Mining Graph Patterns

Why mine graph patterns?

Direct Use:

- Mining over-represented sub-structures in chemical databases
- Mining conserved sub-networks
- Program control flow analysis

Indirect Uses:

- Building block of further analysis
 - Classification
 - Clustering
 - Similarity searches
 - Indexing

What are graph patterns?

- Given a function f(g) and a threshold θ , find all subgraphs g, such that $f(g) \ge \theta$.
- Example: frequent subgraph mining.

Given a graph dataset D, find subgraph g, s.t.

$$freq(g) \ge \theta$$

where freq(g) is the percentage of graphs in D that contain g.

Apriori Property

If a graph is frequent, all of its subgraphs are frequent.

Other Mining Functions

- Maximal frequent subgraph mining
 - A subgraph is maximal, if none of it super-graphs are frequent
- Closed frequent subgraph mining
 - A frequent subgraph is closed, if all its supergraphs have a lesser frequency
- Significant subgraph mining
 - G-test, p-value

Frequent Subgraph Mining

- Apriori-based approach
 - AGM/AcGM: Inokuchi, et al. (PKDD'00)
 - FSG: Kuramochi and Karypis (ICDM'01)
 - PATH#: Vanetik and Gudes (ICDM'02, ICDM'04)
 - FFSM: Huan, et al. (ICDM'03) and SPIN: Huan et al. (KDD'04)
 - FTOSM: Horvath et al. (KDD'06)
- Pattern growth approach
 - Subdue: Holder et al. (KDD'94)
 - MoFa: Borgelt and Berthold (ICDM'02)
 - gSpan: Yan and Han (ICDM'02)
 - Gaston: Nijssen and Kok (KDD'04)

Frequent subgraph mining

- Apriori Based Approach (FSG)
 - Find all frequent subgraphs of size K
 - Find candidates of size k+1 edges by joining candidates of size k edges
 - Must share a common subgraph of k-2 edges Example: (FSG)

Pattern Growth Approach

- Pattern Growth Approach
 - Depth first exploration
 - Recursively grow a frequent subgraph

Mining Significant subgraphs

- What is significance?
 - Gtest, p-value
 - Both attempt to measure the deviation of the observed frequency from the expected frequency
 - Example: Snow in Santa Barbara is significant, but snow in Alaska is not.

P-value

 p-value: what's the probability of getting a result as extreme or more in the possible range of test statistics as the one we actually got?

Lower the p-value, higher the significance

Problem formulation

- Find answer set $\mathbb{A} = \{g | p\text{-}value(g) \leq \eta, g \subseteq G, G \in \mathbb{D}\}$
 - ☐: Graph Database
 - η : Significance Threshold
 - $-g \subseteq G : g$ is a subgraph of G
- Low frequency does not imply low significance and vice versa
 - Graph with frequency 1% can be significant if expected frequency is 0.1%

Solution to Problem: Approach 1

Number of frequent subgraphs grow exponentially with frequency

Alternative Approximate Solution

Converting graphs to feature vectors

- Random walk with Restart (RWR) on each node in a graph
- Feature vectors discretized to 10 bins

Graphical Representation

Random Walk Results

ID	Starting Atom	O-2-C	C-1-C	C-1-N
h ₁	0	4	2	2
h2	С	2	3	3
h3	С	2	4	2
h4	N	2	2	4

What does RWR vectors preserve?

- Distribution of node-types around each node in graph
- Stores more structural information than a simple count of node-types
- Captures the feature vector representation of the subgraph around each node in a graph

Extracting information from feature vectors

Vector	a-b	a-d	а-е	a-f	b-c	b-d	с-е	c-f	d-f
G_1	2	0	3	0	1	1	0	0	0
G_2	4	0	0	0	2	1	0	0	1
G_3	3	0	0	0	1	2	1	1	0
G_4	0	3	0	3	0	0	0	0	2

- Floor of G₁,G₂,G₃: [2,0,0,0,1,1,0,0,0]
- Floor of $G_1, G_2, G_3, G_4 : [0,0,0,0,0,0,0,0,0]$
- False positives pruned later

Measuring p-value of feature vector

- Sub-feature vector: $\underline{X} = [x_1, ..., x_n]$ is a sub-feature vector of $\underline{Y} = [y_1, ..., y_n]$ if $x_i \le y_i$ for i = 1...n.
 - Example: [2,3 1] ≤ [4,3,2].
 - In other words, "X occurs in Y"
- Given a vector X:
 - -P(X) = Probability of X occurring in an arbitrary Y $= P(y_1 \ge x_1, ..., y_n \ge x_n)$ $= \prod_{i=1}^{n} (y_i > x_i)$

More p-value calculation

- Individual feature probabilities calculated empirically.
- Example:

