Programming with Personalized PageRank A Locally Groundable First-Order Probabilistic Logic

William Yang Wang

Katie Mazaitis & William Cohen

School of Computer Science Carnegie Mellon University

The Problem

- Task: learning to reason on large graphs.
- Approach:
 1st-order
 probabilistic logic
 inference.

Friend(P1, P2) , Origin(P2, Y) => Origin(P1, Y)

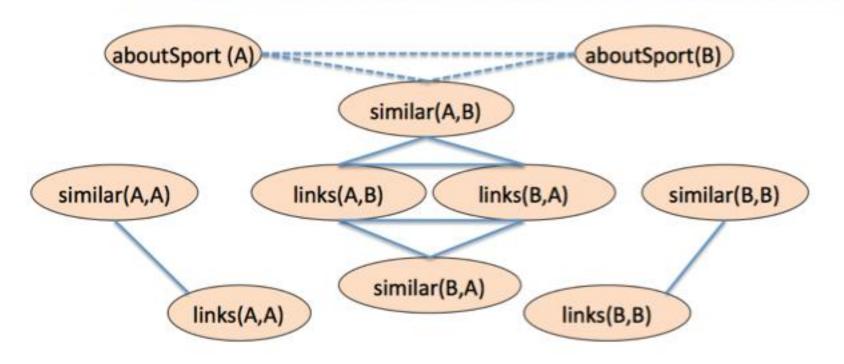
Motivation

• The Issue:

grounding with many inference rules typically depends on *the size of knowledge base*, which can be very slow in practice.

Grounding: Markov Logic Network

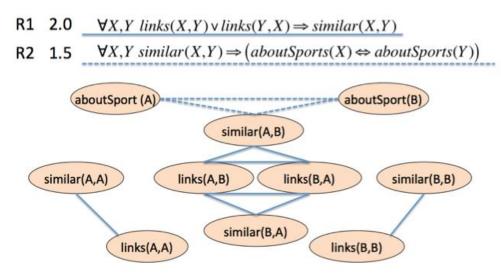
- R1 2.0 $\forall X, Y \ links(X, Y) \lor links(Y, X) \Rightarrow similar(X, Y)$
- **R2** 1.5 $\forall X, Y \ similar(X, Y) \Rightarrow (about Sports(X) \Leftrightarrow about Sports(Y))$



(slides from Pedro Domingos)

Problem: Markov Logic Network

- Will be O(n²) nodes in graph
- O(n^k) with arity-k predicates
- Graph needed to answer a query is very large
- Inference *not* polynomial-time in graph size



ownsStock(User,Company) → #Nodes = #Users * #Companies

Let's forget about MLN for now...

Carnegie Mellon SCHOOL OF COMPUTER SCIENCE

Pop Quiz!

What programming language is this???

about(X,Z) := handLabeled(X,Z) about(X,Z) := sim(X,Y),about(Y,Z) sim(X,Y) := links(X,Y) sim(X,Y) := hasWord(X,W),hasWord(Y,W),linkedBy(X,Y,W)

Facts about Prolog

- general purpose logic programming language associated with AI and NLP from the 70s (Wikipedia)
- elegant, expressive, deterministic, and accurate...
- currently ranked 32nd in popular program. lang.
 (tiobe)... even more popular than *scala*, *F#*, *awk*.

