
Structure Learning via Parameter Learning

William Yang Wang
Language Technologies Inst.
Carnegie Mellon University
Pittsburgh, PA 15213, USA.

yww@cs.cmu.edu

Kathryn Mazaitis
Machine Learning Department

Carnegie Mellon University
Pittsburgh, PA 15213, USA.
krivard@cs.cmu.edu

William W. Cohen
Machine Learning Department

Carnegie Mellon University
Pittsburgh, PA 15213, USA.
wcohen@cs.cmu.edu

ABSTRACT
A key challenge in information and knowledge manage-
ment is to automatically discover the underlying structures
and patterns from large collections of extracted informa-
tion. This paper presents a novel structure-learning method
for a new, scalable probabilistic logic called ProPPR. Our
approach builds on the recent success of meta-interpretive
learning methods in Inductive Logic Programming (ILP),
and we further extends it to a framework that enables ro-
bust and efficient structure learning of logic programs on
graphs: using an abductive second-order probabilistic logic,
we show how first-order theories can be automatically gen-
erated via parameter learning. To learn better theories, we
then propose an iterated structural gradient approach that
incrementally refines the hypothesized space of learned first-
order structures. In experiments, we show that the proposed
method further improves the results, outperforming compet-
itive baselines such as Markov Logic Networks (MLNs) and
FOIL on multiple datasets with various settings; and that
the proposed approach can learn structures in a large knowl-
edge base in a tractable fashion.

Categories and Subject Descriptors
[Information Systems Applications]: Miscellaneous

Keywords
Probabilistic Prolog, structure learning, personalized
PageRank

1. INTRODUCTION
Many information-management tasks (including classifi-

cation [20], retrieval [10], information extraction [28], and
information integration [29, 6]) can be formalized as learn-
ing and inference in an appropriate probabilistic first-order
logic. To simplify the task, in many cases, first-order logic
clauses in probabilistic logic systems are hand-written by
developers, and the tasks consist of only parameter learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’14, November 3–7, 2014, Shanghai, China.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2598-1/14/11 ...$15.00.
http://dx.doi.org/10.1145/2661829.2662022 .

and inference. However, building such a hand-written first-
order logic system can be very challenging: in the initial
stage, domain experts or the developers themselves have to
manually define the logic clauses that situates the domain-
specific application scenarios. However, this approach might
not generalize well to real-world problems, and the prede-
fined clauses can be limited. Another issue is about the
efficiency: constructing first-order logic programs manually
can be very time-consuming, and have high financial costs.
Finally, the maintenance cost is also non-trivial: when new
data comes in, developers have to manually analyze the new
dataset for updating and expanding the existing first-order
clauses. Therefore, automated learning of logic program
structures is of crucial significance for building robust first-
order logic systems.

Unfortunately, many of the existing structure learning
methods for learning probabilistic first-order logics are not
efficient enough to be used for practical-sized datasets: when
the total number of predicates and entities in a database
become large, the costs of searching through all possible
candidates to construct first-order clauses are also growing
rapidly. For example, some existing techniques for learn-
ing Markov Logic Networks (MLNs) [31] may take days to
run [14, 15], even though the input datasets include only a
few dozen predicates and a few thousand grounded atoms.

This paper presents a structure-learning method for
a new, scalable probabilistic logic called ProPPR [37].
ProPPR is efficient enough to support inference over large,
noisy knowledge bases, and supports parameter learning us-
ing a parallelized version of stochastic gradient descent. In
some cases, ProPPR is dramatically faster than prior ap-
proaches: for instance, ProPPR takes well under a minute
on an ordinary desktop to learn numeric parameters for a
theory with hundreds of clauses, over a knowledge base con-
taining a million constants, while a state-of-the-art MLN
implementation requires several hours for the same task, on
a knowledge base only 1/1000 of the size [38]. However,
there are no existing methods for learning ProPPR theories:
previous experiments have used theories learned assuming
radically different semantics for the clauses, or hand-written
theories.

We present here a structure-learning method based on a
recently-learned approach to learning the structure of con-
ventional logic programs, in which logic programs are gener-
ated by using a second-order abductive program to “prove”
that every observed positive example is covered. In ab-
ductive reasoning, assumptions are made, as necessary, to
complete a proof: in this setting, the assumptions made by

Table 1: A simple program in ProPPR [37]. See
text for explanation.

about(X,Z) :- handLabeled(X,Z) # base.
about(X,Z) :- sim(X,Y),about(Y,Z) # prop.
sim(X,Y) :- links(X,Y) # sim,link.
sim(X,Y) :-

hasWord(X,W),hasWord(Y,W),
linkedBy(X,Y,W) # sim,word.

linkedBy(X,Y,W) :- true # by(W).

the second-order program concern the existence of elements
of the first-order program being generated. This approach,
which is embodied in a system called Metagol [25], turns
out to be both elegant and powerful, providing a conceptu-
ally clear framework for such important tasks as predicate
invention, and learning recursive programs.

In this paper, we adapt a Metagol-like approach to learn-
ing ProPPR rules. In particular, we present an “abductive”
stochastic second-order program for ProPPR, in which ev-
ery assumption corresponds directly to a useful clause in a
ProPPR program, and where further, every learnable param-
eter corresponds directly to a first-order clause. Structure
learning is performed by computing the gradient of these
features on training data, and constructing a small first-
order stochastic program, consisting of those clauses that
are potentially useful according to the gradient information.
Parameters for this first-order program can then be learned
in the usual way. We show that on small problems, this
approach provides more accurate theories on the task of
knowledge base completion, where the goal is to learn an
interrelated set of rules to infer missing facts in an incom-
plete knowledge base. The method is also scalable enough to
perform knowledge base completion for realistic knowledge
bases containing tens of thousands of facts. We then propose
an iterative variant of the gradient-guided structure learning
approach that incrementally refines the hypothesized space
of plausible clauses. Furthermore, to demonstrate the ro-
bustness of our approach, we also show promising results
in two additional structure learning tasks in the biomedical
and anthropological domains.

