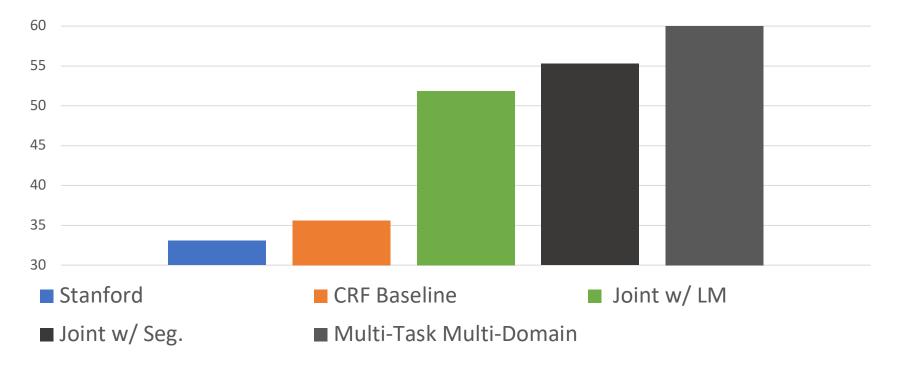
Multi-task Multi-domain learning for sequence tagging

- Domains: news and social media
- Tasks: Chinese word segmentation and NER
- Datasets:

Dataset	#Train	#Dev	#Test
News CWS	39,567	4,396	4,278
News NER	16,814	1,868	4,636
Social CWS	1,600	200	200
Social NER	1,350	270	270

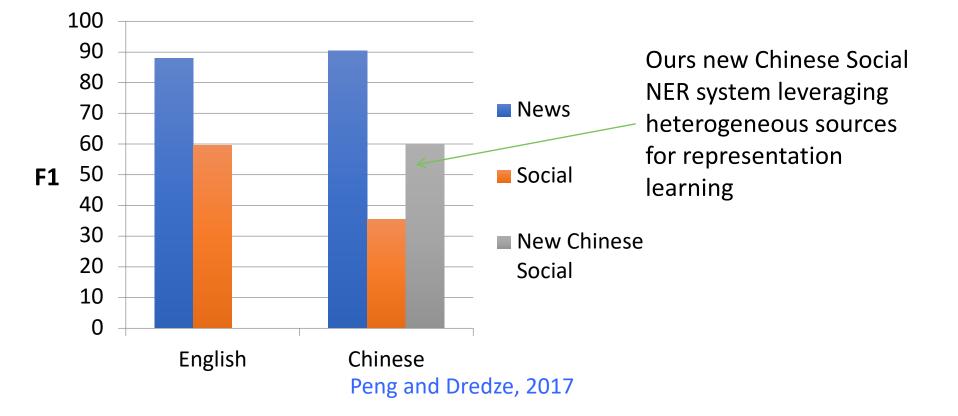
2 millions of unannotated weibo message for training

NER on Chinese Social Media



Named Entity Recognition on Chinese social media

Closing The Gap

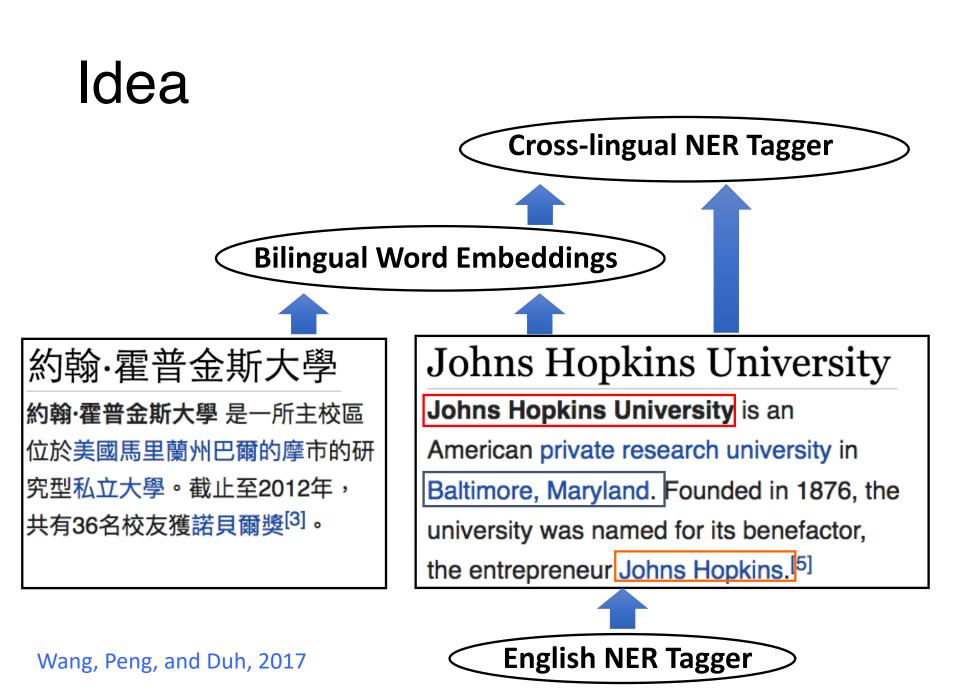


How to build NER for a new language using (1) Comparable Corpora (2) English NER tagger

約翰·霍普金斯大學 約翰·霍普金斯大學是一所主校區 位於美國馬里蘭州巴爾的摩市的研 究型私立大學。截止至2012年, 共有36名校友獲諾貝爾獎^[3]。

Johns Hopkins University Johns Hopkins University is an American private research university in Baltimore, Maryland. Founded in 1876, the university was named for its benefactor, the entrepreneur Johns Hopkins.^[5]

Wang, Peng, and Duh, 2017



Training Bilingual Word Embeddings

Mixed-Language Pseudo-Document Johns 約翰·霍普金斯 Hopkins University 大學 is

是一所 an American 主校區位於 private research

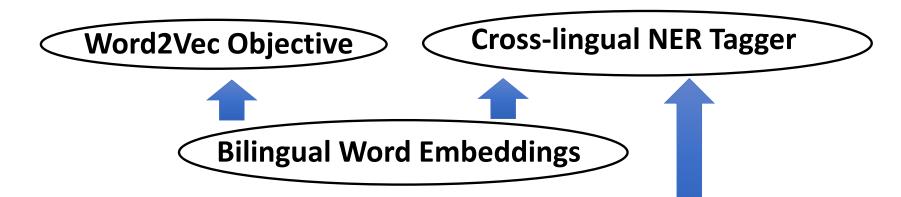
university 美國 巴爾的摩 市的研究型 in Baltimore,

約翰·霍普金斯大學 約翰·霍普金斯大學是一所主校區 位於美國馬里蘭州巴爾的摩市的研 究型私立大學。截止至2012年, 共有36名校友獲諾貝爾獎^[3]。

Johns Hopkins University

Johns Hopkins University is an American private research university in Baltimore, Maryland. Founded in 1876, the university was named for its benefactor, the entrepreneur Johns Hopkins.^[5]

Training Cross-lingual NER Tagger



- **1. Fixed Embeddings**
- 2. Multi-task training

Johns Hopkins University

Johns Hopkins University is an

American private research university in

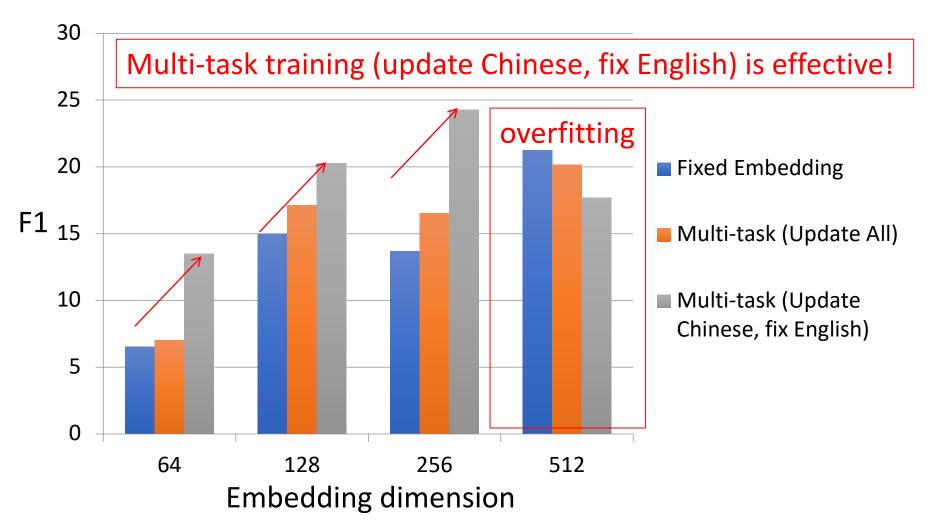
Baltimore, Maryland. Founded in 1876, the

university was named for its benefactor,

the entrepreneur Johns Hopkins.^[5]

English NER Tagger

Results (F1 score)



Joint representation learning models for *low-resource* IE.