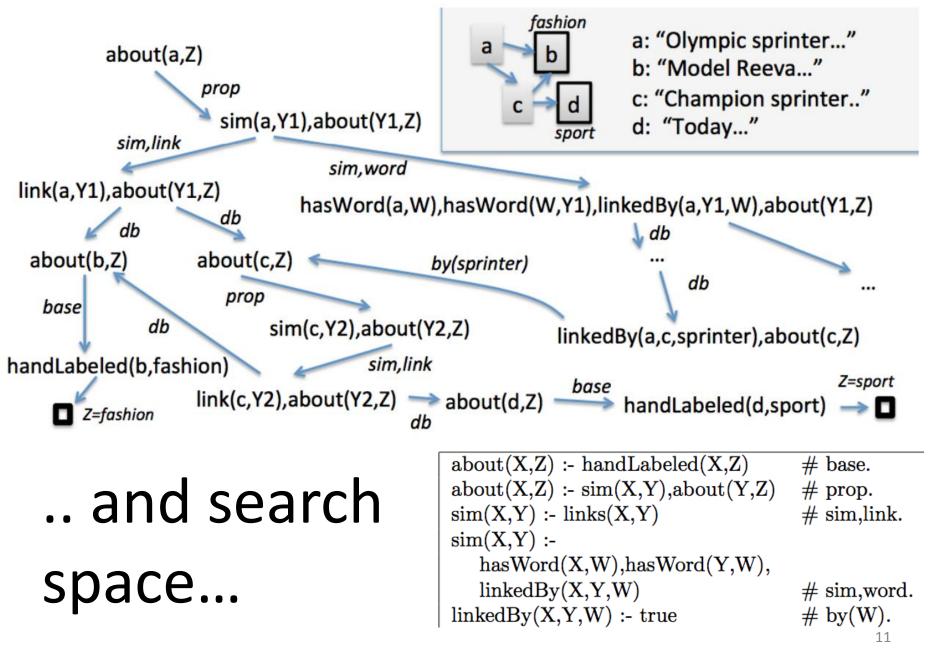
but...

- does not learn weights from data.
- does not take features.
- does not scale.

the New ProPPR Language

rules

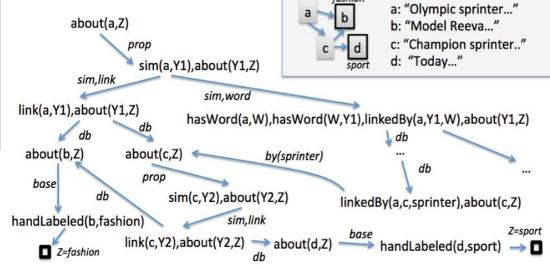
features of rules



PPR Inference

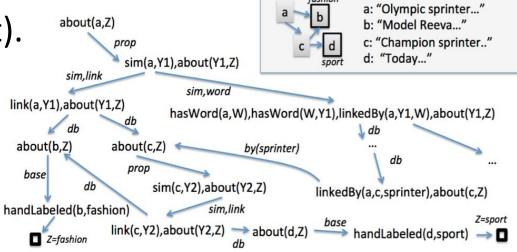
- - implicit "reset" transitions with (p≥α) back to query node
- Looking for answers supported by many short proofs

"Grounding" size is O(1/αε) ... ie *independent* of DB size → fast approx incremental inference (Andersen, Chung, Lang 08)



Supervised PPR Learning

- Goal : learn transition probabilities based on features of the rules..
- Backstrom & Leskovec 2011: L-BFGS with WMW loss.
- Our approach:
 - epoch-based SGD with L2-regularized log loss .
 - easy to implement.
 - single pass (fast).
 - cheap.
 - disk-friendly.



Entity Resolution

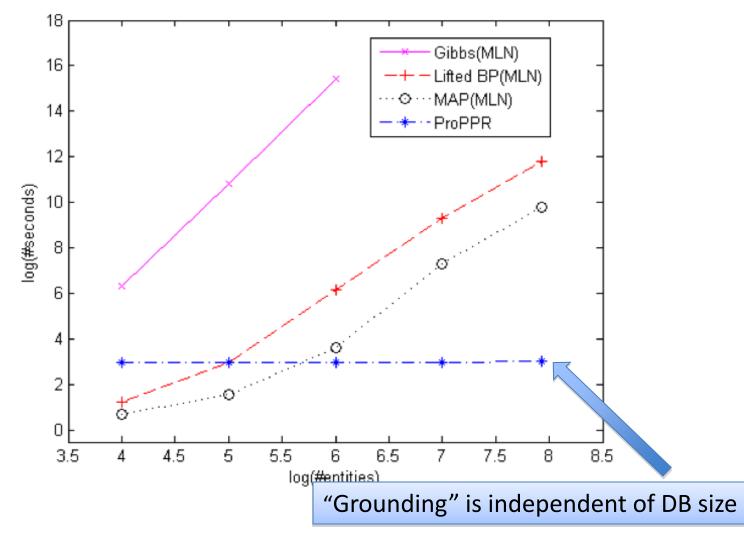
- Task:
 - citation matching (Alchemy: Poon & Domingos).
- Dataset:
 - CORA dataset, 1295 citations of 132 distinct papers.
- Training set: section 1-4.
- Test set: section 5.
- ProPPR program:
 - translated from corresponding Markov logic network (dropping non-Horn clauses)
- # of rules: 21.

