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Abstract
In this paper, we investigate multiple approaches for auto-

matically detecting intoxicated speakers given samples of their
speech. Intoxicated speech in a given language can be viewed
simply as a different accent of this language; therefore we adopt
our recent approach to dialect and accent recognition to de-
tect intoxication. The system models phonetic structural dif-
ferences across sober and intoxicated speakers. This approach
employs SVM with a kernel function that computes similari-
ties between adapted phone GMMs which summarize speakers’
phonetic characteristics in their utterances. We also investigate
additional cues, such as prosodic events, phonotactics and pho-
netic durations under intoxicated and sober conditions. We find
that our phonetic-based system when combined with phonotac-
tic features provides us with our best result on the official de-
velopment set, an accuracy of 73% and an equal error rate of
26.3%, significantly higher than the official baseline.

1. Introduction
The impaired judgement and slowed response-times associ-
ated with intoxication can have dramatic consequences. In the
United States, hundreds of thousands of people are injured from
drunk driving accidents every year. Legal requirements of so-
briety while driving, flying and in other sensitive positions have
been in place for many years throughout the world. A system
to detect that a person is intoxicated through minimally invasive
means would be able to significantly aid in the enforcement of
these laws, and ultimately save lives. Additionally, there are
medical implications in detecting the degree to which a person
is intoxicated both for the application of care and avoiding med-
ication interactions with alcohol and other intoxicants. Explo-
ration of techniques for the recognition of alcohol-induced in-
toxicated speech is the focus of the Intoxication Sub-Challenge
of the Interspeech 2011 Speaker State Challenge [1].

From the point of view of speech research and technology,
Intoxication can be viewed as a state that has a temporary effect
on discernible features of a person’s speech. We can thus con-
sider intoxicated speech to be similar to speech resulting from
the temporary experience of other kinds of speaker state, which-
have been well studied in the literature, including the classic
emotions such as anger, happiness, and sadness. Similar to the
effect of emotion on speech, it has been found that there are
aspects of speech that are temporarily modified through intox-
ication, while the broad physiological properties of a person’s
speech production system – e.g. vocal tract length, mouth and
nasal cavity size and shape – remain unchanged. The task in
studying intoxicated vs. non-intoxicated speech is thus to iden-
tify which speech properties are modified by alcohol-based in-
toxication and how.

Alcohol is a neurological depressant; the release of potas-
sium to the bloodstream through metabolization of ethanol
slows neuron firing intervals. The broad effect of metabolized
alcohol is an overall depression of the central nervous system.

This slowing of neural responses can lead to asynchronicity in
the timing of speech articulators, including the lips, tongue, jaw,
vocal chords. This may have a profound impact on the realiza-
tion of phones and their durations.

In this work, we investigate three speech qualities that may
be impacted by intoxication. We first explore symbolic prosodic
qualities of intoxicated and sober speech. The hypothesis here
is that intoxicated speakers may use prosody in predictable
ways, realized through changes in phrasing and accenting be-
havior. Next, we investigate the variation of phone durations
and phonotactic constraints under intoxicated and sober condi-
tions. We hypothesize that articulator mistiming, and modified
speech rhythm in intoxicated speech may be observable through
the relative duration of phone units. Third, we investigate the
use of phone-sensitive acoustic modeling to detect intoxication.
This approach is based on the idea that the acoustic features
corresponding to specific phones may systematically vary in in-
toxicated and sober states. This system has been successfully
applied to the identification of spoken dialects and accents with
state-of-the-art performance on variety of dialects and accents
of multiple languages. The motivation here is that intoxicated
speech in a given language (e.g., German here) can be viewed
simply as a different accent of this language.

We discuss the materials we use in this work in the next
Section. In Section 3, we describe our prosodic modeling ap-
proach and its results. Similarly, we describe our phone dura-
tion and phonotactic modeling in Sections 4 and 5, respectively.
Then, we describe our novel approach for this task using our
phonetic-based SVM kernel approach along with our experi-
mental results. Finally, in Section 7, we conclude and propose
directions for future work.