- Learning comprehensive representations from *heterogeneous sources.*
 - unlabeled data
 - annotations for *related tasks, domains and languages*.
- Encoding structured knowledge to learn robust representations and make *holistic decisions*.
 - linguistic structures

Cross-Sentence N-ary Relation Extraction

Mutation

T790M is present as a minor clone in NSCLC,

and may be selected for during therapy .

This mutation has been shown to prevent the Drug activation of BIM in response to gefitinib but can Gene be overcome by an irreversible inhibitor of EGFR.

Knowledge Bases for Drug-Gene-Mutation Interaction

- People manually curate drug-genemutation interaction databases for precision medicine:
 - Gene Drug Knowledge Database (GDKD) (Dienstmann et al., 2015)
 - Clinical Interpretations of Variants in Cancer (CiViC) (Washington University School of Medicine)

Special Challenges

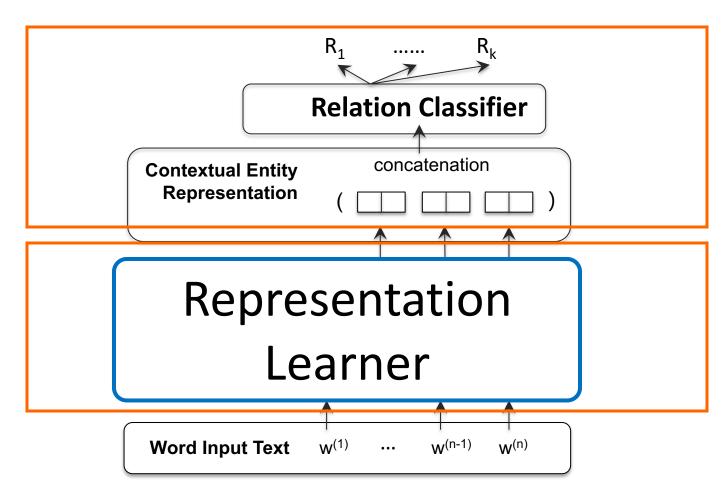
• N-ary relations:

- Traditional feature-based classification method usually use features defined on the *shortest syntactic dependency paths* between two entities.
- Such features are hard to define in the *N*-ary case.

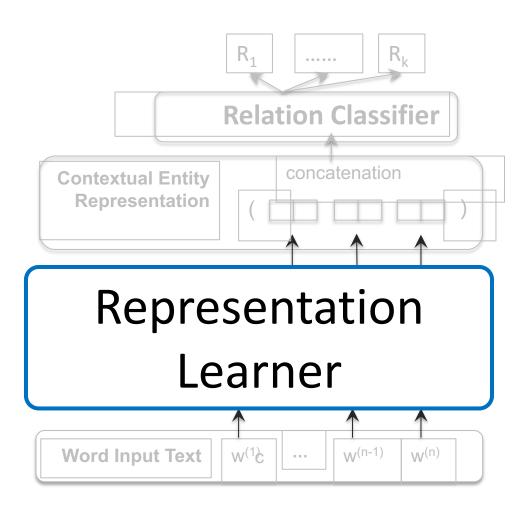
Cross sentence relations:

• Traditional features become sparser and learning becomes harder.

A Representation Learning Framework

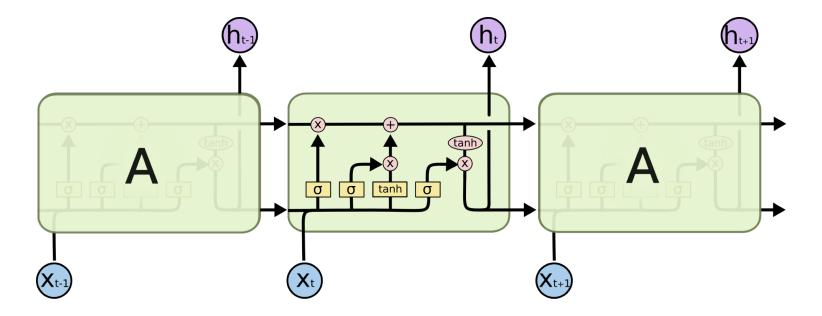


Peng et. al., 2017



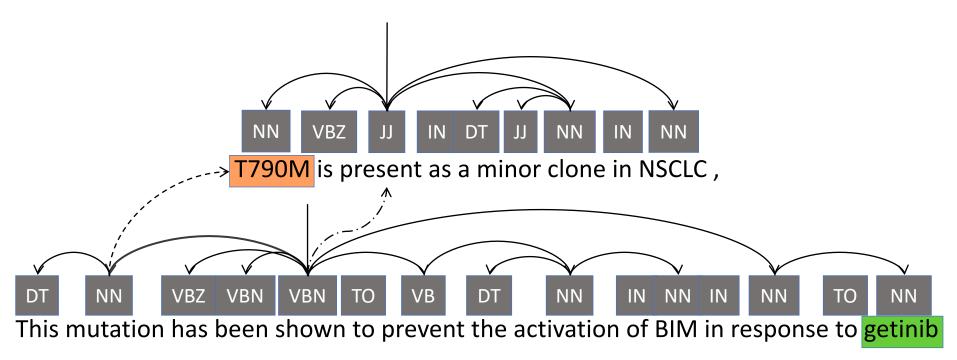
Long-Short Term Memory Networks (LSTMs)

Capture long-term dependencies of the input.

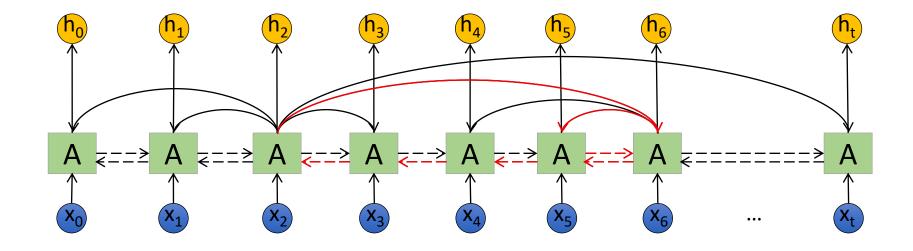


However, it still only explicitly models the dependencies between the adjacent inputs.

Linguistics Structures for Input Texts



Directed Cyclic Graph



Peng et. al., 2017

Graph Long Short-Term Memory Networks (Graph LSTMs)

• Goals:

- different types of dependencies: adjacency, syntactic dependencies, coreferences, and discourse relations.
- *long-distance* dependencies: entities span sentences.
- Challenges: how to define a neural architecture over a cyclic graph?

Work beyond Linear-Chain

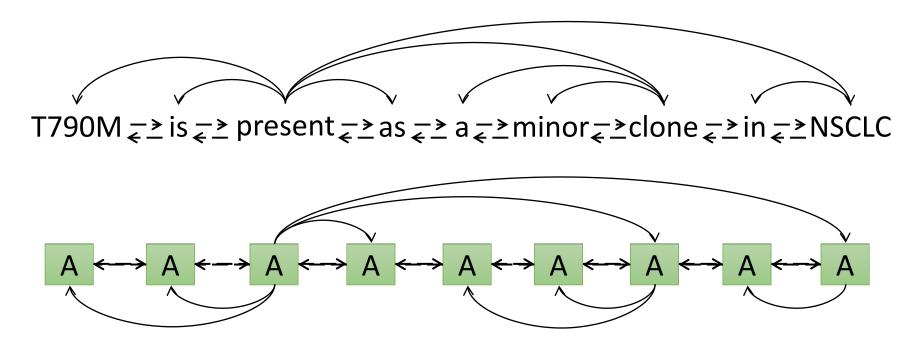
- NLP: Tree LSTM (Tai et. al. 2015, Miwa and Bansal, 2016)
- Programming verification: Gated Graph Neural Network (Li et. al. 2016)
- Graph Convolutional Networks (Kipf and Welling, 2017)

