Collective classification in network data

Seminar on graphs, UCSB 2009

Outline

1 Problem

2 Methods Local methods Global methods

3 Experiments

Outline

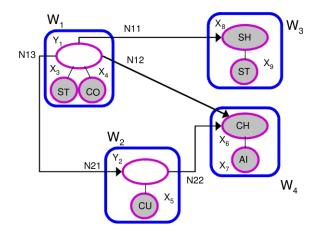
1 Problem

2 Methods Local methods Global methods

3 Experiments

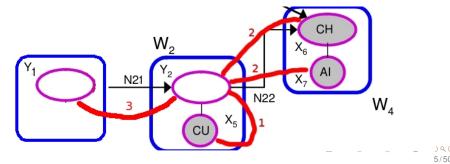
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example



Correlations

- Correlation between label and attributes (classic IR hypothesis)
- Correlation between label and labels and attributes of known neighbors
- Correlation between labels of unknown neighbors



Collective classification (CC)

Definition

CC: Combined classification of inter-linked objects using label-attribute correlations and label-label neighbor correlations.

A major difference to general classification is that inference for all unknown instances is simultaneous.

Inference

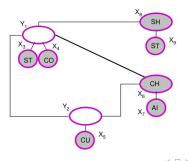
Definition

Given a joint distribution of the unknown labels, compute the marginal distribution for a single node's label.

- Exact inference is intractable for arbitrary networks.
- Algorithms: variable elimination, junction tree.
- Most research is focused on approximate inference.

A more formal view on the problem

- The network structure is modeled as a graph G=(V,E).
- 2 Each node is a variable defined over a given domain.
- V contains two types of variables: X and Y
- Goal: Label the nodes in Y



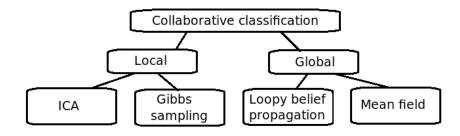
Outline

1 Problem

2 Methods Local methods Global methods

3 Experiments

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <



Outline

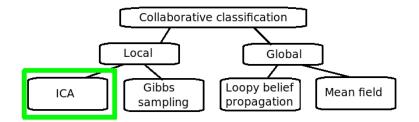
1 Problem

2 Methods a Local methods a Global methods

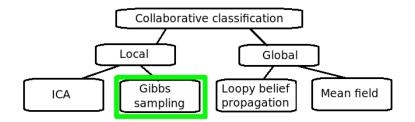
3 Experiments

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Iterative classification algorithm(ICA)



- Classify a node Y_i based on its neighbors N_i
- 2 Use a local classifier $f(N_i)$ to compute the best value of y_i
- Iteratively apply to all Y_i using the best estimates of unknowns in N_i
- Use the labeling that stabilizes over time



Gibbs sampling - basic idea

- Sample from a multivariate joint distribution (unknown explicitly)
- Generates a series of samples based on conditional distributions of each variable
- **3** Example: Sample values from f(X, Y)
 - **1** Start with initial $X = x_0$
 - 2 Sample $y_0 = p(Y|X = x_0)$
 - 3 Sample $x_1 = p(X|Y = y_0)...$
 - (x₀, y₀), (x₁, y₁)... are samples from p(X, Y) if p(*|*) are the true conditionals
- Simpler to sample from conditional distributions than to integrate over a joint (especially if the latter is unavailable)

- **The joint distribution is** $p(Y_1, Y_2, ..., Y_n)$
- 2 Assume that we know the conditionals $p(Y_k|Y_1 = y_1, ..., Y_{k-1} = y_{k-1}, Y_{k+1} = y_{k+1}...)$
- Perform GS and estimate the marginals $p(Y_i), Y_i \in Y$ based on the samples

- Assume we can **estimate** the conditional $p(Y_i|N_i)$ using a local classifier
- 2 Assume independence of indirect neighbors $p(Y_i|N_i) = p(Y_i|Y)$
- No guarantee that the estimated conditionals are the true conditionals

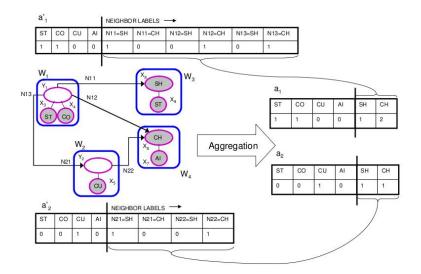
The mechanics of GS for CC

- Initialize assignments of Y_i
- Perform a "burn-in" number of sample steps
- Sample and count label assignments
- Estimate marginals based on counts.
 Decide on labels.

