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Abstract
Understanding the Semantics of Networked Text

Gengxin Miao

Social networks are a powerful means for information slwariiA large social
network typically has hundreds of millions of users. Thesers are interconnected
through social links to friends, colleagues, family menshatc. The frequent inter-
action and information exchange between users form a neahsiterogeneous infor-
mation network. Understanding the semantic informatiothi textual data and the
topological information in the social network poses a gidrdllenge for data mining
researchers. This Ph.D. dissertation tackles the probfamderstanding the unstruc-
tured or semi-structured data in social networks. Firstdescribe a parallel spectral
clustering algorithm that makes possible clustering asalgn large-scale social net-
works with hundreds of millions of users. Comprehensivdyais, extraction and inte-
gration of information from multiple sources are necessisgxt, we describe an infor-
mation extraction engine that extracts data items from Vgep without knowing the
data wrapping template. We also present an informatioigiateon approach to aggre-
gate data tables collected from the Web and hence bettex general Web search. To
make information routing in collaborative networks morogént, we describe genera-

tive models to characterize expertise awareness relaijpshbetween agents in collab-
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orative networks and provide efficient task routing recomdagions. We also describe,
in depth, the first quantitative analysis of the informatitmw efficiency in collabora-

tive networks. To utilize the accumulated information, vexeloped a topic modeling
approach that allows document retrieval across multipludeent sets with possible

semantic gaps and vocabulary gaps.

Professor L. E. Moser
Dissertation Committee Chair
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Chapter 1

Introduction

The Web and social networks are powerful means for inforonagharing. A large
social network typically has hundreds of millions of usef® date, Facebook has
achieved 630 million users. LinkedIn and Twitter are alspegiencing a stunning user
growth rate. These users are interconnected through diméialto friends, colleagues,
family members, etc. Users with common interests form comiti@s. Users interact
with each other by writing posts, asking questions, shaimfigrmation, etc. These
social activities create a tremendous amount of data.

Analyzing the data and information flow in social networksilitates the recogni-
tion of major events with world-wide impact, the predictimitrends in public opinion,
and more, in a timely and scalable manner. Often, it is the taat social media re-

spond much more quickly than traditional public media. Baraple, Twitter had a
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large burst of twits about the earthquake in Virginia in 2@kEfore the news media
released the first formal news. Detecting bursts of activityocial media can enable
public media to achieve faster responses and larger caveBarial media also plays
an important role in politics and business. For examplel.thgan revolution received

tremendous support from social media. Online mercharglgin ideas for their busi-
nesses from new hot topics discussed in social networksalSwtworks also provide

an important source for fundamental sociological reseasctiaditional social interac-
tions become more technology-based. Thus, data found ial s@tworks offers great

opportunities for researchers in many research domains.

However, analysis of data within social networks also pnesgreat challenges.
First of all, data within social networks are typically crecin a large-scale, distributed
manner. With the advance of technology, data storage dgpammtinues to increase.
On the other hand, data analysis tools do not scale well tefgdtig data analytic
needs, especially for dealing with incremental data. Egstlata mining and machine
learning techniques that work well with small datasets rteduk re-invented to fit big
data settings, where executions are typically performgzhnallel or online.

Moreover, comprehensive data analysis needs to leveragealéected from multi-
ple sources. Each data source publishes its own data in itspecific way. These dis-
tributed, independent data sources lack a uniform starfdadhta publication. Thus,

data extraction and data integration are huge challengesn Eore challenging, the
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Web postings in social networks are written by humans innaatanguages. Different
people use different terminology to express the same idwhiley use the same ter-
minology with different meanings. Analyzing the semant€satural language texts
with proper consideration of the underlying network stanes that connect the texts is
yet another modeling challenge.

This Ph.D. Dissertation addresses large-scale unstecctur semi-structured data
within social networks and contributes toward semanticausidnding of the data with
emphasis on parallel and distributed computing, data etitra and integration, in-
formation flow analysis, and topic modeling. The specifictdbations of this Ph.D.

Dissertation are highlighted below and are described iaidaetsubsequent chapters.