Challenge in Training

- Existing approach
 - Unroll recurrence for a number of steps
 - Analogous to loopy belief propagation (LBP)
- Problems
 - Expensive: Many steps per epoch
 - Information does not propagate from distant nodes

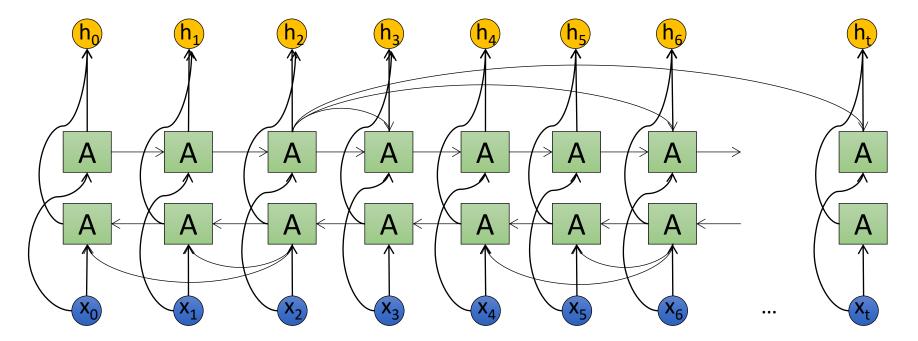
Training Graph LSTMs

• *Provably*, all directed cyclic graph without self-loop can be decomposed into two DAGs.



Training Graph LSTMs

• Approximate a cyclic graph by two directed acyclic graphs (DAGs), and stack the DAGs.



Topological order is well-defined, back propagation training

Chain LSTMs v.s. Graph LSTMs

Linear-chain LSTM

Graph LSTM (one DAG)

$$i_{t} = \sigma(W_{i}x_{t} + U_{i}h_{t-1} + b_{i})$$

$$o_{t} = \sigma(W_{o}x_{t} + U_{o}h_{t-1} + b_{o})$$

$$\tilde{c}_{t} = \tanh(W_{c}x_{t} + U_{c}h_{t-1} + b_{c})$$

$$f_{t} = \sigma(W_{f}x_{t} + U_{f}h_{t-1} + b_{f})$$

$$c_{t} = i_{t} \odot \tilde{c}_{t} + f_{t} \odot c_{t-1}$$

$$h_{t} = o_{t} \odot \tanh(c_{t})$$

$$i_{t} = \sigma(W_{i}x_{t} + \sum_{j \in P(t)} U_{i}^{m(t,j)}h_{j} + b_{i})$$

$$o_{t} = \sigma(W_{o}x_{t} + \sum_{j \in P(t)} U_{o}^{m(t,j)}h_{j} + b_{o})$$

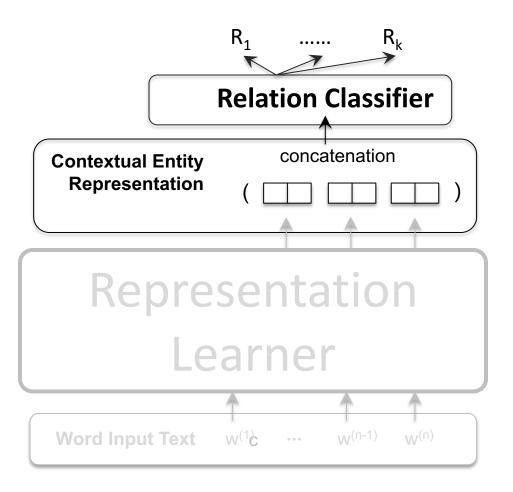
$$\tilde{c}_{t} = \tanh(W_{c}x_{t} + \sum_{j \in P(t)} U_{c}^{m(t,j)}h_{j} + b_{c})$$

$$f_{tj} = \sigma(W_{f}x_{t} + U_{f}^{m(t,j)}h_{j} + b_{f})$$

$$c_{t} = i_{t} \odot \tilde{c}_{t} + \sum_{j \in P(t)} f_{tj} \odot c_{j}$$

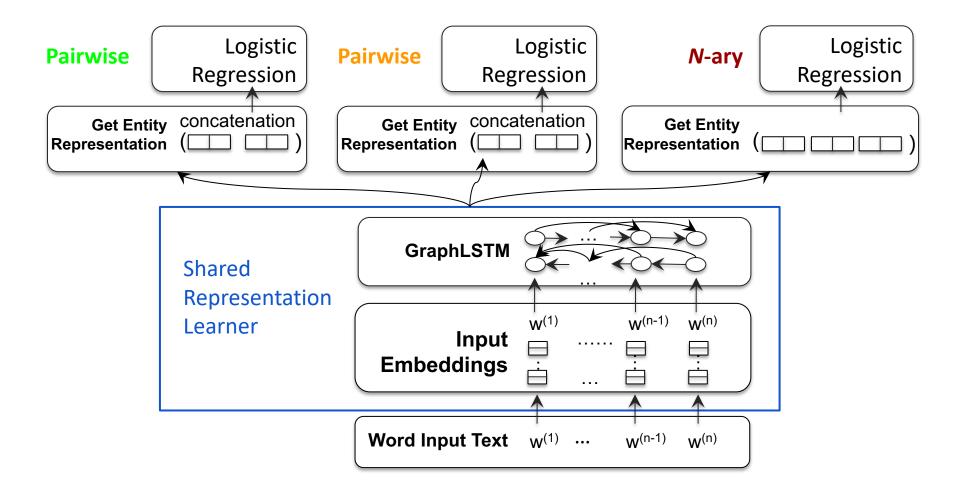
$$h_{t} = o_{t} \odot \tanh(c_{t})$$

Multi-task Learning



Peng et. al., 2017

Multi-task Learning



Peng et. al., 2017

Domain: Molecular Tumor Board

- Ternary interaction: (drug, gene, mutation)
- Distant supervision
 - Knowledge bases: GDKD + CIVIC
 - Text: PubMed Central articles (~ 1 million full-text articles)
- We got 3,462 paragraphs about drug-genemutation relations from distant supervision.

Absolute Recall

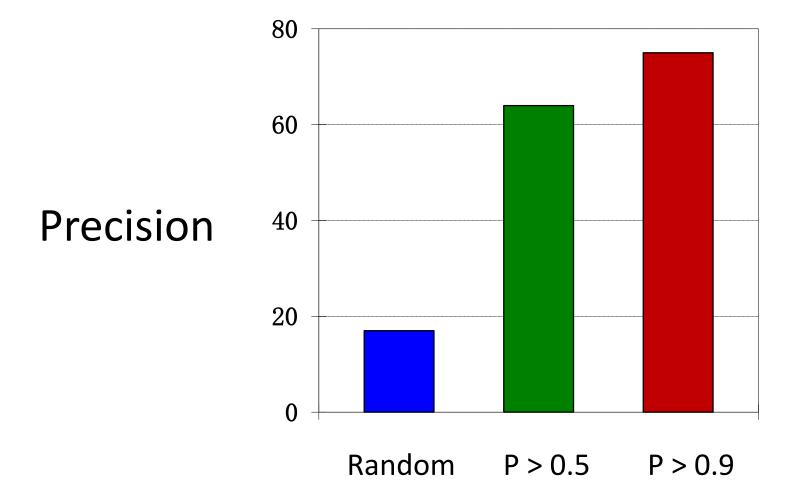
	Drug	Gene	Mutation	Interaction
DGKD + CiViC	16	12	41	59
Single-Sent	68	228	221	530
Cross-Sent	103	512	445	1461

Numbers of *distinct* drugs, genes and mutations and their interactions in the knowledge bases vs. PubMed scale automatic extraction.