In the next section, we review the foundations and basic
characteristics of ProPPR. In Section 3, we introduce the
idea of using an abductive second-order theory for structure
learning in ProPPR, focusing the problem of knowledge base
(KB) completion, and learning inter-related relations. In
Section 4, we demonstrate the robustness of our approach
by showing the results for learning structures in the NELL
KB, a biomedical ontology, as well as a complex kinship
system. We then discuss related work in Section 5. Finally,
we conclude in Section 6.

2. BACKGROUND: PROPPR
Table 1 and Figure 1 illustrate a ProPPR theory and a

corresponding proof graph. We refer the reader to prior
papers [37, 38] for a detailed explanation of ProPPR’s se-
mantics: briefly, however, a ProPPR theory T is a Horn
clause (Prolog) theory, where each clause c is associated with
a function φc which computes a set of features. Concep-
tually, a ProPPR program is executed by backward chain-

ing, as in Prolog; however, rather that simply searching for
a proof of a goal Q to determine if it is “true” according
to the theory, ProPPR will use the the number of “proba-
ble” proofs to assign a degree of “truth” to a goal. In or-
der to do this, ProPPR builds a graph rooted at the query
goal, where each node corresponds to a conjunction of goals
A1, . . . , Ak and a substitution θ that imply the query goal
(i.e. T ∧ (A1, . . . , Akθ) → Qθ), and each edge corresponds
to the application of a clause c.

In the experiments of this paper, the feature-functions φc
are simple: each feature corresponds to a Prolog goal, which
may include bound variables from the head of the clause,
the bindings of which are supplied when φc is invoked. A
node corresponding to an the empty conjunction (denoted
2) is a leaf of the graph, and corresponds to a completed
proof of the query goal.

Additionally, every edge created by the clause c is la-
beled with the features produced by φc for that application
of c. As in many deductive-database systems, we distin-
guish between the two types of clauses: the large number
of unit clauses (aka facts) that comprise the “database”, or
extensionally-defined predicates (in the figure, the clauses
defining handLabeled, hasWord and linkedBy); and the small
number of clauses that comprise the “intensional” predicates
(e.g., about and sim). Applications of any database clause
are labeled with the special feature db.

Note that each different 2 node corresponds to a differ-
ent proof for Q, and different proofs may be associated with
different substitutions θ and hence different solutions to the
query Q. (In the figure, for instance, the leaf in the lower
left corresponds to the solution θ = {Z = fashion} of the
query Q = about(a,Z), while the leaf in the lower right cor-
responds to {Z = sport}.) Following the related formalism
of stochastic logic programs (SLPs), we will assign a prob-
abilistic score to every node in the proof graph, and then,
to assign a probabilistic score to a particular solution Q′,
we simply marginalize over all leaf nodes (2i, θi) such that
Qθi = Q′.

Finally, we associated a score with each node in the graph
by performing a personalized PageRank (PPR) (aka “ran-
dom walk with restart”) process, where transition probabili-
ties are based on edge weights, which are in turn determined
by a weighted function of the features. In more detail [37,
38] the random process which defines the node weights are
as follows. (a) Compute the total weight z of each out-
going edge as g(

∑
i λifi), where the sum is taken of the

features f1, . . . , fK which label that edge. Here, g(·) is an
edge strength function, and in this study, we choose the well-
known hyperbolic tangent function tanh as g. The outgoing
edges include an implicit restart edge, which goes back to
to query node, and a self-loop edge which connects every
empty goal list (i.e., solution node) to itself. (b) Normalize
the edge weights to form a probability distribution, and pick
an edge from that distribution. (c) Follow the edge to its
destination and repeat.

These semantics are similar to those used SLPs [7], with
two changes. One is the addition of the restart edges, which
allow for a fast approximate proof procedure, in which only
a small subset of the full proof graph is generated. In par-
ticular, if α upper-bounds the reset probability, and d up-
perbounds the degree of nodes in the graph, then one can
efficiently find a subgraph with O(1

αε
) nodes which approx-

imates the weight for every node within an error of dε [37],

Figure 1: A partial proof graph for the query about(a,Z). The upper right shows the link structure between
documents a, b, c, and d, and some of the words in the documents. Restart links are not shown. [37]

using a variant of the PageRank-Nibble algorithm of Reid
et al [1] . The second change is the addition of the feature
functions, φc, which are used heavily in this work.

ProPPR’s parameter learning framework is implemented
using a parallel stochastic gradient descent variant to op-
timize the L2-regularized logarithmic loss using the super-
vised personalized PageRank algorithm [2]: given the train-
ing queries and known solutions, we perform a random walk
with restart process, and upweight the weights (edges) that
are more likely to end up with a known positive solution.

The PPR-based scores used by ProPPR are quite differ-
ent from the probability scores adopted by MLNs [31] and
similar formalisms: intuitively, they measure the proportion
of short proofs which support a belief, rather than counting
the proportion of models in which the belief is true. Past
experiments have used these scores in a retrieval context,
to order potential answers to a query. In this context it
has been shown that with parameter-learning, ProPPR per-
forms well on tasks such as entity resolution, and inference
over noisy knowledge bases [37]. Below we will consider the
more difficult problem of learning the clauses of a ProPPR
program.

3. STRUCTURE LEARNING FOR PROPPR

3.1 Structure learning is difficult for KB com-
pletion

To illustrate and motivate the problem of structure learn-
ing for ProPPR, we will use a classic problem introduced by
Hinton in 1986 [11]. In this problem we have two families,
each with twelve individuals, and twelve binary relations be-
tween these individuals: husband, wife, father, mother, son,
daughter, brother, sister, uncle, aunt, nephew, and niece.
From this data, we can also define 104 “queries”, such as un-

Figure 2: The families dataset, from [11].

cle(charlotte,Y), each of which has some positive (correct)
answers (e.g.uncle(charlotte,james)), and some incorrect an-
swers. In our experiments the universe of potential answers
(which we use ProPPR to rank) consists of all person pairs
that are related by one of the twelve known predicates. We
measure mean average precision (MAP)1 over all the Te test
queries.