Vector	a-b	a-d	a-e	a-f	b-c	b-d	с-е	c-f	d-f
G_1	2	0	3	0	1	1	0	0	0
G_2	4	0	0	0	2	1	0	0	1
G_3	3	0	0	0	1	2	1	1	0
G_4	0	3	0	3	0	0	0	0	2

- $P(a-b\geq 2)=3/4$
- $P(a-e \ge 1)=1/4$
- $P([2,0,0,0,1,1,0,0,0]) = \frac{3}{4} * \frac{3}{4} * \frac{3}{4} = \frac{27}{64}$

Probability Distribution of X

 The distribution can be modeled as a Binomial Distribution

$$P(\underline{x}; \mu) = \binom{m}{\mu} P(\underline{x})^{\mu} (1 - P(\underline{x}))^{m-\mu}$$

- m = number of vectors in database
- $-\mu$ = number of successes

X occurring in a vector a "success"

P-value...

•
$$p\text{-value}(x, \mu_0) = \sum_{i=\mu_0}^{m} P(\underline{x}; i)$$

• μ_0 = observed frequency

Monotonicity properties of p-value

- If <u>X</u> is a sub-feature vector of <u>Y</u>
 - p-value(X,s) ≥p-value(Y,s) for any support s

- For some support $s_1 \ge s_2$
 - p-value(\underline{X} , s_1) ≤ p-value(\underline{X} , s_2)

Mining Significant subgraphs

- What have we developed till now?
 - Vector representation of subgraphs
 - Significance of a subgraph using its vector representation
- Next Step?
 - Find all significant vectors

Definitions

- Vector <u>X</u> occurs in graph G
 - $\underline{X} \leq \underline{h}_i, \underline{h}_i \in G$
 - Ex: [3,1,2] occurs in G, [3, 3, 3] does not.

Random Walk Results **Graphical Representation** O-2-C | C-1-C C-1-N **Starting Atom** ID h_1 4 2 2 0 h2 2 3 C 3 h3 2 C 4 h4 N 2 2

Definitions...

- Cut-off/Isolate structure around node n in Graph G within radius r
 - Ex: around b within radius 1

— Ex: around f within radius 2

Mapping significant vectors to significant subgraphs

Application of significant subgraphs

- Over-represented molecular sub-structures
- Graph Classification
 - Significant subgraphs are more efficient than frequent subgraphs

Graph Setting

Classification Flowchart

Experimental Results: Datasets

- AIDS dataset
- Cancer Datasets

Name	Size	Description	
MCF-7	28972	Breast	
MOLT-4	41810	Leukemia	
NCI-H23	42164	Non-Small Cell Lung	
OVCAR-8	42386	Ovarian	
P388	46440	Leukemia	
PC-3	28679	Prostate	
SF-295	40350	Central Nervous System	
SN12C	41855	Renal	
SW-620	42405	Colon	
UACC-257	41864	Melanoma	
Yeast	83933	Yeast anticancer	

Representing molecules as graphs

Time Vs. Frequency

Time vs DB size

Profiling of Computation Cost

Quality of Patterns

Subgraphs mined from AIDS database

 Subgraphs mined from molecules active against Leukemia

- Sb and Bi are found at a frequency below 1%
- Current techniques unable to scale to such low frequencies

Classification

- Performance Measure: Area under ROC Curve (AUC)
- AUC is between 0 and 1.
- Higher the AUC better the performance.

AUC Comparison

Dataset	OA Kernel	Leap	GraphSig
MCF-7	0.68 ± 0.12	0.76 ± 0.04	0.77 ± 0.02
MOLT-4	0.65 ± 0.06	0.72 ± 0.06	$0.74\ \pm\ 0.02$
NCI-H23	0.79 ± 0.08	0.79 ± 0.05	0.80 ± 0.02
OVCAR-8	0.67 ± 0.04	0.78 ± 0.02	0.79 ± 0.02
P388	0.79 ± 0.07	0.84 ± 0.03	0.84 ± 0.02
PC-3	0.66 ± 0.09	0.76 ± 0.04	0.76 ± 0.03
SF-295	0.75 ± 0.11	0.77 ± 0.02	0.80 ± 0.02
SN12C	0.75 ± 0.08	0.80 ± 0.02	0.80 ± 0.03
SW-620	0.70 ± 0.02	0.76 ± 0.04	$\textbf{0.77}\pm\textbf{0.02}$
UACC-257	0.65 ± 0.05	0.75 ± 0.03	0.81 ± 0.02
Yeast	0.64 ± 0.04	0.71 ± 0.02	0.73 ± 0.04
Average	0.702 ± 0.07	0.767 ± 0.03	0.782 ± 0.02

Running Time Comparison

Questions?