1.1 Parallel Spectral Clustering

Users of social networks connect with each other and forrneonities of interest.
As the scale of the network increases to hundreds of millanssers, the edges that
join users become very sparse. It is reported that Facebseis thave an average of
approximately 130 connections among 3@ million Facebook users. For this large
user population size, it is almost impossible for a user fae all of the other users

or communities of users with potential common interests.
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Clustering algorithms can be used to group together userscommunities and,
hence, they facilitate the users’ exploration of the datthennetwork. Although the
k-means algorithm can be parallelized to accommodate -segke datasets on the
MapReduce platform, its assumption that the data samplesvfa Gaussian distri-
bution inside each cluster does not hold for super-spanssels, not to mention the
algorithm’s sensitivity to the choice of the initial clusteentroid. Spectral clustering
has proven to be effective in finding clusters with non-limeaundaries. Unfortunately,
spectral clustering suffers from the scalability problenboth memory space and com-
puting time.

This Ph.D. Dissertation contains the first study of paraégion of spectral clus-
tering. The Parallel Spectral Clustering (PSC) algoritlenbased on the MPICH2
platform, which provides distributed memory and distrézlitomputation within a dis-
tributed computing system. The PSC algorithm finds clustecemmunities in a large
social network of users with similar interests. Experinsgueérformed for the Orkut so-
cial network, with more than 10,000,000 users and 150,06@hoonities, demonstrate
the effectiveness of the PSC algorithm. The PSC algorithrivete 100 clusters of
communities for this dataset and finishes within 20 minuteemusing 90 computers.
The PSC algorithm makes possible online clustering of $aevorks with large user
populations, such as Orkut. Clustering greatly enableagbes in finding communities

of users with interests that match their particular intexes



Chapter 1. Introduction

1.2 Extraction and Integration of Data from Distributed

Sources

For many social networks, the data are stored in a databasabquery time, the
contents are rendered in HTML code and are displayed on Wgbspd he data scale
is large, and the data schema differ from site to site. Autamaethods that extract
lists of data items have been extensively studied. In exjstata extraction algorithms,
typically a wrapper is used to compare contiguous segmdritsIL code. These
methods suffice for simple search, but often fail to handleentomplicated or noisy
Web page structures due to a limitation: their greedy maohadentifying lists of
records through pairwise comparison of consecutive setgnen

The novel DataExtractor system, presented in this Ph.Dsdbigtion, mimics the
process of how a human finds data records on a Web page or stcettre human eye,
the data items on a Web page are rendered in visually repggagitterns. The distinct
HTML tag paths, that correspond to these visual signalseat@acted and clustered,
and the data records are then extracted based on the vigonalssi The DataExtractor
system yields higher extraction precision and recall thastieag algorithms, especially
when the Web pages contain nested data items or loosely fieuh@ata items.

The data tables extracted from the Web pages offer a corpusocé than 100

million tables, and are difficult for a computer to processcduse the semantics of
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the data are typically not explicit in the tables. Table feadrecord fields) exist in
few cases and even when they do, the attribute names areusiégss. Moreover, the
ranking methods for searching document corpora for geneéedl search do not work
well for table corpora.

The novel TableFinder system, presented in this Ph.D. Dagen, attempts to
recover the semantics of the extracted data in the tablesrghéng the tables with ad-
ditional annotations. The annotations facilitate operaisuch as searching for tables
and finding related tables. To recover the semantics of ttracrd data in the tables,
the TableFinder system leverages a database of class &attbtglationships automati-
cally extracted from the Web pages. The database of clasgaglkationships has very
wide coverage, but is also very noisy. The TableFinder systitaches a class label to
a column if a sufficient number of values in the column are fdied with that label in
the database of class labels, and similarly for binary igglahips.

This Ph.D. Dissertation further introduces a formal model&éasoning about when
there exists sufficient evidence for a label. Experimentaatestrate the utility of the
recovered semantics for table search and shows that thedeénfforms substantially
better than previous approaches, such as a simple majohgnse. In addition, this
Ph.D. Dissertation characterizes what fraction of thegsibh the Web can be annotated

using this approach.
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1.3 Modeling Information Flow in Collaborative

Networks

In contrast to Web search engines that facilitate inforamatetrieval in a library
paradigm, social networks follow a village paradigm in whinformation flows from
person to person. Unlike general Web search where an indiVgkeks to find a Web
document that contains the target information, in a soa@#vork individuals desire
to find an efficient social route that leads to a person who lhagarget information.
Thus, information flow within social networks needs to belgred. The posts, notes,
and comments conveyed in social networks contain valuatestic information for
analyzing information flow. They are usually unstructured difficult for a computer
to organize and analyze.

