Mining Graph Patterns
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Why mine graph patterns?

* Direct Use:

— Mining over-represented sub-structures in chemical
databases

— Mining conserved sub-networks
— Program control flow analysis

 |Indirect Uses:

— Building block of further analysis
* Classification
e Clustering
e Similarity searches
* Indexing



What are graph patterns?

* Given a function f(g) and a threshold 6, find all
subgraphs g, such that f(g) > 6.

 Example: frequent subgraph mining.

Given a graph dataset D, find subgraph g, s.t.

freq(g) = ¢

where freg(g) is the percentage of graphs in D that
contain g.



G,

e ° s this the only frequent
0=3 subgraph?

Frequent subgraph

NO!

Apriori Property

If a graph is frequent, all of its subgraphs are frequent.




Other Mining Functions

 Maximal frequent subgraph mining

— A subgraph is maximal, if none of it super-graphs
are frequent

* Closed frequent subgraph mining

— A frequent subgraph is closed, if all its supergraphs
have a lesser frequency

e Significant subgraph mining
— G-test, p-value



Frequent Subgraph Mining

= Apriori-based approach
— AGM/ACGM: Inckuchi, et al. (PKDD'00)
— FSG: Kuramochi and Karypis (1ICDM'01)

— PATH=: Vanetik and Gudes (ICDMOZ, ICDM04)
— FFSM: Huan, et al. (ICDM03) and SPIN: Huan et al. (KDD'04)
— FTOSM: Horvath et al. (KDD'0E)

= Paftern growth approach
— Subdue: Holder et al. {(KDD"a4)

— MoFa: Borgelt and Berthold (I[CDM'0Z)
— gspan: Yan and Han (I[CDM'02)
— Gaston: Nijssen and Kok (KDD'04)



Frequent subgraph mining

e Apriori Based Approach (FSG)

— Find all frequent subgraphs of size K

— Find candidates of size k+1 edges by joining
candidates of size k edges

— Must share a common subgraph of k-2 edges
Example: (FSG)

N HI-N N



Pattern Growth Approach

e Pattern Growth Approach
— Depth first exploration
— Recursively grow a frequent subgraph

2-edge

n-edge



Mining Significant subgraphs

 What is significance?
— Gtest, p-value

— Both attempt to measure the deviation of the
observed frequency from the expected frequency

— Example: Snow in Santa Barbara is significant, but
snow in Alaska is not.



P-value

* p-value : what's the probability of getting a result
as extreme or more in the possible range of test

statistics as the one we actually got?

Probability

* Lower the p-value, higher the significance



Problem formulation

* Find answer set A — {g|p-value(z) < n,9 € G,G € D)
— I : Graph Database
—n : Significance Threshold
—g C G :gisasubgraph of G

* Low frequency does not imply low significance
and vice versa

— Graph with frequency 1% can be significant if
expected frequency is 0.1%



Solution to Problem: Approach 1

Bottleneck

N
N—
Graph
Database | rroquent Sub-graph ST Calculate p-value to find g

~—— Mining with low
frequency threshold

.'ﬁ ¥4 significant sub-graphs ~=

Answer Set

* Number of frequent subgraphs grow
exponentially with frequency
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Alternative Approximate Solution
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Converting graphs to feature vectors

 Random walk with Restart (RWR) on each
node in a graph

e Feature vectors discretized to 10 bins

Graphical Representation

©

Q)
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©

2

1
N)

Random Walk Results

ID |Starting Atom | 0-2-C | C-1-C | C-1-N
h, |O 4 2 2
h2 |C 2 3 3
h3 (C 2 4 2
h4 |N 2 2 4




What does RWR vectors preserve?

* Distribution of node-types around each node
in graph

e Stores more structural information than a
simple count of node-types

e Captures the feature vector representation of
the subgraph around each node in a graph



Extracting information from feature vectors

Vector | a-b | a-d | ae | a-f | b-c | b-d | c-e | cf | d-f
(1 2 0 3 0 1 1 0 0 0
(o 4 0 0 0 2 1 0 0 1
(73 3 0 0 0 1 2 1 1 0
(r4 0 3 0 3 0 0 0 0 2

* Floor of GlIGZIG3: [210101011111010'0]
* Floor of G,,G,,G;,G, :[0,0,0,0,0,0,0,0,0]
* False positives pruned later




Measuring p-value of feature vector

* Sub-feature vector: X=[x,, ..,x,] is a sub-feature
vector of Y =[y,, ..,y ] if x<y; fori=1..n.
— Example: [2,3 1] £ [4,3,2].
— In other words, “X occurs in Y”
* Given a vector X:
— P(X) = Probability of X occurring in an arbitrary Y

=P(y,2x,, ...y, 2 X,)

ﬂ(yz‘ > Xi)
i=1



More p-value calculation

Individual feature probabilities calculated

empirically.
Example:

Vector | a-b | a-d ae | a-f | b-c | b-d | c-e | c-f

d-f
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(a-b>2)=3/4
P(a-e21)=1/4
2([2,0,0,0,1,1,0,0,0])= %* 3%* %4 = 27/64




Probability Distribution of X

 The distribution can be modeled as a Binomial

Distribution
—  Plzp) = (ff‘)mz:ﬁ:1 — P(z))™ "

— m = number of vectors in database
— U = number of successes

e X occurring in a vector a “success”



P-value...

