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Motivation

Most of the existing successful stories of deep
learning are still based on supervised learning.

For example, object recognition, machine
translation, text classification.

However, in many applications, it is not realistic
to obtain large amount of labeled data.

We need to leverage unlabeled data.



A Classic Example of Semi-Supervised Learning

* Co-Training (Blum and Mitchell, 1998)

GGiven:

e a set L of labeled training examples

e a set U of unlabeled examples

Create a pool U’ of examples by choosing u examples at random from U

Loop for k iterations:

Use L to train a classifier hy that considers only the x1 portion of z
Use L to train a classifier hs that considers only the x5 portion of #
Allow hy to label p positive and n negative examples from U’
Allow hs to label p positive and n negative examples from U’

Add these self-labeled examples to L

Randomly choose 2p + 2n examples from U to replenish U’




Challenges

* The two classifiers in co-training have to be
independent.

* Choosing highly-confident self-labeled examples
could be suboptimal.

* Sampling bias shift is common.




Our Approach: Reinforced SSL

* Assumption: not all the unlabeled data are useful.

* |dea: performance-driven semi-supervised learning
that learns an unlabeled data selection policy with
RL, instead of using random sampling.

* |. Partition the unlabeled data space
e 2. Train to select useful unlabeled data

* 3. Reward: change in accuracy on the validation set



Reinforcement Learning
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Deep Q-Learning

The Q-network parameters 6 are learned by op-
timizing:
Li(0;) = Es o[(V(0i—1) — Q(s,0;6:))?], (8)
where ¢ 1s an iteration of optimization and
V(0;—1) =Eg[r+ 7y max Q(s',a’;0;,_1)|s,al.
)



Experiment |: Clickbait Detection

Dataset #Tweets | #Clickbait | #Non-Clickbait
Training 2,495 762 1,697
Validation 9,768 2,380 7,388

Test 9,770 2,381 7,389
Unlabeled | 80,012 N/A N/A

Table 1: Statistics of Clickbait Dataset.
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Experiment |: Clickbait Detection

Methods Prec. | Recall | F1 Score
Self-attentive biGRU 0.683 | 0.649 0.665
CNN (Document) 0.537 | 0474 0.503
Standard Co-Training 0.418 | 0.433 0.425
Performance Co-Training | 0.581 | 0.629 0.604
CoTrade Co-Training 0.609 | 0.637 0.623
Sequence-SSL 0.595 | 0.589 0.592
Region-SSL 0.674 | 0.652 0.663
Adversarial-SSL 0.698 | 0.691 0.694
Reinforced Co-Training 0.709 | 0.684 0.696

Table 2: The experimental results on clickbait dataset.
Prec.: precision.



Experiment 2: Generic Text Classification

Dataset AG’s News | DBpedia
#Classes = 14
#Training 12,000 56,000
#Validation 12,000 56,000
#Test 7,600 70,000
#Unlabeled 96,000 448,000

Table 4: Statistics of the Text Classification Datasets.
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Experiment 2: Generic Text Classification

Methods AG’s News | DBpedia
CNN (Training+ Validation) 28.32% 9.53%
CNN (All) 8.69% 0.91%
Standard Co-Training 26.52% 7.66%
Performance Co-Training 21.73% 5.84%
CoTrade Co-Training 19.06% 5.12%
Sequence-SSL 19.54% 4.64%
Region-SSL 18.27% 3.76%
Adversarial-SSL 8.45%" 0.89%*
Reinforced Co-Training 16.64 % 2.45%

Table 5: The experimental results on generic text clas-
sification datasets. * Adversarial-SSL is trained on full

labeled data after pre-training.
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Conclusion

* We proposed a novel RL framework for semi-
supervised learning

* Strong results in SSL text classification

* Also showed effectiveness in relation extraction



Deep Reinforcement Learning for
Distantly Supervised Relation Extraction
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Relation Extraction

Relation Type with
Labeled Dataset
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Distant Supervision

“If two entities participate in a relation, any sentence

that contains those two entities might express that
relation.” (Mintz, 2009)



Distant Supervision
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Wrong Labeling

+ Within-Sentence-Bag Level

= Hoffmann et al., ACL 201 1.
= Surdean et al., ACL 2012.
= Zeng et al., ACL 2015.

= Ljetal.,, ACL 2016.

¢ Entity-Pair Level

= None



Wrong Labeling

= Place of Death

i. Some New York city mayors —William O’Dwyer, Vincent
R. Impellitteri and Abraham Beame — were born abroad.

ii. Plenty of local officials have, too, including two New

» EntityvRaitickevglrs, James ). Walker, in 1932, and William
O’Dwyer, in 1950.
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Wrong Labeling

¢ Most of entity pairs only have several sentences

Other
4%

s Lots of entit irs e sentences
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Outline
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Requirements
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Overview
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Deep Reinforcement Learning

s+ State

= Sentence vector
* The average vector of previous removed sentences

s+ Action

= Remove & retain

** Reward
= 272



Deep Reinforcement Learning

¢ One relation type has an agent

** Sentence-level

* Positive: Distantly-supervised positive sentences
* Negative: Randomly sampled

“* Split into training set and validation set



Deep Reinforcement Learning
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Reward
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Evaluation on a Synthetic Noise
Dataset

+* Dataset: SemEval-2010 Task 8
** True Positive: Cause-Effect
*¢* False Positive: Other

¢ True Positive + False Positive: 1331 samples



Evaluation on a Synthetic Noise
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Evaluation on a Synthetic Noise

Dataset
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Distant Supervision
on NYT Freebase Dataset

“* CNN+ONE, PCNN+ONE

= Distant supervision for relation extraction via piecewise
convolutional neural networks. (Zeng et al., 2016)

* CNN+ATT, PCNN+ATT

= Neural relation extraction with selective attention over
instances. (Lin et al., 2016)
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Conclusion

“* We propose a deep reinforcement learning
method for robust distant supervision relation
Extraction.

¢ Our method is model-agnostic.

¢ Our method boost the performance of recently
proposed neural relation extractors.



DSGAN:Adversarial Learning for Denoising
Distantly Supervised Relation Extraction
(Qin et al.,,ACL 2018b)



Distant Supervision Data Distribution

DS data space
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Data Distribution

DS data space
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Adversarial Training
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Epoch i

DSGAN (Qin et al., ACL 2018b)
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Characteristics

% Sentence-Level Noise Reduction
< Training Without Supervised Information

<» Model-Agnostic



Distant Supervision Relation Extraction

CNN-based
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Distant Supervision Relation Extraction

PCNN-based
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Conclusion

* We introduce Reinforced Co-Training, a new

approach that combines reinforcement learning and
semi-supervised learning.

* We show that in weakly-supervised relation
extraction, reinforcement learning can be utilized to
de-noise the training signals.

* Adversarial learning serves as a joint learning
framework, and it can also be applied to de-noising
distantly supervised IE data.



Thanks!

http://nlp.cs.ucsb.edu
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