Approximate Graph Patterns for Biological Network

1) Conserved patterns of protein interaction in multiple species

= Proceedings of the National Academy of Science (PNAS) - 2003

2) Conserved pathways within bacteria and yeast as revealed by
global protein network alignment

- Proceedings of the National Academy of Science (PNAS) - 2005
3) Automatic Parameter Learning for Multiple Network Alignment

- Proceedings of the Computational Molecular Biology (RECOMB) - 2008

- Presented by
Arijit Khan
Computer Science
University of California, Santa Barbara



Presentation Outline

1) Problem Formulation

- Motivation
- Multiple Network Alignment

- Conserved Pathways
- Scoring Function
- Automatic Parameter Learning

2) Graemlin 2.0
- Automatic Parameter Learning Protocol
- Muultiple Network Alignment Protocol

3) Comparison of Graemlin 2.0 with Existing Protocols



Problem Formulation

MOTIVATION:

-- Understand the complex networks of interacting genes, proteins,
and small molecules that give rise to biological form and function.

-- Understand Evolution and Mutation, which lead to change in
protein

structure.
-- to realize the protein — protein interaction among different species.

-- one way is to assign functional roles to interactions, thereby
separating true protein-protein interactions from false positives.



Problem Formulation

 Multiple Network Alignment :

INPUT - n networks, Gi=(Vi, E); 1 <i<n.

Example: Protein Interaction Network, each Gi represents a
different

species, nodes represent proteins and edges represent interactions
between proteins.

OUTPUT - an equivalence relation o over the nodesV=ViU V2 U ... U Vy;
that partitions V into a set of disjoint equivalence classes and
has the maximum score determined by a scoring function.



Problem Formulation

Biological Interpretation:

- Nodes in the same equivalence
class are functionally orthologous.

- The subset of nodes in a local
alignment represents a conserved
module or pathway.




Problem Formulation

* Scoring Function s:

mapping s: 4 — k., where A is the set of potential
network alignments of Gy, . . . ,G..

objective is to capture the “features” of a network
alignment.



Problem Formulation

* Feature Function f:
vector-valued functionf : A — R", which maps a global alignment to
a humerical feature vector.
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-node feature function £¥ maps equivalence classes to a feature vector.
(e.g. Protein present, Protein count, Protein deletion, Protein duplication)

-edge feature function ¥ maps pairs of equivalence classes to a feature
vector.
(e.g. edge deletion, paralog edge deletion)



Problem Formulation

* Parameter Vector w:
Given a numerical parameter vector w, the score of an alignment a is
s(a)=w-f(a)

e  Automatic Parameter Learning Problem

- INPUT: training set of known alighments. The training set is a collection of d training
samples; each training sample specifies a set of networks G(i) = G(i) 1,...G(i) nand
their correct alignment a(i).

- OUTPUT: numerical parameter vector w



Graemlin 2.0

e Automatic Parameter Learning Protocol:

Loss Function: £: Ax A— Rt

Let [*],() denote the equivalence class 2 = V(1) — U, I,f;“') in o) and [*la
denote the equivalence class of 7 in a.
We define f,(a.ﬁ'):a) = EIEL«'HJ |[I]a H‘g [I‘]a{ﬂ|

So, loss function is the number of nodes aligned in o that are not aligned in the
correct alignment a(i).
L(a",a) is 0 when o = and positive when a # a9 .

Intuitively, learned parameter vector, w should assign higher scores, s(a)=w - f(a)
to alignments o with smaller loss function values £(a'?,a) .



Graemlin 2.0

 Automatic Parameter Learning Protocol:

Formally, given a training set and loss function, the learned w should score each
training alignment a'”) higher than all other alignments o by at least £(a'?, a) .

| Vi,a e AD w- f(a(f)) > w - f(a) + Lj(a(f}:ﬂ) .. [1]
AWis the set of possible alignments of =),

e Using Convex Programming, optimal w minimizes
1< | A
N — (1) fns o 2
elw) = 5 210 (w) + 5wl

Where ri(w) = max, 4 (W - £(a) + L(a?,a)) — w - £(al?).
d = number of training samples

. [2]

A~ = regularization term used in Convex Programming = 0.



Greemlin 2.0

e Automatic Parameter Learning Protocol:

Sub gradient Descent Technique to determine w.

d

> (£(a”) - £a));

=1

1
=)k _
g W+d

where o =arg max,. 1) ( w - f(a) + L(a®,a) )

w=(w—ag) iteratively; ais learning rate = 0.05

stop when it performs 100 iterations that do not reduce the objective function.

 Ateachiteration it uses the loss function and the current w to compute the
optimal alignment.

 Then decreases the score of features with higher values in the optimal alignment
than in the training sample.

* increases the score of features with lower values in the optimal alignment than in
the training sample.



Greemlin 2.0

Automatic Parameter Learning

Protocol:
LEARN({G?)} . ,GE}j aW}d_, . training set ,a : learning rate , A : regularization )
1 var w < 0 //the current parameter vector
2 var my < oo //a measure of progress
3 var w, «— W //the best parameter vector so far
4 while m. updated in last 100 iterations
5 do
6 var g < 0 //the current subgradient
7 var m = 0 //the current margin
8 fori=1:4d
9 do //sum over all training samples
10 var a\”) = ALIGN(G?], ey ng,wj L)
11 g+— g+ f(a&i)) — f(a'?) //update the subgradient
12 m«—m+w- f(il,(j}) + L(aW, agf']) — w - f(a'?) //update the margin
13 g+ g —Aw;m — Im+ %HWHE //add in regularization
14 if m < mx
15 then
16 ms < m; wWs« = W //update the best parameter vector
17 w «— w — ag //update parameter vector
18 return w,



Graeemlin 2.0

Automatic Parameter Learning Protocol:

ﬂ_ii} =3arg max, - (i (‘w - f(a.) + f_‘,(a,“)! a.) )

- Multiple Alignment Problem augmented by a loss function.

