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ABSTRACT

Spoken dialogue systems typically use predefined seman-
tic slots to parse users’ natural language inputs into unified
semantic representations. To define the slots, domain ex-
perts and professional annotators are often involved, and the
cost can be expensive. In this paper, we ask the following
question: given a collection of unlabeled raw audios, can
we use the frame semantics theory to automatically induce
and fill the semantic slots in an unsupervised fashion? To do
this, we propose the use of a state-of-the-art frame-semantic
parser, and a spectral clustering based slot ranking model that
adapts the generic output of the parser to the target semantic
space. Empirical experiments on a real-world spoken dia-
logue dataset show that the automatically induced semantic
slots are in line with the reference slots created by domain
experts: we observe a mean averaged precision of 69.36%
using ASR-transcribed data. Our slot filling evaluations also
indicate the promising future of this proposed approach.

Index Terms— Unsupervised slot induction, semantic
slot filling, semantic representation.

1. INTRODUCTION

A number of recent and past efforts in industry (e.g. Google
Now! and Apple’s Siri?) and academia (e.g. [1, 2, 3, 4, 5,
6,7,8,9, 10, 11, 12]) have focused on developing semantic
understanding techniques for building better spoken dialogue
systems (SDS). The role of spoken language understanding
(SLU) is of great significance to SDS: in order to capture
the variation in language use from dialogue participants, the
SLU component must create a mapping between the natural
language inputs and a semantic representation that captures
users’ intentions.

As pointed out by Wang et al. [13], developing such a
SLU-based interactive system can be very challenging: in
the initial stage, domain experts or the developers themselves
have to manually define the semantic frames, slots, and possi-

Thttp://www.google.com/landing/now/
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ble values that situates the domain-specific conversation sce-
narios. However, this approach might not generalize well to
real-world users, and the predefined slot definition can be lim-
ited, and even bias the subsequent data collection and annota-
tion. Another issue is about the efficiency: the manual defini-
tion and annotation process for domain-specific tasks can be
very time-consuming, and have high financial costs. Finally,
the maintenance cost is also non-trivial: when new conversa-
tional data comes in, developers, domain experts, and annota-
tors have to manually analyze the audios or the transcriptions
for updating and expanding the existing grammars.

Given a collection of unlabeled raw audio files, we in-
vestigate an unsupervised approach for automatic induction
and filling of semantic slots. To do this, we use a state-of-
the-art probabilistic frame-semantic parsing approach [14],
and perform an unsupervised spectral clustering approach to
adapt, rerank, and map the generic FrameNet style seman-
tic parses to the target semantic space that is suitable for the
domain-specific conversation settings [15]. To evaluate the
performance of our approach, we compare the automatically
induced semantic slots with the reference slots created by do-
main experts. Furthermore, we evaluate the accuracy of the
slot filling (also known as form filling) task on a real-world
SDS dataset, using the induced semantic slots. Empirical ex-
periments show that the slot creation results generated by our
approach aligns well with those of domain experts, and the
slot filling experiment result suggests that our system is accu-
rate in extracting the semantic information from users’ input.
Our main contributions of this paper are three-fold:

e We propose an unsupervised method for automatic in-
duction and filling of semantic slots from unlabeled
speech data, using probabilistic frame-semantic pars-
ing;

e We show that the performance of this unsupervised slot

induction method is in line with human-generated slots;

e We obtain interesting slot filling results that demon-
strate the accuracy of our semantic information extrac-
tion system.



In the following sections, we outline related work in Sec-
tion 2. We describe the proposed approach in Section 3. The
experimental setup and results are shown in Section 4. Dis-
cussions are followed in Section 5, and we conclude in Sec-
tion 6.

2. RELATED WORK

Early knowledge-based and statistical systems [3, 5, 8], for
example, in the ATIS domain, all require developers to write
syntactic and semantic grammars [16]. With the advent of
statistical methods in language processing, Wong and Meng
and Pargellis et al. are among the firsts to consider semiau-
tomatic grammar induction [17, 18]. Their approaches are
based on pure data-driven methods, which require consider-
able amount of manual efforts to clean up the output. There
has been work in SLU that combines knowledge-based ap-
proach with the statistical approach. For example, Wang et
al. have studied an HMM/CFG model that alleviates the need
for massive human annotated grammar [16].