In past experiments, high accuracies have been obtained
by holding back a small number of test queries and train-
ing on the rest. We confirmed these results with two sys-
tems: Quinlan’s FOIL [30] and Alchemy with structure-
learning [14]. We designated one family as test and one
as train, and we then performed 12 experiments where we

1Note that AP not only measures precision at rank k, but
also measures recall: it uses the denominator to penalize the
cases where positive solutions are missing. MAP has shown
to be very robust and stable in many tasks [21], and it is
widely used in relation learning tasks (e.g. [32] [16]).

Figure 3: Completing an incomplete DB of fam-
ily relations. X-axis: the percentage of background
facts missing. Y-axis: the MAP result.

held out the queries from a single relation: in other words,
for relation R, database consisted of facts defining the other
11 relations for both the train and test family; the train-
ing data consisted of the queries for R from the train fam-
ily; and the test data was the queries for R from the test
family. FOIL obtained precision of 100% for all 12 rela-
tions, and Alchemy obtained precision of 100% on 11 of
the 12. This is not surprising, since all of the predicates
have succinct definitions in terms of the others: for instance,
wife(X,Y)⇔ husband(Y,X) (in this data).

However, the prior systems do not perform well if they
need to learn interrelated concepts. We held out six
pairs of relations (wife/husband, sister/brother, aunt/uncle,
niece/nephew, and daughter/son) and repeated the same
experiments. Alchemy’s mean average precision (MAP) on
the six problems drops to 27%, and FOIL’s drops to zero.
The problem for both systems stems from the use of pseudo-
likelihood2 to estimate the semantics of the partially-learned
program from examples, rather than actual inference us-
ing the learned program. As a typical result, for the re-
lation pair aunt/uncle, FOIL learns the rules uncle(X,Y) :-
husband(X,Z), aunt(Z,Y) and aunt(X,Y) :- wife(X,Z), un-
cle(Z,Y), which are circular.

Another illustration of the weaknesses of existing algo-
rithms is provided by the following set of experiments. We
trained with a DB containing all but k% of the facts for
the training family, and all of the training-family queries as
training data: thus, we are asking the system to learn rules
which can complete an incomplete database. As test data,
we used a database with all but k% of the facts for the test
family, and again, all test-family queries as the test set. The
results are shown in Figure 3: neither FOIL nor Alchemy’s
MLN method3 outperform the simple baseline of predicting
exactly the facts in the incomplete database.4

2Or in FOIL’s case, an approach broadly similar to pseudo-
likelihood.
3Alchemy’s performance is quite sensitive to the precise set
of missing facts, so we average over ten runs in the figure.
4Note that we have also experimented with a more re-
cent “Learning with Structural Motifs (LSM)” variant [15]
for learning MLN, but the results were much worse than
Alchemy: we only observe a MAP of 10.7 on the missing
5% setting. This is because LSM is designed to learn long

3.2 Iterated Structural Gradients for Struc-
ture Learning

Motivated by this, we introduce a new technique which we
call the iterated structural gradient method for structure-
learning in ProPPR. In particular, as noted in the intro-
duction, we implement a Metagol-like method for intro-
ducing structure. We start with an “abductive” stochas-
tic second-order program, in which every assumption corre-
sponds directly to a useful clause in a first-order program,
and where further, every learnable parameter corresponds
directly to a first-order clause. Table 2 shows the theory
that we use: this theory assumes that the first-order DB
contains only binary facts, which are encoded for the second-
order theory as triples of the form rel(r,x,y): e.g., the fact
father(james,colin) is represented as rel(father,james,colin).
Thus, rule (g) is a second-order version of the baseline algo-
rithm of Figure 3: to interpret the predicate P (X,Y), rule
(g) simply checks for the fact rel(P,X,Y).

Rules (a-c) can be viewed as a more powerful interpreter
for the binary predicate P , which also makes assumptions
about the presence of rules in the first-order theory. For in-
stance, in an application of rule (b), the goal of“interpreting”
(with the predicate interp) the a predicate uncle(arthur,Y)
is reduced to the goal of interpreting (with the lower-level
predicate interp0) some predicate nephew(Y,arthur), as-
suming that the first-order theory contains a clause un-
cle(X,Y) :- nephew(Y,X).

The way the assumption mechanism is implemented is
quite simple. Associated with every interpretive action—
i.e., clauses (a-c)—is an extra goal, such as abduce ifInv for
clause (b). These abductive goals are defined to always suc-
ceed, but whenever the proof step which lets them succeed is
applied, the corresponding edge in the proof graph is labeled
with an appropriate feature (e.g., f ifInv(uncle,nephew))
which records that this assumption was made. Table 3 gives
an example proof in the theory, showing how the abductive
feature f ifInv(uncle,nephew) might be used. ProPPR’s nat-
ural bias towards short proofs (in the second-order theory)
guides it toward near-minimal sets of assumptions regard-
ing the first-order theory. Furthermore, the gradient of the
abductive features indicates the utility of the corresponding
first-order clauses.

Structure learning is performed by computing the gradi-
ent of these features on training data, and then producing
a small first-order stochastic program, consisting of those
clauses that are potentially useful according to the gradient
information. Parameters for this first-order program can
then be learned in the usual way.

We thus adopt the learning algorithm of Table 4, which
we call the iterated structural gradient (ISG) method. As
an extended example, we consider the operation of ISG on
the problem of learning aunt/uncle together. In the first
iteration, the following rules are proposed (not in order, and
abbreviating interp0 as in0):

in0(aunt,X,Y) :- in0(sister,X,Z), in0(father,Z,Y).
in0(uncle,X,Y) :- in0(brother,X,Z), in0(mother,Z,Y).
in0(aunt,X,Y) :- in0(nephew,Y,X).

clauses (with more than 5 predicates) using recurring short
patterns, whereas in our task, our goal is to learn short
clauses with a maximum of 3 predicates in a clause. An-
other issue is that LSM has more than 20 hyperparameters
to tune, which makes the structure learning process sensitive
to the choice of the datasets and hyperparameters.