ProPPR for Entity Resolution

Table 4: ProPPR program used for entity resolution.

¥ Ö	
samebib($BC1,BC2$) :- author($BC1,A1$), sameauthor($A1,A2$), authorinverse($A2,BC2$)	# author.
samebib(BC1,BC2) := title(BC1,A1), sametitle(A1,A2), titleinverse(A2,BC2)	# title.
samebib(BC1,BC2) := venue(BC1,A1), samevenue(A1,A2), venueinverse(A2,BC2)	# venue.
samebib(BC1,BC2) := samebib(BC1,BC3), samebib(BC3,BC2)	# tcbib.
same author(A1,A2) := has word author(A1,W), has word author inverse(W,A2), key author word(W)	# authorword.
sameauthor(A1,A2) := sameauthor(A1,A3), sameauthor(A3,A2)	# tcauthor.
sametitle(A1,A2) := haswordtitle(A1,W), haswordtitleinverse(W,A2), keytitleword(W)	# titleword.
sametitle(A1,A2) := sametitle(A1,A3), sametitle(A3,A2)	# tctitle.
samevenue(A1,A2) := haswordvenue(A1,W), haswordvenueinverse(W,A2), keyvenueword(W)	# venueword.
samevenue $(A1,A2)$:- samevenue $(A1,A3)$, samevenue $(A3,A2)$	# tcvenue.
keyauthorword(W) :- true	# authorWord(W).
keytitleword(W) := true	# titleWord(W).
keyvenueword(W) :- true	# venueWord(W).

Inference Time: Citation Matching vs MLN (Alchemy)



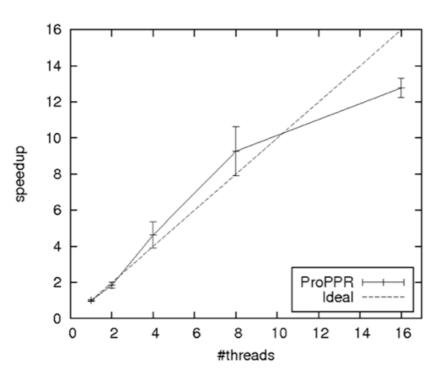
AUC: Citation Matching

	Cites	Authors	Venues	Titles
MLN Our rules	0.513	0.532	0.602	0.544
ProPPR(w=1)	0.680	0.836	0.860	0.908
ProPPR	0.800	0.840	0.869	0.900

AUC scores: 0.0=low, 1.0=hi w=1 is before learning

Learning can be parallelized

- *Learning* uses many example queries
 - e.g: sameCitation(c120,X) with X=c123+, X=c124-, ...
- Each query is grounded to a separate small graph (for its proof)
- Goal is to tune weights on these edge features to optimize RWR on the query-graphs.
- Can do SGD and run RWR separately on each query-graph
 - Graphs do share edge features, so there's some synchronization needed



Reason on Large Knowledge Graphs

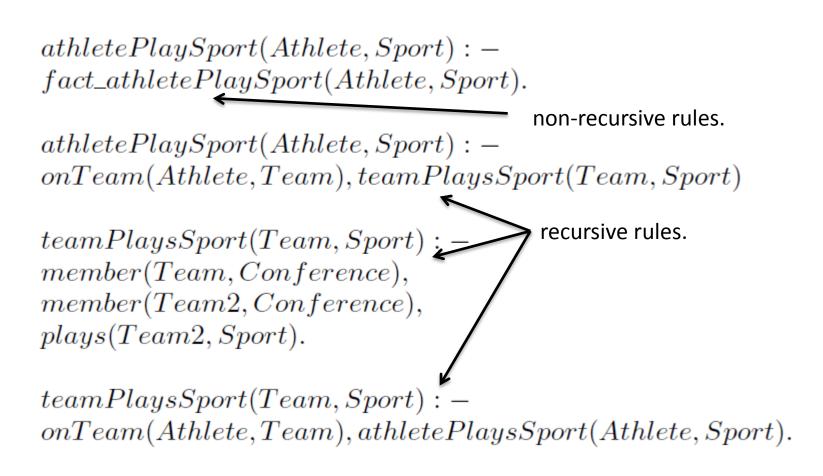
PRA: learning inference rules for a noisy KB (Lao, Cohen, Mitchell 2011) (Lao et al, 2012)

