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Abstract

A key challenge in statistical relational learning is to develop
a semantically rich formalism that supports efficient proba-
bilistic reasoning using large collections of extracted infor-
mation. This paper presents a new, scalable probabilistic logic
called ProPPR, which further extends stochastic logic pro-
grams (SLP) to a framework that enables efficient learning
and inference on graphs: using an abductive second-order
probabilistic logic, we show that first-order theories can be
automatically generated via parameter learning; that in pa-
rameter learning, weight learning can be performed using par-
allel stochastic gradient descent with a supervised personal-
ized PageRank algorithm; and that most importantly, queries
can be approximately grounded with a small graph, and in-
ference is independent of the size of the database.

Introduction
One key problem for scaling up first-order probabilistic
first-order logics is that queries are typically answered
by “grounding” the query—i.e., mapping it to a propo-
sitional representation, and then performing propositional
inference—and for many logics, the size of the “grounding”
can be extremely large for large databases.

We propose a first-order probabilistic language which is
well-suited to approximate “local” grounding: we present
an extension to stochastic logic programs (SLP) (Cussens
2001) that is biased towards short derivations, and show
that this is related to personalized PageRank (PPR) (Page
et al. 1998; Chakrabarti 2007) on a linearized version of the
proof space. Based on the connection to PPR, we develop a
proveably-correct approximate inference scheme, and an as-
sociated proveably-correct approximate grounding scheme:
specifically, we show that it is possible to prove a query, or to
build a graph which contains the information necessary for
weight-learning, in time O( 1

αε ), where α is a reset param-
eter associated with the bias towards short derivations, and
ε is the worst-case approximation error across all intermedi-
ate stages of the proof. This means that both inference and
learning can be approximated in time independent of the size
of the underlying database—a surprising and important re-
sult. The ability to locally ground queries has another impor-
tant consequence: it is possible to decompose the problem of
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Table 1: A simple program in ProPPR. See text for explana-
tion.

about(X,Z) :- handLabeled(X,Z) # base.
about(X,Z) :- sim(X,Y),about(Y,Z) # prop.
sim(X,Y) :- links(X,Y) # sim,link.
sim(X,Y) :-

hasWord(X,W),hasWord(Y,W),
linkedBy(X,Y,W) # sim,word.

linkedBy(X,Y,W) :- true # by(W).

Figure 1: A partial proof graph for the query about(a,Z).
The upper right shows the link structure between documents
a, b, c, and d, and some of the words in the documents.

weight-learning to a number of moderate-size subtasks (in
fact, tasks of size O( 1

αε ) or less) which are weakly coupled.
Based on this we outline a parallelization scheme, which in
our initial implementation provides an order-of-magnitude
speedup in learning time.

ProPPR1

Table 1 and Figure 1 illustrate a ProPPR theory and a cor-
responding proof graph. We refer the reader to prior pa-
pers (Wang, Mazaitis, and Cohen 2013; Wang et al. 2014)
for a detailed explanation of ProPPR’s semantics: briefly, a
ProPPR theory T is a Horn clause (Prolog) theory, where
each clause c is associated with a function φc which com-
putes a set of features. ProPPR builds a graph rooted at the
query goal, where each node corresponds to a conjunction of
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goals A1, . . . , Ak and a substitution θ that imply the query
goal (i.e. T ∧ (A1, . . . , Akθ) → Qθ), and each edge corre-
sponds to the application of a clause c. The feature-functions
φc are simple: each feature corresponds to a Prolog goal,
which may include bound variables from the head of the
clause, the bindings of which are supplied when φc is in-
voked. A node corresponding to an the empty conjunction
(denoted 2) is a leaf of the graph, are corresponds to a com-
pleted proof of the query goal. Every edge created by the
clause c is labeled with the features produced by φc for that
application of c. Note that each different 2 node corresponds
to a different proof for Q, and different proofs may be asso-
ciated with different substitutions θ and hence different so-
lutions to the query Q.

Finally, we associated a score with each node in the graph
by performing a personalized PageRank (PPR) (aka “ran-
dom walk with restart”) process, where transition probabili-
ties are based on edge weights, which are in turn determined
by a weighted function of the features.

ProPPR allows a fast approximate proof procedure, in
which only a small subset of the full proof graph is gen-
erated. In particular, if α upper-bounds the reset probability,
and d upperbounds the degree of nodes in the graph, then
one can efficiently find a subgraph with O( 1

αε ) nodes which
approximates the weight for every node within an error of
dε (Wang, Mazaitis, and Cohen 2013), using a variant of the
PageRank-Nibble algorithm of Reid et al (Andersen, Chung,
and Lang 2008).

Experiments
Parameter Learning
ProPPR’s parameter learning framework is implemented us-
ing a parallel stochastic gradient descent variant to optimize
the log loss using the supervised personalized PageRank al-
gorithm (Backstrom and Leskovec 2011): given the training
queries, we perform a random walk with restart process, and
upweight the edges that are more likely to end up with a
known positive solution. In experiments (Wang, Mazaitis,
and Cohen 2013), we show that learning in ProPPR helps
improving the AUC of an entity resolution experiment from
0.68 to 0.8 on the CORA dataset; and that significant
speedup in parallel learning can be achieved by multithread-
ing. We also demonstrate that, for a bag-of-words classifi-
cation task on the WebKB dataset, parameter learning for
ProPPR is able to improve the AUC from 0.5 to 0.797; and
that the average training time for 16 threads is only about 2
minutes.

Scalable Inference
To demonstrate the effectiveness of ProPPR’s inference
scheme, we also consider the inference time of ProPPR
on the Cora entity resolution dataset, comparing to vari-
ous MLN inference methods. In our CIKM paper (Wang,
Mazaitis, and Cohen 2013), we fix the amount of test
queries, and increase the size of the database for entity res-
olution of the CORA dataset. We empirically show that the
inference time in ProPPR is independent of the size of the

database, whereas all the inference methods (Gibbs sam-
pling, Lifted Belief Propagation, and MAP) in MLN depend
on the size of the dataset. Similar results are also observed
in the WebKB experiments. In recent work, we also study
the joint inference task (Wang et al. 2014) on the 1M-facts
subsets of the NELL KB, using recursive first-order theo-
ries. Comparing ProPPR to MC-SAT (MLN) in our large-
scale inference experiments on the NELL datasets (Wang et
al. 2014), we also notice the significant improvement in the
inference time, when varying the amount the entities in the
database.

Structure learning
ProPPR’s structure learning scheme is based on a meta-
interpretive program that resembles Metagol (Muggleton
and Lin 2013). The idea is that: using an abductive second-
order logic, one can construct the hypothesis space for first-
order theories, and thus structure learning can be relaxed to
parameter learning. In our preliminary experiments, we find
that in a KB completion task using Geoff Hinton’s kinship
dataset, neither FOIL nor Alchemy’s MLN structure learn-
ing method outperform our simple baseline, and our iterated
strutural gradient approach further improve the baseline. We
then further validate the result on additional datasets, includ-
ing a Alyawarra kinship dataset (Denham 1973), a UMLS
dataset (McCray et al. 2001; McCray 2003), and two NELL
subsets. These additional experimental results show that our
proposed method consistently outperforms Alchemy’s MLN
on various problems.
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