Table 2: The abductive ProPPR program, in the right-most column, along with labels for each rule, and the
second-order rules to which they correspond.

Assumption ProPPR clause
(a) P(X,Y) :- R(X,Y) interp(P,X,Y) :- interp0(R,X,Y),abduce if(P,R).
(b) P(X,Y) :- R(Y,X) interp(P,X,Y) :- interp0(R,Y,X),abduce ifInv(P,R).
(c) P(X,Y) :- R1(X,Z),R2(Z,Y) interp(P,X,Y) :- interp0(R1,X,Z),interp0(R2,Z,Y),abduce chain(P,R1,R2).
(d) abduce if(P,R) :- true # f if(P,R).
(e) abduce ifInv(P,R) :- true # f ifInv(P,R).
(f) abduce chain(P,R1,R2) :- true # f chain(P,R1,R2).
(g) interp0(P,X,Y) :- rel(R,X,Y).

Table 3: A slightly-abbreviated sample proof using
the second-order theory. The second column is the
rule used at that point in the derivation, along with
the features generated by that clause application,
if any. (For clarity, we list the process of bind-
ing rel(R,Y,arthur) to the head of the unit clause
rel(nephew,colin,arthur) :- , and then removing it,
as two steps, DB1 and DB2.)

Goal List Rule + Features
in(uncle,arthur,Y)

↓ (b)
in0(R,Y,arthur),ab ifInv(uncle,R)

↓ (g)
rel(R,Y,arthur),ab ifInv(uncle,R)

↓ DB1

rel(nephew,colin,arthur),
ab ifInv(uncle,nephew)

↓ DB2

ab ifInv(uncle,nephew)
↓ (e) + f ifInv(uncle,nephew)
2

in0(aunt,X,Y) :- in0(niece,Y,X).
in0(uncle,X,Y) :- in0(nephew,Y,X).
in0(uncle,X,Y) :- in0(niece,Y,X).

The first two of these are correct rules, and the remaining
ones are over-general, as they confuse aunts and uncles. In
the second iteration, ISG proposes the rules:

in0(aunt,X,Y) :- in0(wife,X,Z), in0(uncle,Z,Y).
in0(uncle,X,Y) :- in0(husband,X,Z), in0(aunt,Z,Y).
in0(aunt,X,Y) :- in0(wife,X,Z), in0(aunt,Z,Y).
in0(uncle,X,Y) :- in0(husband,X,Z), in0(uncle,Z,Y).
in0(aunt,X,Y) :- in0(uncle,X,Y).
in0(uncle,X,Y) :- in0(aunt,X,Y).
in0(aunt,X,Y) :- in0(aunt,X,Y).
in0(uncle,X,Y) :- in0(uncle,X,Y)

The first two of these are correct, while the remaining
rules are, to various degrees, overgeneral and/or redundant.
However, after parameter-learning, the learned theory per-
forms perfectly on the test set.

Figure 3 shows the performance of ISG on the database-
completion task, and compares it to FOIL, MLNs with struc-
ture learning, and the KB-only baseline. Table 5 shows re-
sults for the leave-two-relation out experiments discussed
above. We also introduce two additional baselines for com-
parison: one is to perform the main loop only once, which
we call the structural gradient (SG) method, and a final

Table 4: The Iterated Structural Gradient (ISG)
Algorithm

1. For t = 1, 2, . . .:

(a) Perform t−1 epochs of parameter-learning on the
theory of Table 2.

(b) Compute the gradient of the loss, and for each
feature with a negative gradient, add the corre-
sponding clause to the theory:

• for f if(p,q), add
interp0(p,X,Y) :- interp0(q,X,Y).

• for f ifInv(p,q), add
interp0(p,X,Y) :- interp0(q,Y,X).

• for f chain(p,q,s), add
interp0(p,X,Y) :- interp0(q,X,Z),
interp0(s,Z,Y).

(c) Stop when no new rules are added.

2. Discard all rules but the added ones, and retrain the
parameters for N epochs.

Table 5: Average precision performance for learning
two mutually-related relations at once.

FOIL PL MLN SG ISG
father+mother 0.0 23.32 42.53 70.05 100.0
husband+wife 0.0 4.73 3.20 39.63 79.4
daughter+son 0.0 11.49 22.74 70.05 100.0
sister+brother 0.0 3.29 10.37 62.18 78.85
uncle+aunt 0.0 10.41 53.35 79.41 100.0
niece+nephew 0.0 6.49 28.54 72.25 80.09
average 0.0 9.96 26.79 65.60 89.70

baseline is parameter-learning for the second-order theory,
which we label PL in the table. Note that ISG performs
quite well on the task of learning two interrelated predi-
cates, even though it is quite difficult for the other systems
(e.g. FOIL and MLNs). In addition to this, the ISG method
usually converges quickly: empirically it typically converges
within only 5 iterations.

Our method is superior because instead of using pseudo-
likelihood, we take a holistic point of view: we use a second-
order abductive logic to construct the hypothesis space, and
relax the structure learning problem to first-order param-

Figure 4: Performance on the UMLS and Alyawarra kinship datasets.

eter learning using supervised personalized PageRank with
log likelihood. It is not surprising that the proposed ISG
method has a good performance: the ISG method incremen-
tally adds newly-learned gradient-guided plausible inference
rules to the structure learning rule set, which helps to refine
the overall multi-epoch structure learning process.