Unsupervised methods for automatic semantic slot induc-
tion that make use of the frame-semantic formalism from lin-
guistic theories, on the other hand, have not been well stud-
ied in the SDS community. Although there has been work
using semi-supervised learning approaches to explore unla-
beled data [19], their focus was not on automatic induction
and filling of slots. More broadly, Chung et al. and Wang
et al. have studied the problem of obtaining in-domain natu-
ral language data for SDS semantic understanding, which ad-
dress another important issue for building SDS with limited
resources, at the other end of the spectrum [20, 13]. How-
ever, their domain-specific semantic representations are also
predefined.

Despite our dialogue domain, our approach is relevant to
ontology induction from text in the natural language under-
standing (NLU) community. For example, Poon and Domin-
gos proposes an unsupervised ontology induction approach
using Markov logic network [21]. Chambers and Jurafsky
have studied unsupervised approaches for information extrac-
tion without templates [22]. Recently, Cheung et al. have in-
vestigated an HMM-like generative model to induce seman-
tic frames in long passages across multiple documents [23].
Titov and Klementiev use a Bayesian approach to induce se-
mantic roles [24], and Lang and Mirella have also proposed
graph-based latent variable models for semantic role induc-
tion [25]. However, our SLU problem is different than the
NLU problem: first, since spoken dialogue utterances are typ-
ically very short and noisy, they are often more syntactically
and semantically ill-formed, as comparing to the newswire
data that is commonly used in NLU problems. Also, since the
SDS typically focus on specific domains, the resources for
building such systems can be very limited. For example, the
conventional semantic resources such as WordNet [26], were
mostly built on top of written text data, so that it might not be

can i have a cheap restaurant

!

Frame: expensiveness

FT LU: cheap
Frame: locale by use
FT/FE LU: restaurant

Frame: capability
FT LU: can FE LU: i

Fig. 1. An example of probabilistic frame-semantic parsing
on ASR output. FT: frame target. FE: frame element. LU:
lexical unit.

directly applicable to the tasks in spoken language process-
ing.

3. THE PROPOSED APPROACH

Our main motivation is to use a FrameNet-trained statistical
probabilistic semantic parser [14] to generate initial frame-
semantic parses from automatic speech recognition (ASR) de-
codings of the raw audio conversation files. Obviously, the
question one might ask is: how do we map and adapt the
FrameNet-style frame-semantic parses to the semantic slots
in the target semantic space, so that they can be used practi-
cally in the spoken dialogue systems? To tackle this issue, we
formulate the semantic mapping and adaptation problem as
a reranking problem: we propose the use of an unsupervised
spectral clustering based slot ranking model to rerank the list
of most frequent parses from an unlabeled corpus.

In the remainder of the section, we introduce FrameNet
and statistical semantic parsing in Section 3.1. Then we
describe the slot ranking model that we use to adapt the
generic semantic parsing outputs to target semantic space in
Section 3.2.

3.1. Probabilistic Semantic Parsing

FrameNet is a linguistically-principled semantic resource that
includes considerable annotations about predicate-argument
semantics, and the associated lexical units in English [15].
FrameNet is developed based on a semantic theory called
Frame Semantics [27]. The theory believes that the meaning
of most words can be expressed on the basis of semantic
frames, which is represented as three major components:
frame (F), frame elements (FE), and lexical units (LU). For
example, the frame “food” contains words referring to items
of food. A descriptor frame element within the “food” frame
indicates the characteristic of the food. For example, the
phrase “low fat milk” should be analyzed with “milk”
evoking the food frame and “low fat” filling the descriptor
FE of that frame.

SEMAFOR is a state-of-the-art semantic parser for frame-
semantic parsing [14, 28]. Trained on manually annotated



sentences in FrameNet, SEMAFOR is relatively accurate in
predicting semantic frames, FE, and LU from raw text. Aug-
mented by the dual decomposition techniques in decoding,
SEMAFOR also produces the semantically-labeled output in
a timely manner. Considering that SEMAFOR needs pro-
fessional annotations and takes long time to train, the main
contribution of the paper is to apply frame semantics theory
to domain-specific tasks for dialogue systems in an unsuper-
vised fashion.