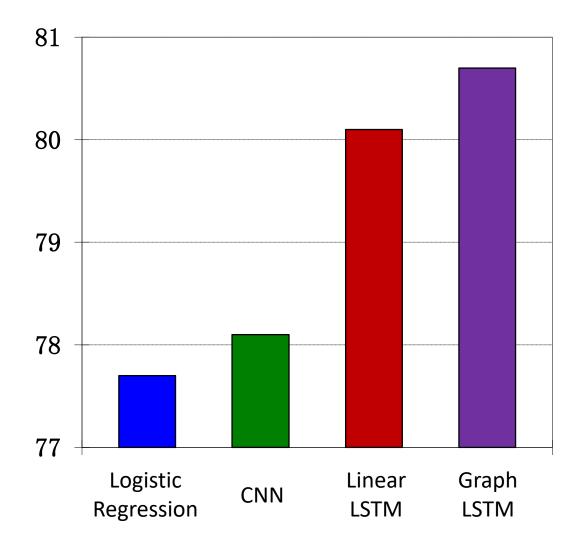
Machine reading extracted orders of magnitudes more knowledge

Cross-sentence extraction triples the yield

Sample Precision



Automatic Evaluation



Multi-Task Learning

Code and data available at: http://hanover.azurewebsites.net/

	Drug-Gene-Mutation	Drug-Mutation
Graph LSTM	80.7	76.7
+ Multi-task	82.0	78.5

Conclusion

- Jointly learning comprehensive representations from *heterogeneous sources:*
 - Data and code available at: <u>https://github.com/hltcoe/golden-horse/</u>
- Encoding linguistic structures to learn robust representations:
 - Data and code available at: <u>http://hanover.azurewebsites.net/</u>

113/20

Knowledge Graph Reasoning: Past, Present, and Future

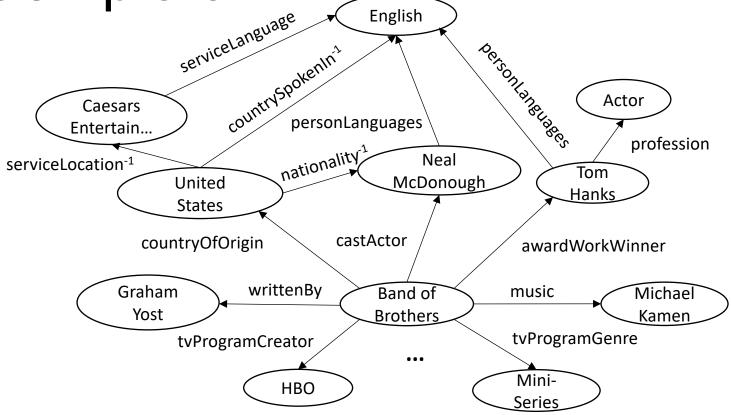
William Wang Department of Computer Science UC SANTA BARBARA

NAACL 2018 Tutorial w. Xiang Ren and Nanyun Peng (USC)

Agenda

- Motivation
- Path-Based Reasoning
- Embedding-Based Reasoning
- Bridging Path-Based and Embedding-Based Reasoning: DeepPath, MINERVA, and DIVA
- Conclusions

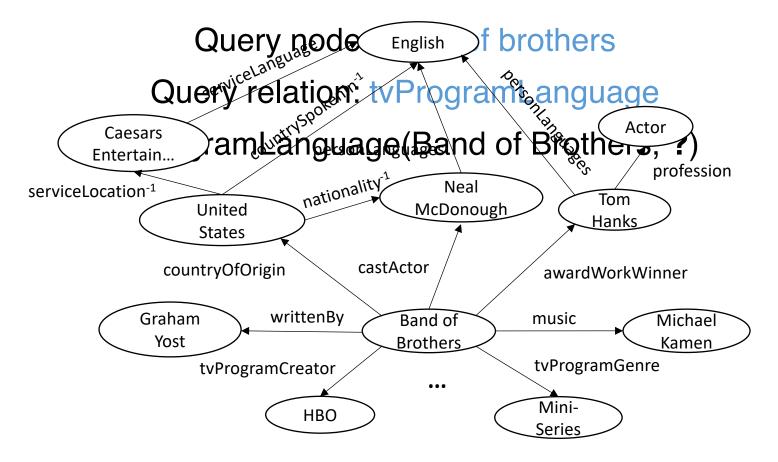
Knowledge Graphs are Not Complete



Benefits of Knowledge Graph

- Support various applications
 - Structured Search
 - Question Answering
 - Dialogue Systems
 - Relation Extraction
 - Summarization
- Knowledge Graphs can be constructed via information extraction from text, but...
 - There will be a lot of missing links.
 - Goal: complete the knowledge graph.

Reasoning on Knowledge Graph



KB Reasoning Tasks

- Predicting the missing link.
 - Given e1 and e2, predict the relation r.
- Predicting the missing entity.
 - Given e1 and relation r, predict the missing entity e2.
- Fact Prediction.
 - Given a triple, predict whether it is true or false.

Related Work

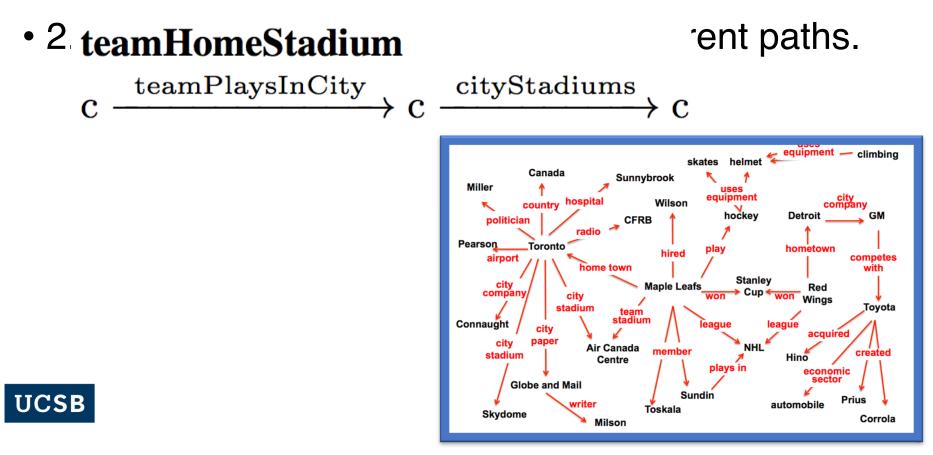
Path-based methods

- Path-Ranking Algorithm, Lao et al. 2011
- ProPPR, Wang et al, 2013 (My PhD thesis)
- Subgraph Feature Extraction, Gardner et al, 2015
- RNN + PRA, Neelakantan et al, 2015
- Chains of Reasoning, Das et al, 2017

Why do we need path-based methods? It's accurate and explainable!

Path-Ranking Algorithm (Lao et al., 2011)

• 1. Run random walk with restarts to derive many paths.



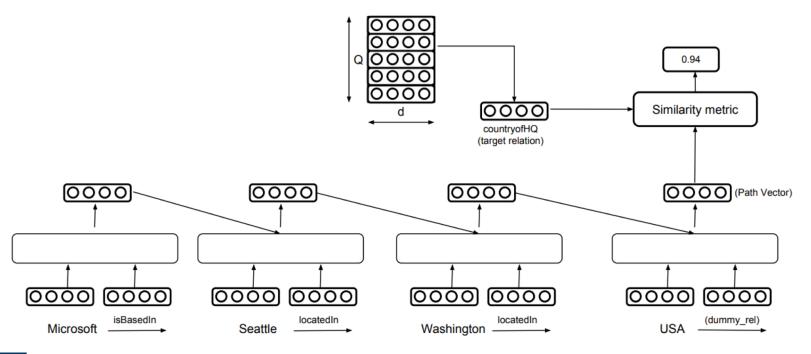
ProPPR (Wang et al., 2013;2015)

- ProPPR generalizes PRA with recursive probabilistic logic programs.
- You may use other relations to jointly infer this target relation.

about(X,Z):- handLabeled(X,Z)	# base
about(X,Z):- sim(X,Y),about(Y,Z)	# prop
sim(X,Y):- $link(X,Y)$	# sim,link
sim(X,Y):-	
hasWord(X,W),hasWord(Y,W),	
linkedBy(X,Y,W)	# sim,word
linkedBy(X,Y,W):- true	# by(W)

Chain of Reasoning (Das et al, 2017)

- I. Use PRA to derive the path.
- 2. Use RNNs to perform reasoning of the target relation.



Related Work

Embedding-based method

- RESCAL, Nickel et al, 2011
- TransE, Bordes et al, 2013
- Neural Tensor Network, Socher et al, 2013
- TransR/CTransR, Lin et al, 2015
- Complex Embeddings, Trouillon et al, 2016

Embedding methods allow us to compare, and find similar entities in the vector space.

RESCAL (Nickel et al., 2011)

Tensor factorization on the

• (head)entity-(tail)entity-relation tensor.