4. ADDITIONAL STRUCTURE LEARN-
ING TASKS

4.1 The UMLS dataset
As tests of generality, we applied the proposed ISG ap-

proach on two larger-scale, more widely-used inference tasks.
One is from the domain of biomedicine: in particular, we
consider the Unified Medical Language System (UMLS)
dataset [23, 22], which has been used in many structure
learning tasks [13, 19]. The dataset5 contains 46 predi-
cates and 6,529 beliefs6 : most predicates are verbs such
as “measures”, “occurs in”, and “treats”, which indicate re-
lations among entities. The entities are concepts such as
“enzyme”, “mammal”, and “virus”. We used the following
experimental procedure:

• We randomly select 90% of the data as training data,
and the rest as testing data.

• We hold out the most frequent relation affects as the
target query relation, and use other predicates as back-
ground knowledge in ProPPR7.

• The above experiment is repeated 10 times.

Note that we choose this particular difficult setting be-
cause when removing the major predicate, it shows whether

5http://alchemy.cs.washington.edu/data/umls/
6Note that LSM [15] was too slow to run on this dataset,
so we use Alchemy’s structure learning algorithm to learn
MLNs.
7Similarly, this means that we use “affects” as the non-
evidence predicate for pseudo-likelihood computation in
learning MLNs.

Table 6: Average precision performances for learn-
ing structures in UMLS, a biomedical ontology.

#run PL MLN SG ISG
1 2.8 2.3 9.6 12.1
2 8.6 2.0 9.2 10.7
3 6.0 2.2 10.8 12.7
4 5.5 2.7 8.2 10.4
5 9.1 2.6 10.7 13.8
6 8.1 1.9 9.2 11.6
7 7.5 2.1 9.1 11.3
8 4.8 1.8 7.8 11.8
9 4.0 3.2 7.8 11.2
10 5.3 1.9 8.6 11.6
average 6.2 2.3 9.1 11.7

or not our approach is able to model the long tail of the
Zipfian distribution of facts and relations, which previous
systems may not be capable of.

Table 6 shows the experimental results for ISG, com-
paring them to Alchemy, PL, and SG. Although we learn
a single predicate, rather than several inter-related pred-
icates, this problem is still difficult, perhaps because the
most common and well-connected predicate was not present
in the database of facts. We see that even ProPPR’s
parameter-learning baseline PL obtains an averaged result
of 6.2, which almost triple the result obtained by MLN’s
pseudo-likelihood structure learning approach. We also see
that the gradient-based structure learning approaches out-
perform both the baseline and MLN, with ISG achieving a
mean average precision of 11.7. The left figure in Fig. 4
shows the precision of predictions for affects predictions as
a function of rank for each system, for a representative run.
The rules proposed by ISG are qualitatively plausible: for
example, in the second run, ISG proposes the following rules
(in their first-order format):

affects(X,Y) :- causes(X,Z), isa(Z,Y).

Table 7: Average precision performances for
Alyawarra kinship systems.

#run PL MLN SG ISG
1 0.9 2.8 4.6 5.3
2 0.8 3.3 6.8 7.2
3 1.0 3.8 7.1 7.3
4 0.7 2.9 5.6 6.0
5 1.0 3.1 5.6 5.9
6 0.7 3.8 5.6 6.2
7 0.6 3.2 7.2 7.2
8 0.7 3.4 5.0 5.4
9 0.9 3.6 6.4 6.8
10 0.9 2.1 6.2 6.6
average 0.8 3.2 6.0 6.4

affects(X,Y) :- causes(X,Z), associated with(Z,Y).
affects(X,Y) :- complicates(X,Z), complicates(Z,Y).
affects(X,Y) :- complicates(X,Z), result of(Z,Y).
affects(X,Y) :- interacts with(X,Z), causes(Z,Y).
affects(X,Y) :- interacts with(X,Z), diagnoses(Z,Y).
affects(X,Y) :- produces(X,Z), associated with(Z,Y).
affects(X,Y) :- produces(X,Z), disrupts(Z,Y).

We see that all the above clauses obtained by the ISG
method are plausible inference rules in the biomedical
domains: for example, the first clause “affects(X,Y) :-
causes(X,Z), isa(Z,Y).” is a formula of direct causes, where
as the second clause “affects(X,Y) :- causes(X,Z), associ-
ated with(Z,Y).” concerns the indirect causes. Interestingly,
the third clause the ISG method has learned is a case of
transitive complication.

4.2 The Alyawarra kinship dataset
Again as further test of robustness, we analyzed the

Alyawarra kinship dataset [9], which is a more complex
dataset from Hinton’s domain of family kinship [11]. The
Alyawarra are an aboriginal tribe from central Australia:
the tribe has four kinship sections, and the author of the
corpus asked 104 tribe members to provide kinship terms
for each other. The original author of the dataset, an an-
thropologist named Denham, has since recorded the demo-
graphic features for each of his subjects, and created the
ground truth partition by assigning each tribe members to
one of the clusters. The version of the Alyawarra dataset8

we use has 25 predicates, and 10,686 beliefs9. The task is
to infer the latent paths that associate these predicates, and
use them to make binary link predictions.

Similar to the setup in the UMLS dataset, we use the
most frequent predicate “Term 16” as the hold-out target
query relation in both training and testing, and use other
predicates as background facts for ProPPR and evidence
in MLN. We randomly select 90% of the data for training,
and the rest for testing. Experiments are repeated 10 times.
Again, this is a challenging setting, as a key predicate is not
present in the background database of facts.

8http://alchemy.cs.washington.edu/data/kinships/
9Again, we are unable to run LSM [15] on this dataset due
to the number of grounded assertions and relations, and
Alchemy was used to learn the MLNs.

Table 8: Summary of the KBs used in experiments
on completing subsets of NELL’s KB.