Challenges of ICA and GS

- Feature construction for local classifiers
 - Classifiers normally require fixed-length FVs
 Choice of aggregation max, count, exists, etc.
- Local classifiers(Decision trees, Log. Regression, SVM, etc.). Training.
- Nodes ordering robust to simple random, based on label diversity etc.
- Performance (running time)

Feature construction



Aggregation: count, avg, exists, proportion, graph based, etc.

ବ ୯ 20/50

Local classifiers

Reference	local classifier used			
Neville & Jensen [44]	naïve Bayes			
Lu & Getoor [35]	logistic regression			
Jensen, Neville, & Gallagher [25]	naïve Bayes,			
	decision trees			
Macskassy & Provost [36]	naïve Bayes,			
	logistic regression,			
N	weighted-vote			
2	relational neighbor,			
	class distribution			
	relational neighbor			
McDowell, Gupta, & Aha [39]	naïve Bayes,			
	k-nearest neighbors			

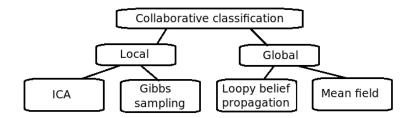
Outline

1 Problem

2 Methods Local methods Global methods

3 Experiments

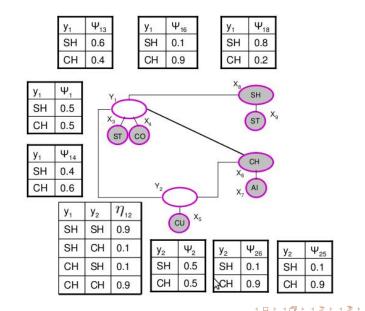
< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ 22/50



Additional notation

- **1** *L* is the set of labels, G(V, E) is the network of objects
- Three types of clique potentials(distributions)
- **3** ψ_i for each $Y_i \in Y$ is a mapping $\psi_i : L \to R^+$
- 4 ψ_{ij} for each $(Y_i, X_j) \in E$ is a mapping $\psi_{ij} : L \rightarrow R^+$
- **5** η_{ij} for each $(Y_i, Y_j) \in E$ is a mapping $\eta_{ij} : LxL \rightarrow R^+$

Back to our example



ב ≁) < (* 25/50

- **1** "Known" potential of a label y_i $\phi_i(y_i) = \psi_i(y_i) \sum_{(Y_i, X_j) \in E} \psi_{ij}(y_i)$
- It is computed without considering "unknown" neighbors

Back to our example

y ₁ SH CH	Ψ ₁₃ 0.6 0.4		SH 0	.1 .9	y₁ SH CF		Φ ₁ =	₌Ψ ₁ *Ψ	' ₁₃ * Ψ ₁₄ *	Ψ ₁₆ * Ψ	$\frac{y_1}{SH} = \frac{y_1}{CH}$	Φ ₁ 0.0096 0.0216
y ₁ Ψ ₁ SH 0.5 CH 0.5	X	ST CO	× 10		X	SH	9	Φ	₂ = Ψ ₂ *	Ψ ₂₅ * Ψ ₂	$y_2 = \frac{y_2}{SH}$	Φ ₂ 0.005 0.405
y ₁ Ψ ₁₄ SH 0.4 CH 0.6			Y2	7		CH 6 AI						
y ₁ SH	y ₂ SH	$\eta_{_{12}}$ 0.9	0	x₅								
SH	СН	0.1	y ₂	Ψ_2	y ₂	Ψ_{26}	y ₂	Ψ_{25}				
СН	SH	0.1	SH	0.5	SH	0.1	SH	0.1				
СН	СН	0.9	CH	0.5	сн	0.9	CH	0.9				

Definition

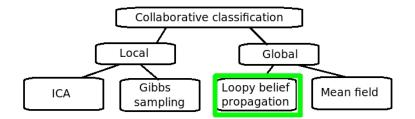
A pairwise MRF is given by the pair $< G(V, E), \Psi >, G$ is a graph, Ψ is a set of potentials ψ, η, ϕ . For an assignment y of all Y the MRF is associated with $P(y|x) = \alpha \prod_{Y_i inY} \phi_i(y_i) \prod_{(Y_i, Y_i) \in E} \eta_{ij}(y_i, y_j)$