2. Materials
For our experiments, we use the Interspeech 2011 Speaker State
Challenge German Alcohol Language corpus [1]. The official
training set contains 3750 sober utterances and 1650 intoxicated
utterances, giving a majority class for this data set of 69.4%.
The official development set contains 2790 sober utterances and
1170 intoxicated utterances, for a majority class of this devel-
opment data set of 70.5%. The official “weighted accuracy” of
the baseline system on the development set is 69.2% [1].

In addition to evaluating our system on this official devel-
opment set (while training on the official training set), we also
decided to test our system using a (nearly) balanced data for
training and testing. We attempted to balance both number of
speakers and number of utterances at the same time. To do that,
we first combine the training and development sets and then ran-
domly select 20% of the speakers (from the grouped data) from
each class as the new development set and 80% for training.
Next we attempt to equalize the number of utterances in both
classes in training and testing, by downsampling. The details of
this selection are presented in Table 1. We denote this selection
as the balanced set. For this new division, the majority class
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of the development set is now 52%; the majority class of the
training set is 53.7%.

Class # Train Spk. # Train Utt. # Test Spk. # Test Utt.

Intoxicated 74 2220 20 600
Sober 83 2573 21 651

Table 1: Number of speakers and utterances in our balanced set

3. Prosodic Variation
We first hypothesize that intoxicated speakers may use prosodic
contours differently from sober speakers. For example, ener-
getic intoxicated speakers may systematically more emphasize
than sober speakers, whereas depressed intoxicated speakers
might use less emphasis. Phrasing is thought to be influenced
by sentence planning [2, 3], if a speakers ability to plan future
constituents is impaired by alcohol, they may include more dis-
fluencies and intonational phrase boundaries.

We use the AuToBI toolkit [4] to identify prosodic events
on the IS11 Speaker State Challenge (IS11-SSC) material auto-
matically. AuToBI is an open-source toolkit that automatically
predicts ToBI (Tones and Break Indices) [5] annotations aligned
to a word-segmentation. AuToBI first detects pitch accents and
phrase boundaries, and then classifies these based on the in-
ventory described in the ToBI standard. The ToBI standard en-
codes three types of prosodic events, pitch accents, intermediate
and intonational phrase boundaries. Each of these are classi-
fied into categorical types based on pitch contours coincident
with their realization. These types are defined based on high
(H) and low (L) tones which identify pitch accents, phrase ac-
cents, and boundary tones in Standard American English (SAE)
speech. The AuToBI models are trained on SAE speech from
the Boston Directions Corpus material [6]. AuToBI uses word
boundaries to determine regions of analysis, and align predic-
tions, but does not use the lexical identity of the words to make
predictions. While there are some similarities between SAE and
German intonation, AuToBI is likely to generate noisy hypothe-
ses the IS11-SSC material due to differences between SAE and
German intonation; however, AuToBIs hypothesized tones may
still contain some discriminative information with respect to in-
toxicated vs. sober speech.

To represent an utterances prosodic contour, we use a
feature representation capturing the n-gram frequencies of
the prosodic event sequence without explicitly constructing a
Markov chain model. For each value of n, we calculate the
rate of occurrence of each n-gram in the observation sequence.
To approximate the function of a backoff language model we
include these n-gram features at n = {1, 2, 3}. We construct
these features using the full set of ToBI tones and collapsing
some similar tones. We also explore an n-gram representation
in which deaccented words are represented. In addition, we in-
clude features such as the relative frequency of pitch accent,
phrase accent and boundary tone types, and the overall accent-
ing and phrasing rates and the number of tones in the sequence.
Using these features, we train a logistic regression classifier
with L1-regularization.

We first perform 10-fold cross validation on the official
training material and observe 69.8% accuracy. Evaluating on
the official development set, the prosodic modeling fails to sig-
nificantly outperform the majority class baseline, with 69.6%
accuracy and an f-measure of 0.032. Note that the skewed dis-
tribution toward sober speakers could have a profound impact
on the classifier performance. Although cross-validation does
not explain the task difficulty, since the same speakers can be in
both the test and train folds, reporting this accuracy throughout

this paper can still be valuable, especially in cases where there
are (training) samples from a speaker to be tested.