In our approach, we parse all ASR-decoded utterances in
our corpus using SEMAFOR, and we extract all frames from
semantic parsing results as slot candidates, where the LUs
that correspond to the frames are extracted for slot-filling.
For example, in the Figure 1, we show an example of SE-
MAFOR parsing on an ASR-decoded text output. Thus here,
SEMAFOR generates three frames (capability, expensive-
ness, and locale by use) for the utterance, which we con-
sider as slot candidates. Note that for each slot candidate,
SEMAFOR also includes the corresponding lexical unit (can
i, cheap, and restaurant), which we consider as possi-
ble slot fillers.

Since SEMAFOR was trained on FrameNet annotation,
which has a more generic frame-semantic context, not all the
frames from the parsing results should be used as the actual
slots in the domain-specific dialogue systems. For instance,
in the example of Figure 1, we see that the “expensiveness”
and “locale by use” frames are essentially the key slots for
the purpose of dialog understanding of a SDS in the restau-
rant query domain, whereas the “capability” frame does not
convey particular valuable information to SLU. In order to fix
this issue, we compute the prominence of these slot candi-
dates, use a slot ranking model to rerank the most frequent
slots, and then generate a list of induced slots for the use in
domain-specific dialogue systems.

3.2. Slot Ranking Model

The overall purpose of the ranking model is to distinguish
generic semantic concepts and domain-specific concepts that
were useful for spoken dialogue systems. To induce meaning-
ful slots for the purpose of SDS, we compute the prominence
of the slot candidates using a slot ranking model described
below.

With the semantic parses from SEMAFOR, the model
ranks the slot candidates by integrating two scores. One is
the frequency of each candidate slot in the corpus, since slots
with higher frequency may be more important. Another is
the coherence of values the slot corresponds to. Because we
assume that domain-specific concepts should focus on fewer
topics and be similar to each other, the coherence of the cor-
responding values can help measure the prominence of the
slots.

w(s;) = log f(s;) + « - log h(s;), €))

where w(s;) is the ranking weight for the slot candidate s;,
f(s;) is the frequency of s; from semantic parsing, h(s;) is
the coherence measure of s;, and « is the weighting parame-
ter.

The coherence measure h(s;) is based on word-level clus-
tering, where we cluster each word in the corpus using con-
text information. For each slot s;, we have the set of corre-
sponding value vectors, V' (s;) = {v1,...,Vj, ..., vy}, where
v;j is the j-th word vector constructed from the utterance in-
cluding the slot s; in the parsing results, and J is the num-
ber of these utterances. Then we have the set of the corre-
sponding cluster vectors C(s;) = {c1,...,Cj,...,c5}. ¢ =
[€j1s - Cjky --» CjK ], Where ¢y, 1s the frequency of words in
v;j clustered into cluster &, and K is the number of clusters.

ZCmeEC(Si),Caicb Sim(ca’ cb)
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where |C(s;)] is the size of the set C(s;), Sim(ca, cp) is the
cosine similarity between cluster distribution vectors c,, Cp,
which are obtained from clustering approaches for each pair
of values v, and vy, s; corresponds to. In general, a slot s;
with higher h(s;) usually focuses on fewer topics, which is
more specific so that it is better for slots of dialogue systems.
For clustering, we formulate each word w as a feature vec-
tor w = [ry, 79, ..., 74, ..., Where r; = 1 when w occurs in the
i-th utterance and r; = 0 otherwise. With a set of word fea-
ture vectors, here we mainly use spectral clustering to cluster
the words, because we assume that two words are topically-
related when they occur in the same utterance. In spectral
clustering [29], a key aspect is to define the Laplacian ma-
trix L for generating the eigenvectors. Our spectral clustering
approach can be summarized in the following five steps:

h(s;) = )

e Calculate the distance matrix Dist. Here, the goal
is to compare the distance between each word pairs in
the vector space. To do this, we use the the Euclidean
distance as a metric, and use the K-nearest neighbor
approach to select the top neighbors of each word.