KB seed
Google baseball

top 1k entities
#train/test queries 100 100
#DB facts 853 890
#rules learned 20 15
train time (sec) 29 19

top 10k entities
#rain/test queries 1000 1000
#DB facts 10630 11972
#rules learned 401 392
train time (sec) 62 65

top 100k entities
#train/test queries 5000 5000
#DB facts 12902 9746
#rules learned 1094 939
train time (sec) 354 276

The detailed experimental results are shown in the Ta-
ble 7. The right figure in Fig. 4 shows rank-based results
from various systems of a sample run in this dataset. We see
that the overall performances are consistent with the results
from previous subsections: the proposed iterative structural
gradient approach over ProPPR outperforms both the base-
line methods and the MLN structure-learning approach.

4.3 Learning inference rules for the NELL
knowledge base

Finally, as a larger-scale and more realistic task, we ex-
plore learning inference rules for the NELL knowledge base.
The NELL (Never Ending Language Learning) research
project is an effort to develop a never-ending learning system
that operates 24 hours per day, for years, to continuously
improve its ability to read (extract structured facts from)
the web [5]. NELL is given as input an ontology that de-
fines hundreds of categories (e.g., person, beverage, athlete,
sport) and two-place typed relations among these categories
(e.g., athletePlaysSport(Athlete, Sport)), which it must learn
to extract from the web. NELL is also provided a set of 10
to 20 positive seed examples of each such category and rela-
tion, along with a downloaded collection of 500 million web
pages from the ClueWeb2009 corpus (Callan and Hoy, 2009)
as unlabeled data, and access to 100,000 queries each day to
Google’s search engine. NELL uses a multi-strategy semi-
supervised multi-view learning method to iteratively grow
the set of extracted “beliefs”.

Inference on NELL’s learned KB is challenging for two
reasons. First, the learned KB is not only incomplete, but
also noisy, since it is extracted imperfectly from the web.
For example, a football team might be wrongly recognized
as two separate entities, one with connections to its team
members, and the other with a connection to its home sta-
dium. Second, the inference problems are large.

Following prior work [37, 38], we used a number of
varying-sized versions of the NELL knowledge base (KB):
specifically we took KBs containing 1,000, 10,000 and
100,000 entities, centered around two NELL concepts,
“Google” and “baseball”. We took M NELL queries from
these KBs to use for training queries, and a disjoint M to

Figure 5: Performance on completing subsets of the NELL KB. Left, interpolated precision vs rank for two
KBs with 100k entities; right; comparison on three KBs of different sizes based on the seed “Google”.

use for testing queries. All facts not associated with these
queries were used as the database. We used M = 5000 for
the 100k-entity KBs, M = 1000 for the 10k-entity KBs, and
M = 100 for the 1k-entity KBs10. Note that the baseline
method of predicting using the database would, by construc-
tion, achieve an average precision of 0% on these test sets.

The performance of ISG on these tasks is shown in Fig-
ure 5 and Table 8. (Runtime is using 20 threads for learning
on a conventional desktop machine.) Even though the data
is noisy, ISG learns large and useful theories—theories such
that the high-confidence predictions do indeed correspond,
in most cases, with facts actually in the NELL knowledge
base.

5. RELATED WORK
Our overall approach builds on Metagol [25], but differs

in many respects: most notably, unlike Metagol, our sys-
tem learns probabilistic programs in ProPPR, rather than
“hard” Prolog programs. ProPPR’s use of the (approxi-
mate) PageRank-Nibble-based proof method leads to many
other differences: for instance, to learn recursive programs,
Metagol requires a well-founded ordering of the Herbrand
base to prevent infinite loops, while ProPPR does not; also,
Metagol uses iterative deepening search to find a minimal
set of abductions for each positive example, an NP-hard
problem in the worst case, while ProPPR’s proof methods
instead find a large set of approximately minimal abduc-
tions. Metagol has been recently extended to learn a certain
class of probabilistic programs [26], but has not been used to
learn recursive theories of the size considered in this paper.

Experimentally, our experimental comparisons focus
mainly on the widely-adopted MLN formalism—in partic-
ular the approach described by Kok and Domingos [14]
which uses a beam search, coupled with pseudo-likelihood
based parameter estimation, to learn MLNs. As noted
above, use of pseudo-likelihood, while efficient, causes prob-
lems in learning multiple related predicates, the specific
task addressed here, and other more recently-proposed MLN

10On these problems, we were not able to successfully run
MLN’s structure-learning, even with only 1,000 entities.

structure-learning schemes (e.g., [24, 12, 15]) do not ap-
pear to address this issue. In our preliminary experiments,
we have also investigated the performance of LSM [15]
on our datasets, but it fails to outperform the existing
pseudo-likelihood based MLN structure learning algorithm
in Alchemy. We hypothesize that the reason may be that
LSM is a variant for learning long clauses for MLNs by ex-
amining short recurring patterns (aka Structural Motifs),
thus when motifs are too short, the benefits of LSM may
not retain. Another issue we encounter with LSM is the
complexity of the setup: it includes more than 25 hyper-
parameters, making the process of adapting LSM to new
problems very difficult.

The Alchemy implementation of structure-learning for
MLNs that we used in our experiments is well-documented
and stable, but is based on an arguably suboptimal inference
substrate. Faster inference schemes (e.g., [33, 27, 35, 34]
could possibly support structure-learning approaches that
do not rely on the pseudo-likelihood approximation. Al-
though these faster MLN inference methods have not yet
been incorporated into structure-learning systems, integra-
tion of these lines of work is a plausible alternative to the
approach we have described and experimentally tested here.
We note, however, there is no theoretical analysis of the
complexity of these methods, and experiments with both
FROG [33] and LazySAT [35] suggest that unlike ProPPR
they still lead to a groundings that grow with DB size, al-
beit more slowly; we also caution that heuristic inference
speedups based on hand-coded MLNs need not necessarily
transfer well to MLNs generated automatically.