Evaluating the model trained on the balanced training set on
the balanced development data, the accuracy remains at base-
line, 53.3%, yet the f-measure is 0.457. This corresponds to
0.53 precision and 0.40 recall, suggesting that there is some dis-
criminative information in the prosodic signal. There are a few
possible explanations for our poor performance on this mate-
rial. First, the AuToBI hypotheses are generated using mod-
els trained on English speech; the errors from applying these
models to German material may be too great to yield a useful
representation of prosody. Second, prosodic analysis is most
effective on longer utterances, the short productions that make
up much of the material may also limit the efficacy of this ap-
proach. Finally, while it is likely that a single speaker’s prosody
is modified when intoxicated, the differences across speakers
may not be consistent enough to be detected using this ap-
proach.

4. Phone Duration Variation
We hypothesize that intoxication may lead to changes in cer-
tain phone durations. We make use of the phones and temporal
alignment provided for the training and development data to ex-
tract phone duration statistics for each phone type in each utter-
ance. For each utterance, we extract the following features for
each phone type: minimum, maximum, mean and standard de-
viation of durations of all phone instances of this phone type in
the utterance. We also include global phone duration statistics
at the utterance level. Specifically, we extract additional four
duration features: minimum, maximum, mean and standard de-
viation of the durations of all phone instances from all types.

Using these features in a logistic regression classifier, we
obtain an accuracy of 69.6% with 10-fold cross validation using
the official training data. Testing on the official development
set, we obtain an accuracy of 70.5%. It is interesting that, with
such relatively simple features, we obtain an accuracy higher
than the 69.2% obtained by the baseline system. Although our
accuracy is not higher than the majority class, when we look at
the confusion matrix, we see that our classifier does not always
choose the majority class. Training and testing this classifier
on our balanced sets, we obtain an accuracy of 62.5%, which
is significantly better than the majority class baseline (52%).
From these results it appears that phone duration statistics to be
valuable in distinguishing intoxicated vs. sober speakers.

5. Phonotactic Variation
Phonotactic modeling has been quite successful for language
and dialect identification [7]. Here, we hypothesize that in-
toxication may cause speakers to pronounce words differently,
choosing certain pronunciation variants more frequently than
others, and may even choose certain words more frequently, af-
fecting the phonotactic patterns in each class. We take a vector-
space based phonotactic modeling approach. We first collect
the set of all triphones in the training data.1 We construct a
feature vector for each utterance, where each element in this
vector corresponds to a single triphone in our set. The value of
this element is the frequency of this triphone in this utterance.
To compensate for utterance duration differences, we normalize
this vector by its Euclidian norm.

We use these feature vectors to train an SVM classifier with
linear kernel. The 10-fold cross-validation on the official train-
ing data is 70.1%. Training and testing on the official training
and development data, respectively, we obtain an accuracy of
71.1%, which is significantly higher than the official baseline
system (69.2%). Also, this accuracy is higher than the majority

1We add “start” and “end” symbols to the borders of each utterance.
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class baseline (70.5%), although the difference is not signifi-
cant. If we train an SVM classifier using this approach on our
balanced training data and test it on the balanced test set, we
obtain an accuracy of 71.1%, which is significantly higher than
the majority class baseline (52%). These results suggest that the
phonotactic distributions across the two classes are significantly
different.

Since the task of this challenge is detection, we believe it
is useful to report the Detection Error Tradeoff (DET) curve,
which plots false alarm vs. miss probabilities (of missing in-
toxicated speakers), as is standard in speaker verification. The
DET curve allows us to determine the detection threshold of in-
terest. The DET curve has also an advantage over accuracy here
due to the skewness of the official development set.2 As shown
in Figure 1, the Equal Error Rate (EER) of the phonotactic ap-
proach on the official development set is 33.5%, significantly
better than chance.3 We obtain a slightly better EER when em-
ploying our balanced set, of 30.8%, also significantly better than
chance (see Figure 2).
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Figure 1: DET curve for the official development set (training
on the official training set)
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Figure 2: DET curve for our balanced set (training on our bal-
anced training set)

6. Spectral-Phonetic Variation
In this section, we rely on the hypothesis that intoxicated
speakers realize certain phones differently than sober speakers.