e Derive the affinity matrix A. In order to convert the
the distance matrix Dist to a word affinity matrix, we
apply heat kernel in order to account for irregularities
in the data: 6;; = exp(—Dist?/2%?), where ¥ is the
variance parameter.

e Generate the graph Laplacian L. To generate the
graph Laplacian L, we first define a diagonal degree
matrix D; ;) = Z?:l Ai,j)- Here, i and j are the row
and column indices for the affinity matrix, and n is the
dimension of the square matrix. So D is essentially the
sum of all weighted connections of each word. Then,
we define graph Laplacian as a symmetric normalized
matrix L = D~Y/2LD~1/2,

¢ Eigendecomposition of L. In the next step, we per-
form eigendecomposition of the graph Laplacian L,



and derive the eigenvectors Viigen for the next cluster-
ing step.

e Perform K-means clustering of eigenvectors Viigen.
Finally, we normalize each row of Vi, to be of unit
length, and perform standard K-means clustering to ob-
tain the cluster labels of each word.

The reason why we apply spectral clustering in this slot rank-
ing model is because: 1) spectral clustering is very easy to
implement, and can be solved efficiently by standard linear
algebra techniques; 2) it is invariant to the shapes and den-
sities of each cluster; 3) also, spectral clustering projects the
manifolds within data into solvable space, and often outper-
form other clustering approaches. After spectral clustering,
each word can have a cluster label cj, according to the cluster-
ing results.

4. EXPERIMENTS

To evaluate the effectiveness of our approach, we perform two
evaluations. First, we examine the slot induction accuracy
by comparing the reranked list of frame-semantic parsing in-
duced slots with the reference slots created domain experts.
Secondly, using the reranked list of induced slots and their
associated slot fillers (value), we compare against the human
annotation. For the slot-filling task, we evaluate both on ASR
output of the raw audios, and the manual transcriptions.

4.1. Experimental Setup

In this experiment, we used the Cambridge University spoken
language understanding corpus, which was also used several
other SLU tasks in the past [30, 31]. The domain of the cor-
pus is about restaurant recommendation in Cambridge, and
the subjects of the corpus were asked to interact with mul-
tiple spoken dialogue systems for a number of dialogues in
an in-car setting. There were multiple recording settings: 1)
a stopped car with the air condition control on and off; 2) a
driving condition; 3) and in a car simulator. The distribution
of each condition in this corpus is uniform. An ASR system
was used to transcribe the speech into text, and the word er-
ror rate was reported as 37%. The vocabulary size is 1868.
The corpus contains a total number of 2,166 dialogues, re-
sulting a total number of 15,453 utterances. The ratio of male
vs. female is balanced, while there are slightly more native
speakers than non-native speakers. The total number of slots
in the corpus is 10, and they are: addr, area, food, name,
phone, postcode, price range, signature, task, and type.
We use develop set to tune the parameters « in (1) and the
number of clusters K.

4.2. Slot Induction

To understand the accuracy of the induced slots, we measure
the quality of induced slots as the proximity between induced

Table 1. The mapping table between induced slots (left) and
reference slots (right)

] Induced Slot

| Reference Slot |

speak on topic addr
part orientational
direction
area
locale
part inner outer
fo.o.d food
origin
(NULL) name
contacting phone
sending postcode
commerce scenario
expensiveness price range
range
(NULL) signature
seeking
desiring task
locating
locale by use i
building ype

Table 2. The results of induced slots (%)

MAP
Approach ASR | Manual
Frequency 67.31 | 59.41
K-Means 69.36 | 59.76
Spectral Clustering | 69.36 | 61.86

slots and reference slots. We manually created a mapping
table to indicate if the semantics of induced slots and refer-
ence slots are semantically related. This mapping table allows
many-to-many mappings, and is shown in Table 1.