- The MRF defines a joint p.d.f. of all "unknown" labels
- Each P(y|x) is the probability of a given world y
- Same as before obtaining the marginal for $P(Y_i = y_i)$ would require summing over exponential number of terms
- **4** #P problem \rightarrow approximation

Global CC as a variational method

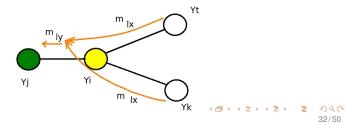
- Instead of working with the actual distribution defined by the MRF, work with an approximate "trial" distribution
- 2 The "trial" distribution should be simpler (to compute/store)
- It should be easier to extract marginals from the "trial" distribution
- The "trial" should be fitted to the actual distribution

Loopy belief propagation (LBP)

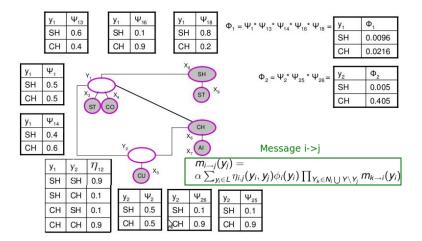


- Loopy belief propagation is defined on a pairwise MRF
- It is a discrete time message passing algorithm
- **3** At each step a message $m_{i \rightarrow j}(y_j)$ is passed from unknown node Y_i to Y_j

$$m_{i \to j}(\mathbf{y}_j) = \\ \alpha \sum_{\mathbf{y}_i \in L} \eta_{i,j}(\mathbf{y}_i, \mathbf{y}_j) \phi_i(\mathbf{y}_i) \prod_{\mathbf{Y}_k \in \mathbf{N}_i \cap \mathbf{Y} \setminus \mathbf{Y}_j} m_{k \to i}(\mathbf{y}_i)$$

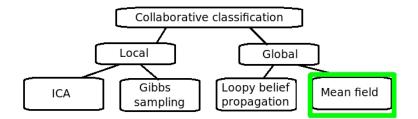


LBP example



- Initially all messages are set to 1
- Perform message passing until messages stabilize
- **3** Compute beliefs $b_i(y_i) = \alpha \phi_i(y_i) \prod_{Y_j \in N_i \cap Y} m_{j \to i}(y_i)$
- b_i(y_i) is the approximation of the marginal probability of y_i for node Y_i

Relaxation labeling via mean-field (MF)



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

MF is defined on MRF

MF can be described by the following fixed point equation:

 $b_i(y_i) = \alpha \phi_i(y_i) \prod_{Y_j \in N_j \cap Y} \prod_{y_j \in L} \eta_{ji}^{b_j(y_j)}(y_i, y_j)$

Iterative method for computing the fixed point equation

Outline

1 Problem

2 Methods Local methods Global methods

3 Experiments

Experiments

- Comparison of content-based (CO) and CC classification
- Comparison of local classifiers for Local CC. Logistic regression (LR) versus Naive Bayes (NB)
- **3** Comparison of Global and Local CC
- Eight different classifiers:
 - 1 CO + NB/LR
 - 2 ICA + NB/LR
 - 3 GS + NB/LR
 - 4 LBP
 - 5 MF

Real world data

- **1** CORA |V| = 2708, |E| = 5429, |L| = 7
- 2 Citeseer |V| = 3312, |E| = 4732, |L| = 6
- **2** Synthetic data |V| = 1000, |L = 5|
- Varying homophily and link density for synthetic data
- 10-fold cross validation

- Document terms for both CO and local CC methods
- Count aggregation of terms
- MRF with clique and node potentials for Global CC

Sampling for fold validation

- Create folds for training and evaluation
- Snowball sampling" (SS) evaluation
 - Select a random core node
 - 2 Expand, choosing a node based on the class distribution
 - 3 Expand |X|/k times
 - 4 Create split.
 - Use the |X|/k sample for testing and the rest for training
- Random sampling (RS) Partition |X| in k folds randomly

- SS may result in one and the same node appearing in multiple folds
- Average the accuracy of each instance and than average over all training
- Matched (M) average accuracy only for instances that appear in at least one SS split

- For CO and Local CC local classifiers parameters
- For MF and LBP clique potentials
- Gradient-based optimization approaches on the labeled nodes in the training splits