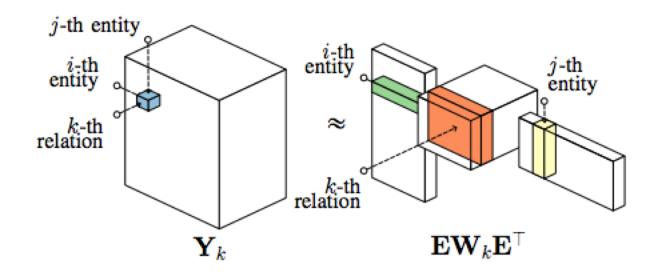


Fig. 4. RESCAL as a tensor factorization of the adjacency tensor Y.

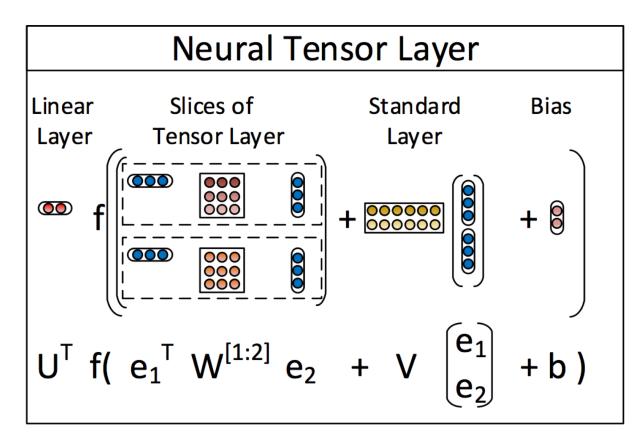
TransE (Bordes et al., 2013)

- Assumption: in the vector space, when adding the relation to the head entity, we should get close to the target tail entity.
- Margin based loss function:
 - Minimize the distance between (h+l) and t.
 - Maximize the distance between (h+l) to a randomly sampled tail t' (negative example).

$$\mathcal{L} = \sum_{(h,\ell,t)\in S} \sum_{(h',\ell,t')\in S'_{(h,\ell,t)}} \left[\gamma + d(h+\ell,t) - d(h'+\ell,t')\right]_{+}$$

Neural Tensor Networks (Socher et al., 2013)

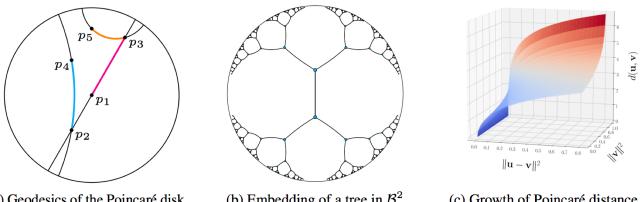
• Model the bilinear interaction between entity pairs with tensors.

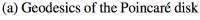


Poincaré Embeddings (Nickel and Kiela, 2017)

 Idea: learn hierarchical KB representations by looking at hyperbolic space.

$$d(\boldsymbol{u}, \boldsymbol{v}) = \operatorname{arcosh} \left(1 + 2 \frac{\|\boldsymbol{u} - \boldsymbol{v}\|^2}{(1 - \|\boldsymbol{u}\|^2)(1 - \|\boldsymbol{v}\|^2)} \right).$$



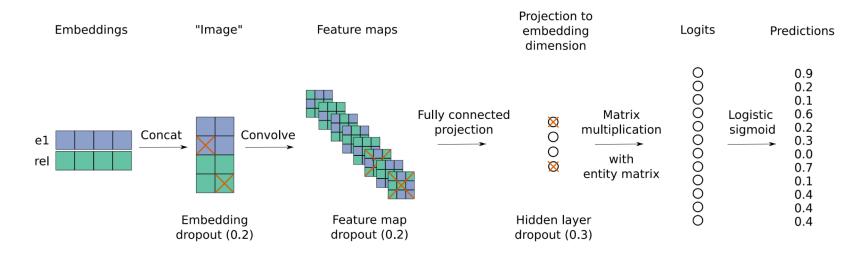


- (b) Embedding of a tree in \mathcal{B}^2
- (c) Growth of Poincaré distance

Figure 1: (a) Due to the negative curvature of \mathcal{B} , the distance of points increases exponentially (relative to their Euclidean distance) the closer they are to the boundary. (c) Growth of the Poincaré distance d(u, v) relative to the Euclidean distance and the norm of v (for fixed ||u|| = 0.9). (b) Embedding of a regular tree in \hat{B}^2 such that all connected nodes are spaced equally far apart (i.e., all black line segments have identical hyperbolic length).

ConvE (Dettmers et al, 2018)

- I. Reshape the head and relation embeddings into "images".
- 2. Use CNNs to learn convolutional feature maps.

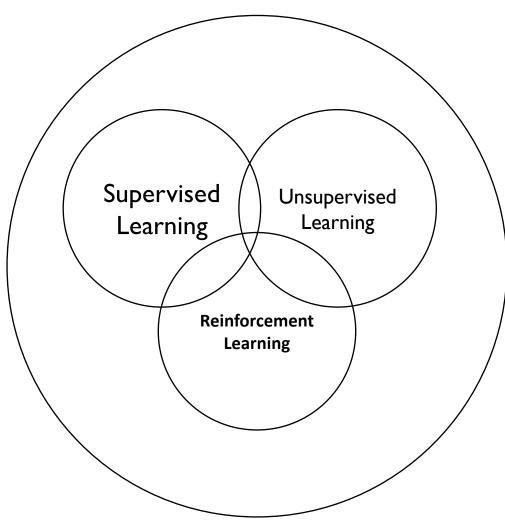


Bridging Path-Based and Embedding-Based Reasoning with Deep Reinforcement Learning: DeepPath (Xiong et al., 2017)

RL for KB Reasoning: DeepPath (Xiong et al., 2017)

- Learning the paths with RL, instead of using random walks with restart
- Model the path finding as a MDP
- Train a RL agent to find paths
- Represent the KG with pretrained KG embeddings
- Use the learned paths as logical formulas

Machine Learning



Supervised v.s. Reinforcement

Supervised Learning

- Training based on supervisor/label/annotation
- Feedback is instantaneous
- Not much temporal aspects

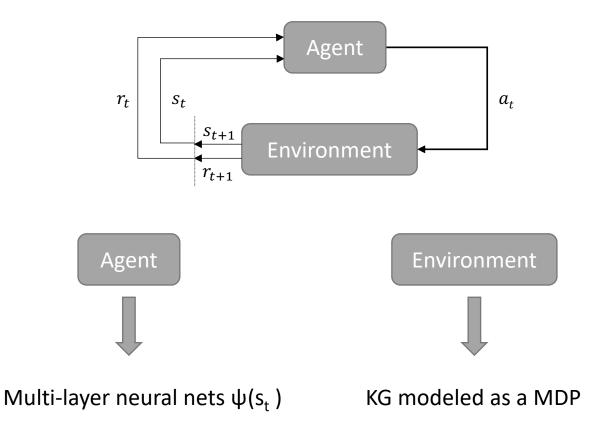
Reinforcement Learning

- Training only based on reward signal
- Feedback is delayed
- Time matters
- Agent actions affect subsequent exploration

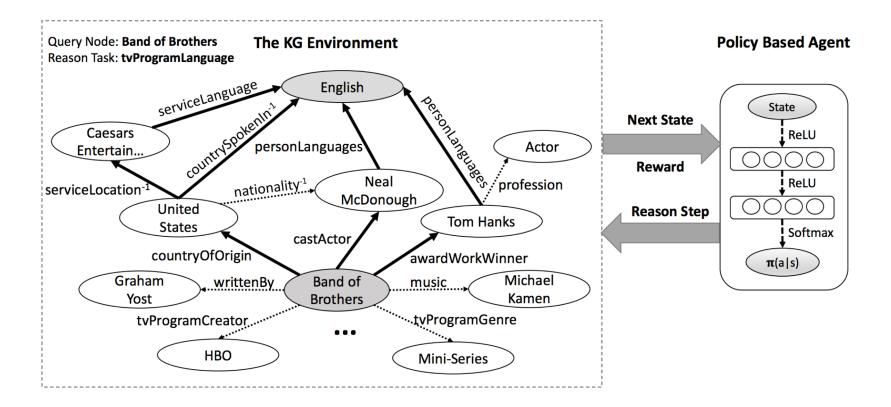
Reinforcement Learning

- RL is a general purpose framework for **decision making**
- RL is for an *agent* with the capacity to *act*
- • Each *action* influences the agent's future *state*
- Success is measured by a scalar *reward* signal
- • Goal: select actions to maximize future reward