2Now chance is the line that goes through (50,50) with a slope of -1.
3We use the NIST scoring software developed for LRE07:

www.itl.nist.gov/iad/mig/tests/lre/2007

To model phonetic structural differences across these classes
(sober and intoxicated), we adopt our recent and successful ap-
proach to dialect and accent recognition [8], treating intoxi-
cated speech in a given language simply as a different accent
of this language. Again, we make use of the phones and align-
ments provided for this task, although one could also use a high-
quality phone recognizer to obtain such information.

6.1. Phone GMM-UBM

The first step in our approach is to build an acoustic model for
each German phone type. In particular, we first extract acoustic
features temporarily aligned to each phone instance in the train-
ing data from both classes. The acoustic features we use here
are 13 RASTA-PLP features (including energy) plus delta and
delta-delta, resulting in a 39D feature vector from each frame.
Afterwards, using the frames aligned to the same phone type
(in all training utterances), we train a Gaussian Mixture Model
(GMM), with 60 Gaussian components with diagonal covari-
ance matrices, for this phone type, employing the EM algo-
rithm. We have observed that some phone types occur infre-
quently in the training data; therefore, we build only a single
GMM for each of the most frequent 45 phone types. Each phone
GMM can be viewed as a GMM-Universal Background Model
(GMM-UBM) for that phone type, since it models the general
realization of that phone in both classes [9]. We term these
GMMs as phone GMM-UBMs.

6.2. Phonetic Representation

For our approach, we need a representation that captures the
acoustic-phonetic features for each phone type in a given utter-
ance (U ). We adopt the GMM representation [10] but at the
level of phone types rather than the entire utterance. Specifi-
cally, we first obtain the acoustic frames aligned to every phone
instance of the same phone type in U . We then use these
frames to MAP (Maximum A-Posteriori) adapt the correspond-
ing phone GMM-UBM. We adapt only the means of the Gaus-
sians using a relevance factor of r = 0.1. We denote the result-
ing GMM of phone type φ as the adapted phone-GMM (fφ).
The intuition here is that fφ ‘summarize’ the variable number
of acoustic frames of all the phone instances of a phone-type φ
in a new distribution specific to φ in U .

6.2.1. A Phone-Type-Based SVM Kernel

We represent each utterance U as a set SU of adapted phone-
GMMs, each of which corresponding to one phone type. There-
fore, the size of SU is at most the size of the phone inven-
tory (|Φ|). Let SUa = {fφ}φ∈Φ and SUb = {gφ}φ∈Φ be
the adapted phone-GMM sets of utterances Ua and Ub, respec-
tively. Now we design a kernel function to compute the ‘simi-
larity’ between pairs of utterances given their adapted phone-
GMM sets. In this work, we compare the Kullback–Leibler
(KL) divergence between the two adapted phone-GMMs, fol-
lowing [10, 11]. Unfortunately, the KL-divergence is not sym-
metric and does not satisfy the Mercer condition, and thus does
not meet the requirements for use as the kernel function for an
SVM. However, Campbell et al. [10] have proposed a kernel
function between GMMs based on an upper bound for their KL-
divergence proposed by Do [12]. This function assumes that
only the means of the GMMs are adapted, which is true in our
case.

Using this KL-divergence-based kernel between two
adapted phone-GMMs modeling phone φ, we obtain the kernel
function:

Kφ(fφ, gφ) =
∑

i

(
√
ωφ,iΣ

− 1
2

φ,i μ
f
i )

T (
√
ωφ,iΣ

− 1
2

φ,i μ
g
i ) (1)
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where ωφ,i and Σφ,i respectively are the weight and diagonal
covariance matrix of Gaussian i of the phone GMM-UBM of

phone-type φ; μf
i and μg

i are the mean vectors of Gaussian i of
the adapted phone-GMMs fφ and gφ, respectively. We define
our kernel function between a pair of utterances:

K(SUa , SUb) =
∑

φ∈Φ
Kφ(f

′
φ, g

′
φ) (2)

where f ′φ is the same as fφ but we subtract from its Gaussian
mean vectors the corresponding Gaussian mean vectors of the
phone GMM-UBM (of phone type φ). g′φ is obtained similarly
from gφ. The subtraction allows zero contributions from Gaus-

sians that are not affected by the MAP adaptation.4

It is interesting to note that, for (2), when Kφ is a linear ker-
nel, such as the one in (1), we can represent each utterance SUx

as a single vector. This vector, say Wx, is formed by stacking
the mean vectors of the adapted phone-GMM (after scaling by
√
ωφΣ