This Ph.D. Dissertation presents the ticket resolutiort@ss for expert networks,
collaborative research conducted with researchers at IBMWatson. Problems and
work requests are submitted to an expert network in the fdrtickets. These tickets
sometimes bounce among many expert groups before theyaamsfdrred to the cor-
rect resolver, particularly when the network size is largmding a methodology that
reduces such bouncing and hence shortens the ticket riesdiime is a long-standing

challenge.
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This Ph.D. Dissertation presents generative models thaticasemantic-level in-
formation flow in expert networks. Based on these generatigdels, routing algo-
rithms are developed. These routing algorithms providgestijons that quickly route
tickets to an appropriate expert within a large expert nétwd@hese models and al-
gorithms apply to posts, notes, and comments found in mdfgreint kinds of social
networks.

This Ph.D. Dissertation further studies the behavior ofegbgin expert networks.
The typical roles of experts in expert networks are as ressland transferrers. The
resolvers resolve many tickets by themselves. The trams$enave knowledge of what
other experts are capable of doing and are essential fangptitkets. For a ticket that
traverses extremely long paths before being resolveds theght exist experts who can
neither resolve the ticket, nor make good routing decisitientifying such experts can
help to provide targeted training and, hence, improve thei@fcy of routing tickets

through the network.

1.4 Quantitative Analysis of Task-Driven Information

Flow

Collaborative networks are a special type of social networkned by members

who collectively achieve particular goals, such as fixindtveare bugs and resolv-
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ing customers’ information technology problems. In suctwoeks, information flow
among the members of the network is driven by the tasks asgignthe network, and
by the expertise of its members to complete those tasks.

This Ph.D. Dissertation analyzes real-life collaboratieévorks to understand their
common characteristics and how information is routed irs¢heetworks. It shows
that the topology of collaborative networks exhibits sfmaintly different properties
compared to other common complex networks. Collaboragteorks have truncated
power-law node degree distributions and other organiaaticonstraints. Furthermore,
the number of steps along which information is routed fodamruncated power-law
distribution.

Based on these characterizations, this Ph.D. Dissertpt@sents a novel network
model that can be used to generate synthetic collaboratitweonks subject to certain
structural constraints. Moreover, it presents a novelingunodel that emulates task-
driven information routing conducted by human beings inadmrative networks. To-
gether, these two models are used to study the efficiencyfofmration routing for
various topologies of a collaborative network - a problest ik important in practice

yet difficult to solve without the methods presented in tisP Dissertation.
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1.5 Modeling Networked Document Sets

Many social networks feature a question-answering prategsallows individuals
to ask questions or answer the questions of others. Thectiols of questions and an-
swers form a pairwise document set. Among the many quest@sed by individuals,
the same questions are likely to be asked many times andnpeelsa different ways.
An individual who can answer a question is unlikely to hawedhergy to answer all of
the variations of the question posed by other individuals.

Given a new guestion, automatically ranking the potentighgers using the exist-
ing question-answer pairs can help boost the coverage @femad questions. Such
ranking presents a challenge for information retrievablaing two or more document
sets that is different from traditional information ret& in a single document set.
Relevance ranking based on keyword matching no longer gt$tbblem due to the
multiple document sets involved.

Questions are typically asked by individuals who think framapplication perspec-
tive. The answers are typically written by professionalowvitink from a technical
perspective. For example, when a user asks a Microsoft Wisditue-screen question,
the solutions can be related to multiple software compaignthe Windows system
of which the customer might be unaware. Moreover, the pdidoouments can be

written in different languages, such as the English and €d@rversions of articles on

10
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the Wikipedia Website. Thus, there might be a vocabularytgaween the source doc-
uments (queries) and the target documents. This vocabgigrydentifies the problem
settings for information retrieval with multiple documeswts that are different from
traditional information retrieval. There might also be aitogap between the source
documents and the target documents, considering that #&iqns and the answers
might emphasize different topics.