- Paths are learned separately for each relation type, and one learned rule can't call another
- PRA can only learn from facts in KB.

athletePlaySportViaRule(Athlete,Sport) :onTeamViaKB(Athlete,Team), teamPlaysSportViaKB(Team,Sport)

teamPlaysSportViaRule(Team,Sport) *
 memberOfViaKB(Team,Contence),
 hasMemberViaKB(Conference,Team2),
 playsViaKB(Team2,Sport).
teamPlaysSportViaRule(Team,Sport) : onTeamViaKB(Athlete,Team), athletePlaysSportViaKB(Athlete,Sport)

Joint Inference ProPPR program



Joint Inference for Relation Prediction

- Train on NELL's KB as of iteration 713
- Test on new facts from later iterations
- Try three "subdomains" of NELL
 - pick a seed entity S
 - pick top M entities nodes in a (simple untyped RWR) from S
 - project KB to just these M entities
 - look at three subdomains, six values of M

Joint Inference

Dataset-Model	Baseball	Google	Beatles
Top-1K NR	0.8958	0.8490	0.7593
Top-1K R	0.9982	0.9668	0.8136
Top-2K NR	0.9193	0.8358	0.8520
Top-2K R	0.9998	0.9958	0.9940
Top-5K NR	0.8528	0.7750	0.8243
Top-5K R	0.9993	0.9962	0.9973
Top-10K NR	0.7503	0.7733	0.8136
Top-10K R	0.9903	0.9914	0.9973
Top-20K NR	0.7646	0.7538	0.7207
Top-20K R	0.9891	0.9871	0.9861
Top-30K NR	0.7746	0.7745	0.7616
Top-30K R	0.9892	0.9892	0.9886

ProPPR vs Alchemy

- Alchemy takes >4 days to train discriminatively on recursive theory with 500-entity sample
- Alchemy's pseudo-likelihood training fails on some recursive rule sets

More with ProPPR

 c_1 : predictedClass(Doc,Y) :possibleClass(Y), hasWord(Doc,W), related(W,Y) # c1. c_2 : related(W,Y) :- true # relatedFeature(W,Y)

Database predicates: $hasWord(D,W): doc \ D \ contains \ word \ W$ $inDoc(W,D): doc \ D \ contains \ word \ W$ $previous(D1,D2): \ doc \ D2 \ precedes \ D1$ $possibleClass(Y): \ Y \ is \ a \ class \ label$ $\begin{array}{l} c_3: \mbox{ predictedClass(Doc,Y) :-} \\ similar(Doc,OtherDoc), \\ \mbox{ predictedClass(OtherDoc,Y) $\#$ c3.} \\ c_4: \mbox{ similar(Doc1,Doc2) :-} \\ \mbox{ hasWord(Doc1,W),} \\ \mbox{ inDoc(W,Doc2) $\#$ c4.} \end{array}$

 c_5 : predictedClass(Doc,Y) :previous(Doc,OtherDoc), predictedClass(OtherDoc,OtherY), transition(OtherY,Y) # c5. c_6 : transition(Y1,Y2) :- true

transitionFeature(Y1,Y2)

- C1 + C2 = bag-of-words classifier.
- C1 + C2 + C3 + C4 = label propagation.
- C1 + C2 + C5 + C6 = HMM-like sequence classifier.

Conclusions

- We proposed a new **probabilistic programming language** that combines logical forms and graphical modeling.
- Our method is highly scalable, and learning can be parallelized.
- We obtained **promising** results in some sample tasks, including a joint relation inference task.

Thank You & Happy Halloween!

http://www.cs.cmu.edu/~yww

ww@cmu.edu