− 1
2

φ and subtracting the corresponding �μφ) in some (ar-
bitrary) fixed order, and zero mean vectors for phone types not
in Ux. This representation allows the kernel in (2) to be written
as in (3). This vector representation can be viewed as the ‘pho-
netic finger print’ of the speaker. It should be noted that, in this
vector, the phones constrain which Gaussians can be affected
by the MAP adaptation (allowing comparison under linguistic
constraints), whereas in the GMM-supervector approach [13],
in theory, any Gaussian can be affected by any frame of any
phone.

K(SUa , SUb) = WT
a Wb (3)

Since we found in Section 4 that phone durations are impor-
tant features, we also include duration statistics for each phone
type from Ux in this vector (Wx), including the mean and stan-
dard deviation of the log durations of the phone instances of the
same type in the utterance. As a result, we include 90 (45x2)
new duration features.

Now we test whether our method can capture phonetic dif-
ferences between sober and intoxicated speakers. For our first
experiment, we use the official training data from both classes to
train our phone GMM-UBMs. Then, we construct a vector Wx

for each utterance in the training data, as described above. Af-
terwards, employing our kernel function (3), we first compute a
kernel matrix for both classes using these vectors. We then train
a standard binary SVM classifier using this kernel matrix. Our
accuracy on 10-fold cross validation, using all the official train-
ing data, is 75.8%. This is significantly better than the majority
class which is 69.4% and all our approaches above. Testing
our approach on the development set, we obtain a significant
improvement in accuracy (72.8%) over both the majority class
accuracy (70.5%) and the baseline system’s accuracy (69.2%)
and better than every other approach above. As shown in Fig-
ure 1, the EER of our system using this approach on the official
development set is 30.9%, slightly better than the phonotactic
system.

To test our system on our balanced data, we train our phone
GMM-UBMs, employing our balanced set of training data. We
then train an SVM classifier as described above. Evaluating this
classifier on our balanced development set, we obtain an accu-
racy of 71.2%, which is significantly better than majority class
(52%). We report the DET curve on our balanced development
set in Figure 2; the EER is 28.2%.

We are also interested in testing whether phonotactics and
phonetic systems can contribute to the classification task when
combined. To plot the combination DET curves, we simply

4We have observed that this subtraction slightly improves accuracy
in our dialect recognition work [8].

sum the posteriors from the two classifiers. As shown in Fig-
ures 1 and 2, we observe that, in fact, the combination of these
two approaches improve the EER over using any approach alone
for both sets (the official and balanced). We obtain an EER of
29.4% using the official sets, and 26.3% on the balanced sets.

7. Conclusions and Future Work
We have conducted a series of experiments designed to au-
tomatically detect intoxicated speakers given samples of their
speech, as part of 2011 Interspeech Speaker State Challenge:
Intoxication Sub-challenge. We have examined classifiers
based on prosodic events, phone durations, phonotactic pat-
terns, and spectral phonetic features. We have found that mod-
eling automatically obtained prosodic events does not seem to
be effective for this task. However, phone durations do provide
an important contribution to the classification task. Moreover,
phonotactic features seem to be even more informative features
(EER=30.8% on the balanced set). Finally, our novel approach,
which relies on the hypothesis that certain phones are realized
differently across intoxicated and sober speakers, provides us
with better accuracy on this task (EER=28.2%). Yet, the com-
bination of the phonotactic and phonetic approaches gives the
best results (EER=26.3%). Both our phonetic-based kernel sys-
tem (accuracy of 72.8%) and the combination system (73.0%)
achieve significant improvements over the majority class and
the baseline system (p-value<0.001), when trained on the offi-
cial training data and tested on the official development set as
well as on the balanced sets.

We have observed in our dialect and accent recognition
work that adding more training data from more speakers sub-
stantially improves results. We plan in future work to test this
approach when more training data is available. We also plan
to incorporate prosodic and phonotactic features directly in our
kernel function.
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