Reinforcement Learning



DeepPath: RL for KG Reasoning



Components of MDP

- Markov decision process < S, A, P, R >
 - *S*: continuous states represented with embeddings
 - *A*: action space (relations)
 - $P(S_{t+1} = s' | S_t = s, A_t = a)$: transition probability
 - R(s, a): reward received for each taken step
- With pretrained KG embeddings
 - $s_t = e_t \oplus (e_{target} e_t)$
 - $A = \{r_1, r_2, \dots, r_n\}$, all relations in the KG

Reward Functions

Global Accuracy

 $r_{\text{GLOBAL}} = \begin{cases} +1, & \text{if the path reaches } e_{target} \\ -1, & \text{otherwise} \end{cases}$

Path Efficiency

$$r_{\rm EFFICIENCY} = \frac{1}{length(p)}$$

• Path Diversity $r_{\text{DIVERSITY}} = -\frac{1}{|F|} \sum_{i=1}^{|F|} cos(\mathbf{p}, \mathbf{p}_i)$

Training with Policy Gradient

 Monte-Carlo Policy Gradient (REINFORCE, William, 1992)

$$\nabla_{\theta} J(\theta) = \sum_{t} \sum_{a \in \mathcal{A}} \pi(a|s_t; \theta) \nabla_{\theta} \log \pi(a|s_t; \theta) R(s_t, a_t)$$
$$\approx \nabla_{\theta} \sum_{t} \log \pi(a = r_t | s_t; \theta) R(s_t, a_t)$$

 $R(s_t, a_t) = \lambda_1 r_{global} + \lambda_2 r_{efficiency} + \lambda_3 r_{diversity}$

Challenge

Typical RL problems

Atari games (Mnih et al., 2015): 4~18 valid actions

- □ AlphaGo (Silver et al. 2016): ~250 valid actions
- □ Knowledge Graph reasoning: >= 400 actions

Issue:

Iarge action (search) space -> poor convergence properties

Supervised (Imitation) Policy Learning

- Use randomized BFS to retrieve a few paths
- Do imitation learning using the retrieved paths
- All the paths are assigned with +1 reward

$$\nabla_{\theta} J(\theta) = \sum_{t} \sum_{a \in \mathcal{A}} \pi(a|s_{t};\theta) \nabla_{\theta} \log \pi(a|s_{t};\theta)$$
$$\approx \nabla_{\theta} \sum_{t} \log \pi(a=r_{t}|s_{t};\theta)$$

Datasets and Preprocessing

Dataset	# of Entities	# of Relations	# of Triples	# of Tasks
FB15k-237	14,505	237	310,116	20
NELL-995	75,492	200	154,213	12

FB15k-237: Sampled from FB15k (Bordes et al., 2013), redundant relations

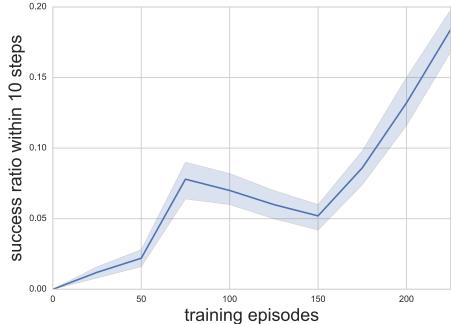
removes

NELL-995: Sampled from the 995th iteration of NELL system (Carlson et al., 2010b)

Dataset processing

- **Q** Remove useless relations: *haswikipediaurl, generalizations, etc*
- □ Add inverse relation links to the knowledge graph
- □ Remove the triples with task relations

Effect of Supervised Policy

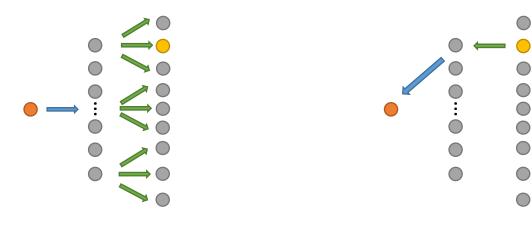


- **x-axis:** number of training epochs
- y-axis: success ratio (probability of reaching the target) on test set

-> Re-train the agent using reward functions

Inference Using Learned Paths

- Path as logical formula
 - FilmCountry: actionFilm⁻¹ -> personNationality
 - PersonNationality: placeOfBirth -> locationContains⁻¹
 - etc ...
- Bi-directional path-constrained search
 - Check whether the formulas hold for entity pairs



Uni-directional search

bi-directional search

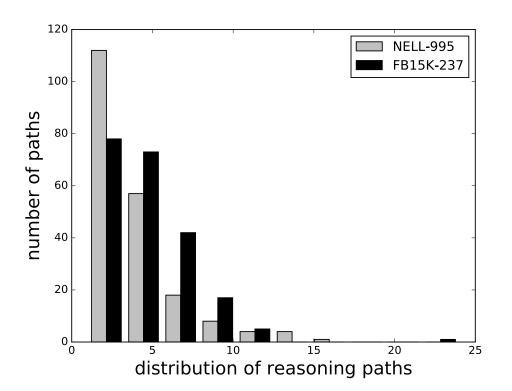
Link Prediction Result

Tasks	PRA	Ours	TransE	TransR
worksFor	0.681	0.711	0.677	0.692
athelet Plays For Tea m	0.987	0.955	0.896	0.784
athletePlaysInLeag ue	0.841	0.960	0.773	0.912
athleteHomeStadiu m	0.859	0.890	0.718	0.722
teamPlaysSports	0.791	0.738	0.761	0.814
orgHirePerson	0.599	0.742	0.719	0.737
personLeadsOrg	0.700	0.795	0.751	0.772
Overall	0.675	0.796	0.737	0.789

Mean average precision on NELL-995

Qualitative Analysis

Path length distributions



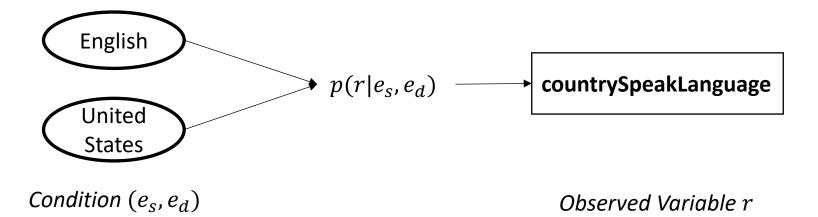
Qualitative Analysis

Example Paths

	placeOfBirth -> locationContains ⁻¹
personNationality: -	peoplePlaceLived -> locationContains ⁻¹
	peopleMariage -> locationOfCeremony -> locationContains ⁻¹
	tvCountryOfOrigin -> countryOfficialLanguage
tvProgramLanguage: –	tvCountryOfOrigin -> filmReleaseRegion-1 -> filmLanguage
	tvCastActor -> personLanguage
Γ	athleteHomeStadium -> teamHomeStadium ⁻¹
athletePlaysForTeam: -	athletePlaysSports -> teamPlaysSports ⁻¹
	atheleteLedSportsTeam

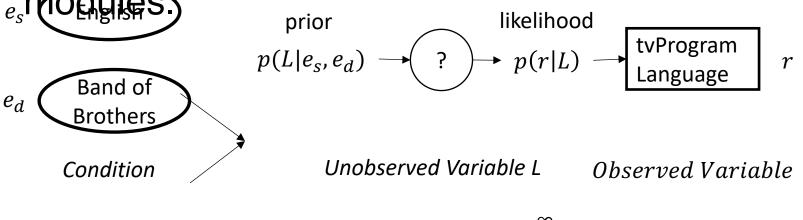
Bridging Path-Finding and Reasoning w. Variational Inference (teaser): DIVA (Chen et al., NAACL 2018)

• Inferring latent paths connecting entity nodes.