	Cora			Citeseer		
Algorithm	SS	RS	М	SS	RS	M
CO-NB	0.7285	0.7776	0.7476	0.7427	0.7487	0.7646
ICA-NB	0.8054	0.8478	0.8271	0.7540	0.7683	0.7752
GS-NB	0.7613	0.8404	0.8154	0.7596	0.7680	0.7737
CO-LR	0.7356	0.7695	0.7393	0.7334	0.7321	0.7532
ICA-LR	0.8457	0.8796	0.8589	0.7629	0.7732	0.7812
GS-LR	0.8495	0.8810	0.8617	0.7574	0.7699	0.7843
LBP	0.8554	0.8766	0.8575	0.7663	0.7759	0.7843
MF	0.8555	0.8836	0.8631	0.7657	0.7732	0.7888

CC dominates CO

	Cora			Citeseer		
Algorithm	SS	RS	М	SS	RS	M
CO-NB	0.7285	0.7776	0.7476	0.7427	0.7487	0.7646
ICA-NB	0.8054	0.8478	0.8271	0.7540	0.7683	0.7752
GS-NB	0.7613	0.8404	0.8154	0.7596	0.7680	0.7737
CO-LR	0.7356	0.7695	0.7393	0.7334	0.7321	0.7532
ICA-LR	0.8457	0.8796	0.8589	0.7629	0.7732	0.7812
GS-LR	0.8495	0.8810	0.8617	0.7574	0.7699	0.7843
LBP	0.8554	0.8766	0.8575	0.7663	0.7759	0.7843
MF	0.8555	0.8836	0.8631	0.7657	0.7732	0.7888

CC dominates CO
 LR dominates NB

	Cora			Citeseer		
Algorithm	SS	RS	M	SS	RS	М
CO-NB	0.7285	0.7776	0.7476	0.7427	0.7487	0.7646
ICA-NB	0.8054	0.8478	0.8271	0.7540	0.7683	0.7752
GS-NB	0.7613	0.8404	0.8154	0.7596	0.7680	0.7737
CO-LR	0.7356	0.7695	0.7393	0.7334	0.7321	0.7532
ICA-LR	0.8457	0.8796	0.8589	0.7629	0.7732	0.7812
GS-LR	0.8495	0.8810	0.8617	0.7574	0.7699	0.7843
LBP	0.8554	0.8766	0.8575	0.7663	0.7759	0.7843
MF	0.8555	0.8836	0.8631	0.7657	0.7732	0.7888

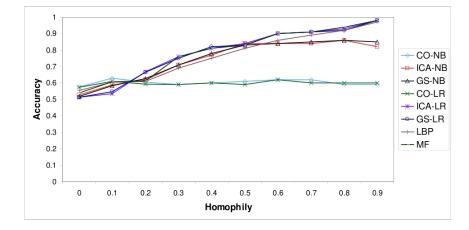
- CC dominates CO
- 2 LR dominates NB
- ICA and GS comparable by accuracy

	Cora			Citeseer		
Algorithm	SS	RS	М	SS	RS	M
CO-NB	0.7285	0.7776	0.7476	0.7427	0.7487	0.7646
ICA-NB	0.8054	0.8478	0.8271	0.7540	0.7683	0.7752
GS-NB	0.7613	0.8404	0.8154	0.7596	0.7680	0.7737
CO-LR	0.7356	0.7695	0.7393	0.7334	0.7321	0.7532
ICA-LR	0.8457	0.8796	0.8589	0.7629	0.7732	0.7812
GS-LR	0.8495	0.8810	0.8617	0.7574	0.7699	0.7843
LBP	0.8554	0.8766	0.8575	0.7663	0.7759	0.7843
MF	0.8555	0.8836	0.8631	0.7657	0.7732	0.7888

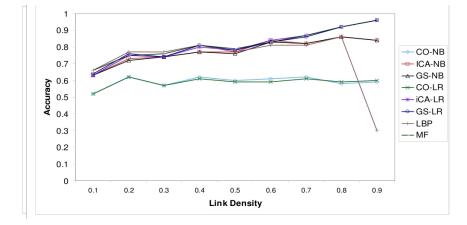
- CC dominates CO
- 2 LR dominates NB
- ICA and GS comparable by accuracy
- Slight dominance of Global over Local

47/50

Experimental results - synthetic datasets



Experimental results - synthetic datasets



- MF and LBP are hard to work with. Initialization and convergence issues.
- ICA is faster than GS (14m vs. 3h on Citeseer with NB)
- ICA converges in <10 iterations, while GS requires 200 "burn-in" + 800 samples