Our work also builds heavily on Lao et al’s Path Ranking
Algorithm (PRA) [17, 16], which supports structure learn-
ing; however, PRA can learn only a very limited type of
program (roughly, disjunctions of non-recursive chains of bi-
nary predicates). The underlying ProPPR logic used here
can be viewed as combining ideas from PRA with stochastic
logic programs (SLPs) [7]. Relative to SLPs, ProPPR adds
a restart to the random-walk process, and the addition of
a more flexible scheme for featurizing the logic. The fea-
turization scheme was heavily used in the structure-learning
proposed in this paper: in fact, the ability to attach arbi-

trary feature sets, computed on-the-fly at proof time, ap-
pears to be unique to ProPPR, among first-order logics. To
the best of our knowledge, SLPs have not been coupled with
structure-learning methods.

ProbLog [8] is an alternative probabilistic logic program-
ming formalism, which grounds probabilistic program by
converting the space of possible proofs to a binary decision
diagram (BDD), which can be very large, in the worst case,
for recursive programs. There has been some prior work
on learning BDD-based probabilistic programs, however; in
particular, they have been used as the substrate for struc-
ture learning in Bellodi and Riguzzi’s systems SLIPCASE
[3] and SLIPCOVER [4]. In these systems, beam search
is used to explore a space of probabilistic logic programs,
and candidate programs are scored by running a small num-
ber of iterations of EM. In past experiments, SLIPCASE
has been run with either a small depth bound (e.g., three),
or else limited to non-recursive theories, so it is not clear
that it will perform well on the larger mutually-recursive
programs considered here. Some limited comparison can be
seen in prior work [37], which evaluates ProPPR on the We-
bKB dataset: ProPPR obtained an AUC of 0.80 here with a
simple fixed theory, compared to 0.61 for ProbLog with the
same fixed theory, or 0.76 for SLIPCOVER’s learned the-
ory. However, experimental comparisons with SLIPCASE
and similar systems remains a topic for future work. The
BDD-based approach seems especially promising in conjunc-
tion with approximate reasoning methods [36], but to our
knowledge, these have not been integrated with structure-
learning approaches.

Our motivating task of knowledge-base completion has
also been addressed with radically different methods, no-
tably information extraction from text coupled with gener-
alization and/or inference methods (e.g., [18, 39]). We focus
here exclusively on the inference task, ignoring lexical clues,
similar to the early work in this area with PRA [17].

6. CONCLUSIONS
We propose an abductive, meta-interpretive, second-order

probabilistic logic based structure learning approach for
ProPPR, a recently-developed scalable probabilistic lan-
guage [37]. ProPPR is efficient enough to support inference
over large, noisy, knowledge bases, and supports parameter
learning using a parallelized version of stochastic gradient
descent.

We implement structure-learning for ProPPR using a
scheme suggested by the Metagol [25] system. We define
a second-order abductive logic program where each assump-
tion, and each learnable parameter, corresponds to a hy-
pothesized ProPPR clause. Structure learning exploits this
correspondence, finding clauses using the efficient, paralleliz-
able, stochastic gradient descent based parameter-learning
framework that exists in ProPPR. In our implementation
of iterative structural gradients (ISG), steps in parameter-
learning space are interleaved with structural changes to the
second-order theory. We mainly experiment with theories of
short rules, and our method can be naturally extended to
learn longer chains and high-arity predicates.

In empirical evaluations, we show that this structure
learning approach obtains promising results on data from
several domains and tasks, including reasoning about kin-
ship, biomedical reasoning, and a large-scale KB completion
task. Additional experiments show that the approach scales

well, and can effectively learn theories with hundreds of
rules, from thousands of noisy examples, against a database
with tens of thousands of facts noisy facts, in a few min-
utes of time on a conventional desktop. Hence, compared
to popular ILP methods such as FOIL, or pseudo-likelihood
based structure learning methods for MLNs, the approach
has advantages in both the average precision, and runtime
efficiency.

Acknowledgements
We thank Stephen Muggleton and Dianhuan Lin for interest-
ing discussions of an early version of this paper. We are also
grateful to anonymous reviewers for useful comments. This
research was supported in part by DARPA grant FA8750-
12-2-0342 funded under the DEFT program, and a Google
Research Award. The authors are solely responsible for the
contents of the paper, and the opinions expressed in this
publication do not reflect those of the funding agencies.

7. REFERENCES
[1] Reid Andersen, Fan R. K. Chung, and Kevin J. Lang.

Local partitioning for directed graphs using pagerank.
Internet Mathematics, 5(1):3–22, 2008.

[2] Lars Backstrom and Jure Leskovec. Supervised
random walks: predicting and recommending links in
social networks. In Proceedings of the fourth ACM
international conference on Web search and data
mining, 2011.

[3] Elena Bellodi and Fabrizio Riguzzi. Learning the
structure of probabilistic logic programs. In Inductive
Logic Programming, pages 61–75. Springer, 2012.

[4] Elena Bellodi and Fabrizio Riguzzi. Structure learning
of probabilistic logic programs by searching the clause
space. CoRR, abs/1309.2080, 2013.

[5] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr
Settles, Estevam R. Hruschka Jr., and Tom M.
Mitchell. Toward an architecture for never-ending
language learning. In Maria Fox and David Poole,
editors, AAAI. AAAI Press, 2010.

[6] William W. Cohen. Data integration using similarity
joins and a word-based information representation
language. ACM Transactions on Information Systems,
18(3):288–321, July 2000.

[7] James Cussens. Parameter estimation in stochastic
logic programs. Machine Learning, 44(3):245–271,
2001.

[8] Luc De Raedt, Angelika Kimmig, and Hannu
Toivonen. Problog: A probabilistic prolog and its
application in link discovery. In Proceedings of the
20th international joint conference on Artifical
intelligence, 2007.

[9] Woodrow Denham. The detection of patterns in
alyawarra nonverbal behavior. PhD thesis, University
of Washington, 1973.

[10] Norbert Fuhr. Probabilistic datalog—a logic for
powerful retrieval methods. In Proceedings of the 18th
annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 282–290. ACM, 1995.

[11] Geoffrey E Hinton. Learning distributed
representations of concepts. In Proceedings of the

eighth annual conference of the cognitive science
society, pages 1–12. Amherst, MA, 1986.