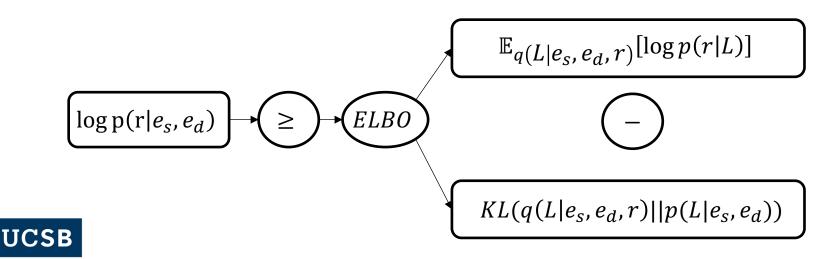
 $\bar{p} = argmax_p \log p(r|e_s, e_d)$

 Inferring latent paths connecting entity nodes by parameterizing likelihood (path reasoning) and prior (path finding) with neural network



$$p = argmax_p p(r|e_s, e_d) = argmax_p \log \int_{L}^{\infty} p(r|L)p(L|e_s, e_d)$$

- Marginal likelihood $\log \int_L p(r|L)p(L|e_s, e_d)$ is intractable
- We resort to Variational Bayes by introduce a posterior distribution $q(L|e_s, e_d, r)$



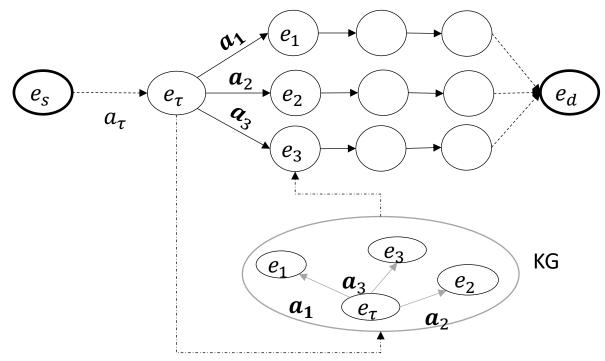
DP Kingma et al. 2013

Parameterization – Path-finder

• Approximate posterior $q_{\varphi}(L|e_s, e_d, r)$ and prior $p_{\beta}(L|e_s, e_d)$: parameterize with RNN

Transition Probability: $p(a_{\tau+1}, e_{\tau+1} | a_{1:\tau}, e_{1:\tau})$

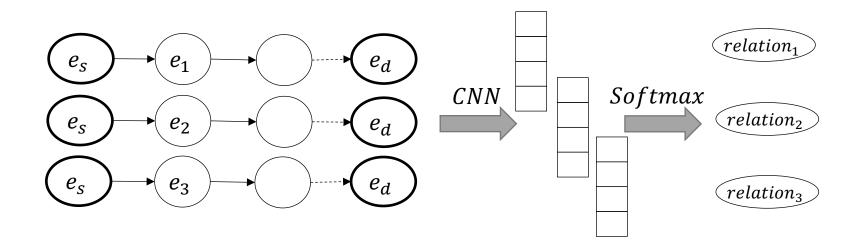
151

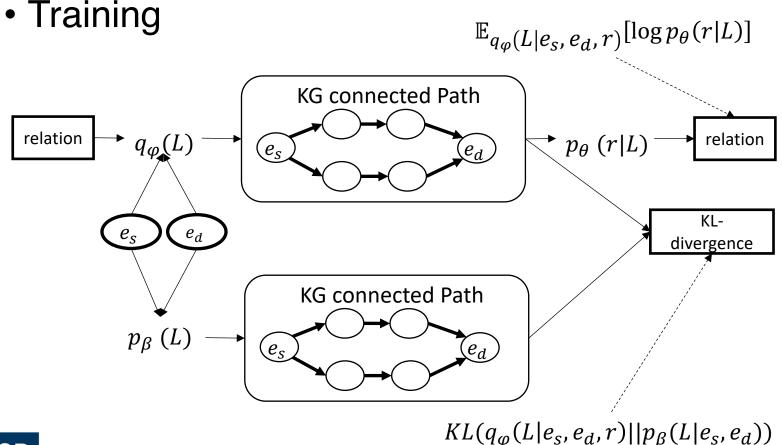


UCSE

Parameterization – Path Reasoner

• Likelihood p_{θ} (r|L) : parameterize with CNN

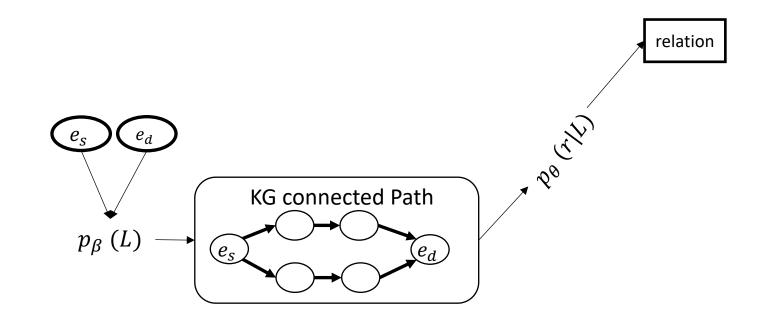




UCSB

posterior: q_{φ} , likelihood: p_{θ} (r|L), prior: $p_{\beta}(L|e_s, e_d)$

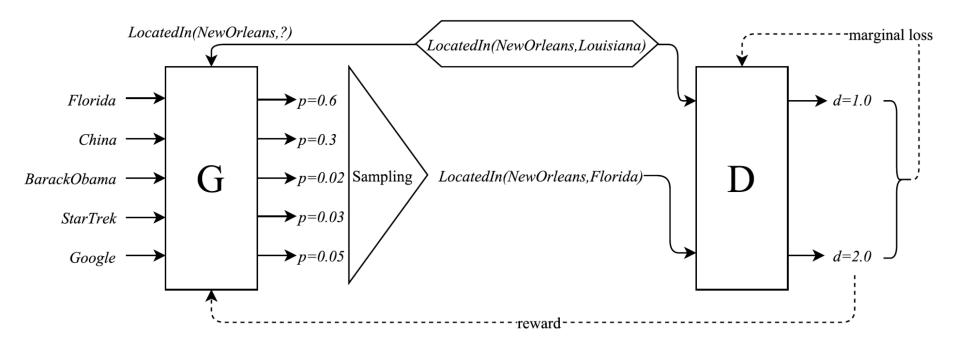
Testing



UCSB

posterior: q_{φ} , likelihood: p_{θ} (r|L), prior: $p_{\beta}(L|e_s, e_d)$

KBGAN: Adversarial Learning for Knowledge Graph Completion (NAACL 2018, Monday Morning)



Idea: use adversarial learning to replace random sampling (from a uniform distribution).

Conclusions

- Embedding-based methods are very scalable and robust.
- Path-based methods are more interpretable.
- There are some recent efforts in unifying embedding and path-based approaches.
- DIVA integrates path-finding and reasoning in a principled variational inference framework.

Thanks!

DeepPath Source code:

https://github.com/xwhan/DeepPath

KBGAN Source code:

https://github.com/cai-lw/KBGAN

ProPPR Source code:

https://github.com/TeamCohen/ProPPR

Scalable Construction and Reasoning of Massive Knowledge Bases

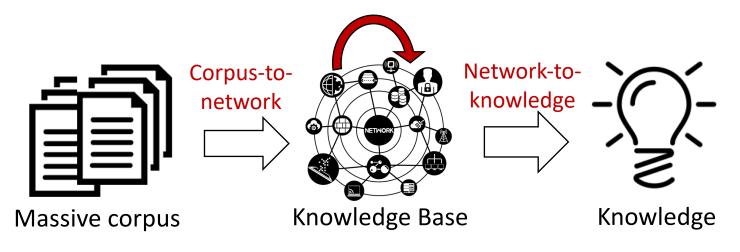
Summary

Overall Contributions

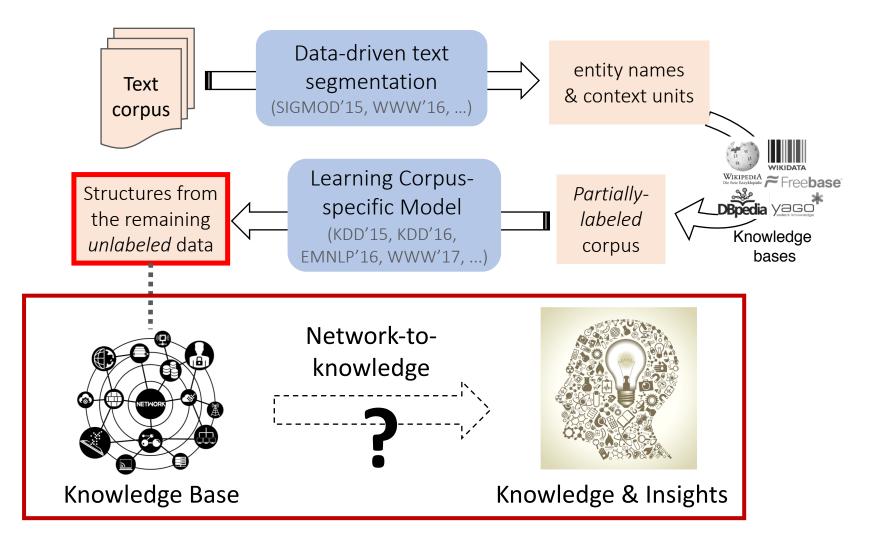
• Effort-Light Structure Extraction

→ Corpus-specific labeling free, domain/language-independent

- Joint Models for Low-resource IE: jointly learning representations from unlabeled data, linguistic structures, annotations from other tasks, domains, and languages. → Reusable knowledge
- **Reasoning**: learning to infer missing links from background knowledge.
- A principled approach to manage, explore, and analyze "Big Text Data"