- At each iteration of Automatic Parameter Learning protocol,
Multiple Alignment Algorithm is applied.

- Learning algorithm converges at a linear rate to a small region

surrounding the optimal w.



Graeemlin 2.0

Multiple Alignment Problem:

- local Hill-Climbing algorithm (iterative).

- each iteration, it processes each node and evaluates a series of moves
for each node:

1) Leave the node alone.

2) Create a new equivalence class with only the node.

3) Move the node to another equivalence class.

4) Merge the entire equivalence class of the node with another equivalence
class.

- For each move, algorithm computes the score before and after the move
and performs the move that increases the score the most.

- stops when an iteration does not increase the alignment score.



Graemlin 2.0
Multiple Alignment Problem

L : optional loss function )
1 wvar a « an alignment with one equivalence class per node

ALIGN(G1,...,Gy : set of networks , w : parameter vector

?

2  while true
3 do
4 var A; =0 //the total change in score of this iteration
5 for each node n € |, G;
6 do
7 var A* — 0 //best score
8 var m* «— undef //best move
9 for each move m
10 do
i var a; < m(a) //alignment after move m
12 A —w - f(as) + L(a;) — (W - f(a) + L(a)) //change in score after move m
13 if A2 K
14 then
15 A* = A;m* = m [//new best move
16 a <— m*(a) //do best move on alignment
17 A; — Ay + A* //update total change in score of this iteration
18 iE k=1
19 then break
20 return w



Graeemlin 2.0

 Multiple Alignment Problem

- Algorithm is approximate but efficient.
- running time =0(b . c. (n + m))
b = number of iterations
c = average number of candidate classes in each iteration
n = number of nodes
m = number of edges

- b < 10 (empirically)
¢ = can be huge; but can be small if we neglect classes with BLAST e-value
<< 1077

- linear in (n + m)



COMPARISON ANALYSIS

Tested on 3 different Network Datasets:
a) Human and Mouse IntAct Networks
b) Yeast and Fly DIP Networks

c) Stanford Network DataBase (SNDB)

Specificity Measurement Metrics:
1. the fraction of equivalence classes that were correct (Ceq)

2. the fraction of nodes that were in correct equivalence classes
(Cnode)

Sensitivity Measurement Metrics:
1. the total number of nodes in correct equivalence classes (Cor)
2. the total number of equivalence classes with k species, fork=2,...,n

Compared with NetworkBLAST, MaWISh, Graemlin 1.0, IsoRank, and Graemlin-
global alignment protocols.



COMPARISON ANALYSIS

Average consistency equivalence class consistency

SNDB IntAct DIP
eco/stm eco/cce 6-way hsa/mmu sce/dme 3-way
Ceq Cnode Ceq Cnode ceq Gﬂﬂdf Ceq Cnﬂde Geq Cﬂ,ﬂdi‘ Ceq Cﬂ.ﬂde
Local aligner comparisons
NB || 0.77 045 | 0.78  0.50 ~ — 033 0.06 || 0.39 0.14 ~ ~
Gr2.0 || 0.95 0.94 | 0.79 0.78 ~ — 0.83 0.81 || 0.58 0.58 ~ ~
MW || 0.84 0.64 | 0.77 0.54 ~ — 059 036 || 045 037 ~ ~
Gr2.0 || 0.97 0.96 | 0.77 0.76 ~ — 0.88 0.86 (| 0.90 0.91 ~ ~
Gr 080 0.77 | 0.69 0.64 | 0.76 0.67 | 0.59 053 || 0.33 029 | 0.23 0.15
Gr2.0 || 0.96 0.95 | 0.82 0.81 |0.86 0.85 || 0.86 0.84 || 0.61 0.61 | 0.57 0.57
Global aligner comparisons
GrG || 086 086 | 0.72 0.72 | 080 0.81 || 0.64 064 || 068 0.68 | 0.71 0.71
Iso || 0.91 091 | 0.65 0.65 ~ — 062 062 || 0.63 0.63 ~ ~
Gr2.0 || 0.96 0.96 | 0.78 0.78 | 0.87 0.87 || 0.81 0.80 || 0.73 0.73 | 0.76 0.76

Eco =E. coli, Stm =S. typhimurium, cce = C. crescentus, hsa = human, mmu = mouse, sce = yeast, dme = fly




COMPARISON ANALYSIS

Number of nodes in correct equivalence classes

SNDB IntAct DIP
eco/stm eco/cce 6-way hsa/mmu sce/dme 3-way
Cor Tot Cor Tot | Cor Tot || Cor Tot || Cor Tot | Cor Tot
Local aligner comparisons
NB 457 .| 346 . — 65 43 ) -
ar2.0 | 627 1910 447 97T ~ |28 010 455 906 -
MW | 1309 . | 458 _ - 87 . 10 -
ar20 | 1611 20| 553 S| “olsr P20 T - -
Gr 985 _ 546 . 1524 . 108 35 122 27
Gr2.0 || 1157 1286 608 aatl 2216 2287 151 203 75 86 180
Global aligner comparisons
GrG 1496 720 2388 268 384 n64
Iso 2026 - 1014 - - - 306 - 534 - - -
Gr2.0 || 2024 1012 3578 350 637 827




COMPARISON ANALYSIS

Number of species per equivalence class
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CONCLUSION

Graemlin 2.0 is a multiple global network aligner protocol.

Automatically learn the scoring function’s parameters.

The feature function isolates the biological meaning of network alignment.

Align multiple networks approximately in linear time.

Learning Algorithm also converges linearly.

Higher specificity and higher sensitivity.
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