[12] Tuyen N Huynh and Raymond J Mooney.
Discriminative structure and parameter learning for
markov logic networks. In Proceedings of the 25th
international conference on Machine learning, pages
416–423. ACM, 2008.

[13] Charles Kemp, Joshua B Tenenbaum, Thomas L
Griffiths, Takeshi Yamada, and Naonori Ueda.
Learning systems of concepts with an infinite
relational model. In AAAI, volume 3, page 5, 2006.

[14] Stanley Kok and Pedro Domingos. Learning the
structure of markov logic networks. In Proceedings of
the 22nd international conference on Machine
learning, pages 441–448. ACM, 2005.

[15] Stanley Kok and Pedro Domingos. Learning markov
logic networks using structural motifs. In Proceedings
of the 27th International Conference on Machine
Learning (ICML-10), pages 551–558, 2010.

[16] Ni Lao and William W. Cohen. Relational retrieval
using a combination of path-constrained random
walks. Machine Learning, 81(1):53–67, 2010.

[17] Ni Lao, Tom M. Mitchell, and William W. Cohen.
Random walk inference and learning in a large scale
knowledge base. In EMNLP, pages 529–539. ACL,
2011.

[18] Ni Lao, Amarnag Subramanya, Fernando C. N.
Pereira, and William W. Cohen. Reading the web
with learned syntactic-semantic inference rules. In
EMNLP-CoNLL, pages 1017–1026. ACL, 2012.

[19] Ni Lao, Jun Zhu, Xinwang Liu, Yandong Liu, and
William W Cohen. Efficient relational learning with
hidden variable detection. In NIPS, pages 1234–1242,
2010.

[20] Daniel Lowd and Pedro Domingos. Efficient weight
learning for markov logic networks. In Knowledge
Discovery in Databases: PKDD 2007, pages 200–211.
Springer, 2007.

[21] Christopher D Manning, Prabhakar Raghavan, and
Hinrich Schütze. Introduction to information retrieval,
volume 1. Cambridge university press Cambridge,
2008.

[22] Alexa T McCray. An upper-level ontology for the
biomedical domain. Comparative and Functional
Genomics, 4(1):80–84, 2003.

[23] Alexa T McCray, Anita Burgun, Olivier Bodenreider,
et al. Aggregating umls semantic types for reducing
conceptual complexity. Studies in health technology
and informatics, (1):216–220, 2001.

[24] Lilyana Mihalkova and Raymond J Mooney.
Bottom-up learning of markov logic network structure.
In Proceedings of the 24th international conference on
Machine learning, pages 625–632. ACM, 2007.

[25] Stephen Muggleton and Dianhuan Lin.
Meta-interpretive learning of higher-order dyadic
datalog: Predicate invention revisited. In Proceedings
of the Twenty-Third international joint conference on
Artificial Intelligence, pages 1551–1557. AAAI Press,
2013.

[26] Stephen H Muggleton, Dianhuan Lin, Jianzhong Chen,
and Alireza Tamaddoni-Nezhad. Metabayes: Bayesian
meta-interpretative learning using higher-order

stochastic refinement. In preparation, available from
http://www.doc.ic.ac.uk/ shm/mypubs.html.

[27] Feng Niu, Christopher Ré, AnHai Doan, and Jude
Shavlik. Tuffy: Scaling up statistical inference in
markov logic networks using an RDBMS. Proceedings
of the VLDB Endowment, 4(6):373–384, 2011.

[28] Hoifung Poon and Pedro Domingos. Joint inference in
information extraction. In Proceedings of the National
Conference on Artificial Intelligence, 2007.

[29] Hoifung Poon and Pedro Domingos. Joint
unsupervised coreference resolution with markov logic.
In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, pages 650–659.
Association for Computational Linguistics, 2008.

[30] J. Ross Quinlan. Learning logical definitions from
relations. Machine Learning, 5(3):239–266, 1990.

[31] Matthew Richardson and Pedro Domingos. Markov
logic networks. Mach. Learn., 62(1-2):107–136, 2006.

[32] Sebastian Riedel, Limin Yao, Andrew McCallum, and
Benjamin M Marlin. Relation extraction with matrix
factorization and universal schemas. In Proceedings of
NAACL-HLT, pages 74–84, 2013.

[33] Jude Shavlik and Sriraam Natarajan. Speeding up
inference in markov logic networks by preprocessing to
reduce the size of the resulting grounded network. In
Proceedings of the Twenty-first International Joint
Conference on Artificial Intelligence (IJCAI-09), 2009.

[34] Parag Singla and Pedro Domingos. Memory-efficient
inference in relational domains. In Proceedings of the
national conference on Artificial intelligence, 2006.

[35] Parag Singla and Pedro Domingos. Lifted first-order
belief propagation. In Proceedings of the 23rd national
conference on Artificial intelligence, 2008.

[36] Guy Van den Broeck, Ingo Thon, Martijn van Otterlo,
and Luc De Raedt. Dtproblog: A decision-theoretic
probabilistic prolog. In AAAI, 2010.

[37] William Yang Wang, Kathryn Mazaitis, and
William W Cohen. Programming with personalized
pagerank: a locally groundable first-order probabilistic
logic. In Proceedings of the 22nd ACM international
conference on Conference on information & knowledge
management, pages 2129–2138. ACM, 2013.

[38] William Yang Wang, Kathryn Mazaitis, Ni Lao, Tom
Mitchell, and William W Cohen. Efficient inference
and learning in a large knowledge base: Reasoning
with extracted information using a locally groundable
first-order probabilistic logic. arXiv:1404.3301, 2014.

[39] Limin Yao, Sebastian Riedel, and Andrew McCallum.
Probabilistic databases of universal schema. In
Proceedings of the Joint Workshop on Automatic
Knowledge Base Construction and Web-scale
Knowledge Extraction, pages 116–121. Association for
Computational Linguistics, 2012.