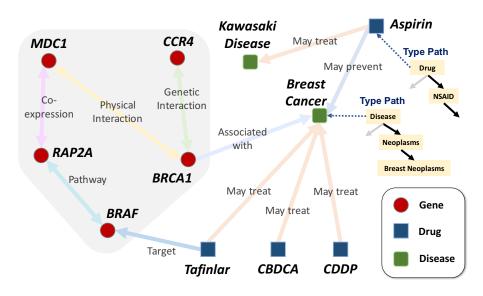


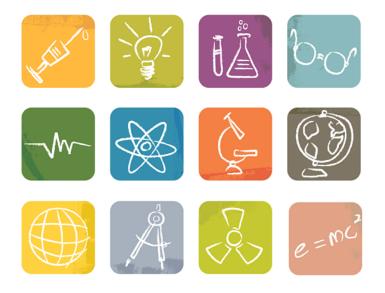
Looking Forward: What's Next?



Looking Forward: Analyzing Literature to Facilitate Scientific Research

- Literature \rightarrow Knowledge Base \rightarrow Scientific Discovery
- More disciplines & More structure analysis functions





Scientific Hypothesis Generation by predicting missing relationships

Gaining insights for various research tasks in different disciplines

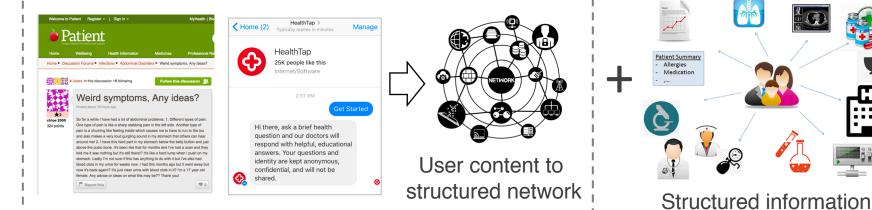
Collaborate with life scientists, chemists, physicists, computer scientists, ...

Looking Forward: Engaging with Human Behaviors

Social media post, Customer review, Chats & messages Structured Behavior Data

Social network, Electronic health record, Transaction record Personalized Intelligent Systems

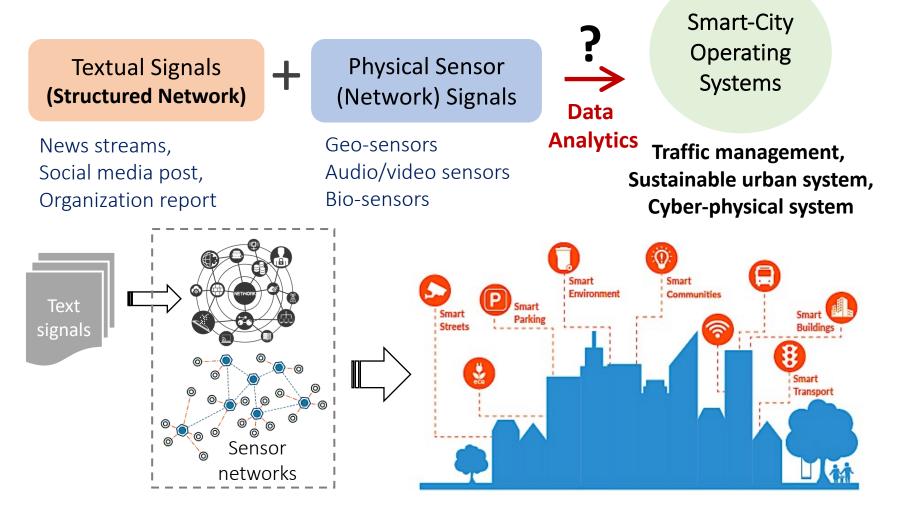
Smart Health, Business intelligence, Conversational agent



from eHealth records

Collaborate with doctors, social scientists, economists, ...

Looking Forward: Integrating with **Our Physical World**

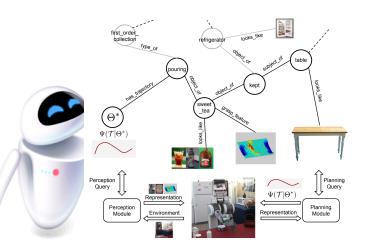


Collaborate with network & system researchers, environmental scientists, ...

Application to Vertical Domains

"Which cement stocks go up the most when a Category 3 hurricane hits Florida?"

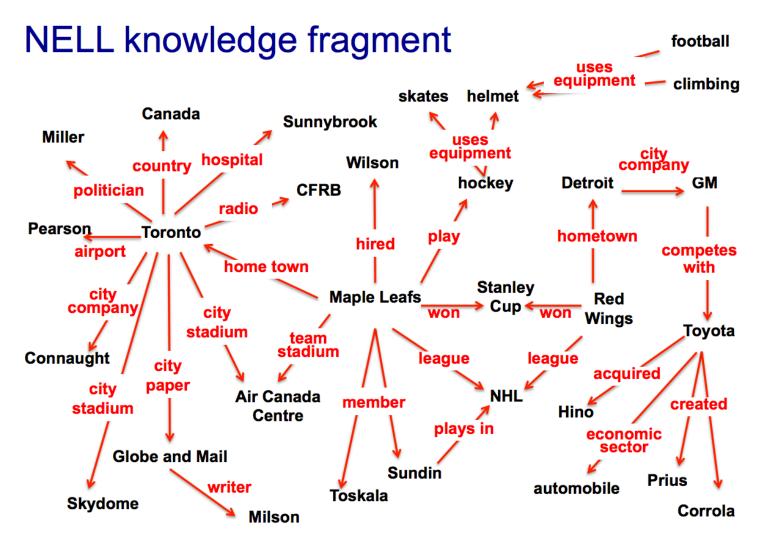
KENSHC



One Interface for All

- All domains in a unified knowledge base
- Incrementally learn new domains without forgetting (or instead boosting) existing ones

Learning to Reason for KB Completion



Slide from Tom Mitchell.

A Tale of Three Stories

- Embedding-Based Approaches:
 - Light-weight, scalable, and robust.
- Path-Based Approaches:
 - Explainable and interpretable.
- Deep Reinforcement Learning Based:
 - Integrate embedding and path based methods seamlessly.

SOTAs for Reasoning on KBs

- ConvE (Dettmers et al., AAAI 2018)
- Poincare (Nickel and Kiela, NIPS 2017)
- DeepPath (Xiong et al., EMNLP 2017).
- MINERVA (Das et al., ICLR 2018).

• DIVA (Chen et al., NAACL 2018).

Open-sourced Software

- Entity recognition and typing:
 - ClusType: <u>http://shanzhenren.github.io/ClusType/</u>
 - LM-LSTM-CRF: https://github.com/LiyuanLucasLiu/LM-LSTM-CRF
 - CrossType Name Tagger: <u>https://github.com/yuzhimanhua/LM-LSTM-CRF</u>
 - Multi-tasking LSTM-CRF: <u>https://github.com/hltcoe/golden-horse/</u>
- Relation extraction:
 - CoType: <u>https://github.com/shanzhenren/CoType</u>
 - ReQuest: https://github.com/shanzhenren/ReQuest
 - GraphLSTM: <u>http://hanover.azurewebsites.net/</u>
- KB reasoning:
 - DeepPath: <u>https://github.com/xwhan/DeepPath</u>
 - KBGAN: <u>https://github.com/cai-lw/KBGAN</u>
 - ProPPR: https://github.com/TeamCohen/ProPPR

Thank you! Q&A

- Effort-Light Structure Extraction
 - → Corpus-specific labeling free, domain/language-independent
- Joint Models for Low-resource IE: jointly learning representations from unlabeled data, linguistic structures, annotations from other tasks, domains, and languages. → Reusable knowledge
- **Reasoning**: leverage embedding and path based models for discovering new knowledge.
- A principled approach to manage, explore, and analyze "Big Text Data"