For example, “commerce scenario — price range”,
“expensiveness — price”, “food — food”, and “direction
— area” are the mappings between the induced slot and the
reference slot. Since we define the adaptation task as a rank-
ing problem, with a ranked list of induced slots, we can use
the standard mean average precision (MAP) as our metric,
where the induced slot is counted as correct when it has a
mapping to a reference slot. Using the proposed spectral
clustering approach, we observed the best MAP of 69.36 on
the ASR output, and 61.86 on the manual transcription. The
result is encouraging, because this indicates that a vast ma-
jority of the reference slots that are actually used in a real-
world dialogue system can be induced automatically in an
unsupervised fashion using our approach. One of the three
methods we compared, spectral clustering performs best. The
reason why ASR obtains better result than manual transcrip-



Table 3. The top-5 Fl-measure slot-filling corresponding to matched slot mapping for ASR

SEMAFOR Slot | locale by use | speak on topic | expensiveness | origin | direction

Reference Slot type addr price range food area
F1-Hard (%) 89.75 88.86 62.05 36.00 29.81
F1-Soft (%) 89.96 88.86 62.35 43.48 29.81

Table 4. The results of induced slots and corresponding val-
ues (%)

Approach MAP-F1-Hard MAP-F1-Soft
PP ASR | Manual | ASR [ Mannual
Frequency 2696 | 27.84 | 27.29 28.68
K-Means 27.38 | 27.99 | 27.67 28.83
Spectral Clustering | 30.52 | 28.40 | 30.85 29.22

tion in this task may be that generic words might have higher
WER, probably because users tend to speak keywords clearer
than generic words. Therefore, the same generic word might
correspond to different SEMAFOR parses in the ASR out-
put due to recognition errors, and then these slot candidates
will be ranked lower by the coherence model, which aligns to
our initial goal: ranking domain-specific concepts higher and
generic concepts lower. The detailed results are shown in the
Table 2.

4.3. Slot Filling

While semantic slot induction is essential for providing se-
mantic categories and imposing semantic constraints, we are
also interested in understanding the performance of our in-
duced slot fillers.

For each matched mapping between the induced slot and
the reference slot, we can compute F-measure by comparing
the lists of extracted slot fillers with the induced slots, and
the slot fillers in the reference list. Considering that the slot
fillers may contain multiple words, we have two ways to de-
fine whether two slot fillers match each other: hard match-
ing and soft matching, where “hard” means that the values of
two slot fillers should be exactly the same, and “soft” means
that if the two slot fillers both contain at least one overlapping
words, we count this comparison as a matched case. We show
the top-5 hard-matching and soft-matching results of ASR in
Table 3.

Since the MAP score can be weighted by either soft or
hard matching, we compute the corresponding MAP-F1-Hard
and MAP-F1-Soft scores, which evaluate the accuracy of both
slot induction and slot-filling tasks together. The results of
slot ranking model are shown in Table 4.

5. DISCUSSIONS

In the slot induction experiment, we observed some inter-
esting induced slots: for example, “direction — area” and
“expensiveness — price range”. Here, “direction” and
“expensiveness” are induced slots, whose semantic mean-
ings correspond to “area” and “price range” in the refer-
ence slots respectively, which are essential to the task of SLU.
Our best system obtains an MAP of 69.36, indicating that our
proposed approach generates a good coverage of the domain-
specific semantic slots for real-world SDS.

In the slot filling evaluation, although the overall F-
measure is much lower than the slot induction task, it is pretty
much expected: when the induced slot mismatch the refer-
ence slot, all the slot fillers will be judged as incorrect fillers.
However, even though our dataset is different, the overall
F-measure performance aligns with related work of template
induction and slot filling in newswire based NLU tasks [22].
In addition, the best scoring systems in the past NIST slot
filling evaluation also have a F-measure ~ 0.3 [32, 33], in-
dicating the challenging nature of the slot filling task. While
we work in the SLU domain, it is entirely possible to apply
our approach to the text-based NLU and slot filling tasks.

6. CONCLUSION

In this paper, we propose an unsupervised approach for auto-
matic induction and filling of slots. Our work makes use of a
state-of-the-art semantic parser, and adapts the linguistically-
principled generic FrameNet-style outputs to the target se-
mantic space that corresponds to a domain-specific SDS set-
ting. In our experiments, we show that our automatically in-
duced semantic slots align well with the reference slots, which
are created by domain experts. In addition, we also study the
slot-filling tasks that extract the slot-filler information from
those automatically induced slots. In the future, we plan to
increase the coverage of frame semantic parses by incorpo-
rating the WordNet semantic resource.
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