Expected
Frequency
P Observed
% Frequency |
3
o
(s W
Frequency
T
. [
p-value(x, 1) = E P(z;i)
P o

* o = observed frequency



Monotonicity properties of p-value

e |f Xis a sub-feature vector of Y

— p-value(X,s) 2p-value(Y,s) for any support s

* For some supports; 2s,

— p-value(X,s,) < p-value(X,s,)



Mining Significant subgraphs

* What have we developed till now?
— Vector representation of subgraphs

— Significance of a subgraph using its vector
representation

* Next Step?
— Find all significant vectors



v1l:4,5,6
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less that p-value threshold




Definitions

Vector X occurs in graph G
— X< h,he€eaGg

2 _/I _/

— Ex: [3,1,2] occurs in G, [3, 3, 3] does not.

Graphical Representation Random Walk Results
(0) ID |Starting Atom | 0-2-C | C-1-C | C-1-N
2 h, O 4 2 2
. (C) . h2 |C 2 3 3
h3 (C 2 4 2
© N)
hd |N 2 2 4




Definitions..

* Cut-off/Isolate structure around node n in
Graph G within radius r

— Ex: around b within radius 1

o

— Ex: around f within radius 2

o



Mapping significant vectors to significant subgraphs

Scan all
nodes in
database

Isolate sub-
structures
around each

ST node in a
v set
1
1
Significant Sets of
sub-structures | <------- P similar sub-

Maximal
frequent
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mining




Application of significant subgraphs

* Over-represented molecular sub-structures
* Graph Classification

— Significant subgraphs are more efficient than
frequent subgraphs
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Classification Flowchart
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Experimental Results: Datasets

 AIDS dataset
e Cancer Datasets

Name Size Description
MCE-7 28972 Breast
MOLT-4 41810 Leukemia
NCI-H23 42164 Non-Small Cell Lung
OVCAR-8 42386 Ovarian
P388 46440 Leukemia
PC-3 28679 Prostate
SF-295 40350  Central Nervous System
SN12C 41855 Renal
SW-620 42405 Colon
UACC-257 41864 Melanoma

Yeast 83933 Yeast anticancer




Representing molecules as graphs
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Profiling of Computation Cost
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Quality of Patterns

e Subgraphs mined from AIDS database
— %f
<
e Subgraphs mined from molecules active against
Leukemia

Y Y

— Sb and Bi are found at a frequency below 1%
— Current techniques unable to scale to such low frequencies



Classification

e Performance Measure:

ROC Curve
Area under ROC Curve 100 e —=>
(AU C) § 80_% Q},@%\ //
: 604 &7
* AUCis between 0 and 1. : &
Z’ 40‘5 qug/
* Higher the AUC better the 4,1/ >
performance. o |

T T
100 80 60 40 20 0
Specificity (%)



AUC Comparison

Dataset OA Kernel Leap GraphSig
MCE-7 0.68 £+ 0.12 0.76 £+ 0.04 0.77 4+ 0.02
MOLT-4 0.65 £+ 0.06 0.72 £+ 0.06 0.74 4+ 0.02
NCI-H23 0.79 £ 0.08 0.79 £ 0.05 0.80 £ 0.02
OVCAR-8 0.67 = 0.04 0.78 £ 0.02 0.79 4 0.02
388 0.79 £ 0.07 0.84 4 0.03 0.84 4 0.02
PC-3 0.66 = 0.09 0.76 4= 0.04 0.76 4= 0.03
SEF-295 0.75 4= 0.11 0.77 £ 0.02 0.80 4= 0.02
SN12C 0.75 4 0.08 0.80 4 0.02 0.80 4+ 0.03
SW-620 0.70 £ 0.02 0.76 £+ 0.04 0.77 4+ 0.02
UACC-257 0.65 £ 0.05 0.75 £ 0.03 0.81 £ 0.02
Yeast 0.64 £ 0.04 0.71 £ 0.02 0.73 4 0.04
Average 0.702 = 0.07 | 0.767 4= 0.03 | 0.782 4 0.02




Running Time Comparison
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Questions?