This Ph.D. Dissertation describes a novel topic modelimy@gch — Latent Asso-
ciation Analysis (LAA) — that explicitly mines the correiah between a pair of doc-
uments. The generative process defined by the LAA model fiest/sla correlation
factor that holds together a pair of documents, just as aenlyidg disease explains
why a certain symptom leads to a specific treatment. Basetieondrrelation factor,
two separate topic proportion vectors are drawn for theesponding source and target
documents. Given the topic proportion vector, the LAA methdoaws the topic assign-
ment and the word from the topic-to-word distribution, danio other topic modeling
approaches.

Experiments demonstrate that the LAA method significanilyperforms other state-
of-the-art methods in identifying the correct target doemtpnwhen a source document
is given. The LAA method roughly ranks the correct targetudnent within the tod 0
out of 100 candidates. Thus, the LAA method reduces the search spaae drgler of

magnitude. If a user initially needs to search through documents to find the correct

11
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answer, with the help of the LAA model the user needs to sethrciugh only10 doc-
uments to find the correct answer. The LAA method can greatfyrove information

consumption efficiency, especially when the document iplarge.

1.6 Summary

In summary, this Ph.D. Dissertation addresses the genelgm of unstructured
or semi-structured data within social networks. It focusewe specifically on the
following issues: (1) scalability for unstructured datahin social networks that com-
prise millions of users, (2) unstructured data extractiothiategration, (3) information
flow modeling over social networks and topic analysis, (Hrgitative analysis of task-
driven information flow on collaborative networks, and @&pic modeling across multi-
ple large-scale document sets within social networks. Phi®. Dissertation presents
novel models, methods, algorithms, and systems that aglthrese issues and that con-
tribute toward the understanding of unstructured or sémictured data within social

networks.

12
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Parallel Spectral Clustering

The Web and social networks allow users to engage each ditoergh both infor-
mation and application sharing. For instance, users slaeeuvia Blog, Wiki, or BBS
services. Users share applications on social platformis asd¢-acebook and OpenSo-
cial. Communities are formed by users of similar intereddging able to discover
communities of common interests is of the paramount impegdor maintaining high
viral energy in social networks. Such discoveries can eneffective friend sugges-
tions, topic recommendations, and advertisement matshjagt to name a few.

One approach to discover communities of common interests@sigh clustering.
The biggest challenge that a clustering algorithm facecadability. An algorithm
must be able to handle millions of data instances in a reBtishort period of time.

For example, Orkut [6] consists of more th2m million communities and more than

13
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50 million user. Performing clustering on such a large dataset on a singfguater
is prohibitive in both memory use and computational time.

In this chapter, we present a parallel spectral clusteriggraghm that runs on
distributed computers. With the increasing popularity stributed data centers and
clouds that contain millions of computers, this parallgb@@ach can scale up to solve
large-scale clustering problems.

We select spectral clustering as our base algorithm beazuse well-known ef-
fectiveness. The graph cut can be formulated as an eigendalcomposition prob-
lem of the graph Laplacian [33] by relaxing the labels to kel k@lues. The graph
Laplacian can be seen as an approximation of the LapladeaBeloperator on the
manifold [15]. Representative spectral clustering mesiadlude Min Cutl[142], Nor-
malized Cut[[11B], Radio Cuf [60], Min-Max Cut [47] and CotGtering [40, 151].
Moreover, in a general relaxation view, graph déutneans, Principle Component Anal-
ysis (PCA) and Nonnegative Matrix Factorization (NMEF)/[T&hd their corresponding
kernel versions) can be seen as unified framewaorks [41, 9y practical applica-
tions, such as image segmentation [|118] and text categioniz@0,151], have proven
to be well-suited spectral clustering applications.

Unfortunately, eigenvalue decomposition antheans calculations present bottle-

necks for spectral clustering. The memory use of eigenvddwemposition i€ (n?),

The claim was based on statistics in year 2007.

14
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wheren is the number of data instances. The time complexity forreigkeie decom-
position isO(n?) at the worst case. Whenis very large, say beyond a million, tradi-
tional single-computer speedup schemes$[42,55, 77, 93 sffier from either memory
or CPU limitations.

Our parallel algorithm employs a parallel ARPACK algoritfRARPACK) [89] to
perform parallel eigenvalue decomposition. Although ¢hexist other parallel eigen-
value or singular-value decomposition techniqued [6 85}l the PARPACK algorithm
has the following advantages: (1) It can be computed onibliged computers as well
as multi-core systems, and (2) it is fast when the matrix &ssgp Moreover, we imple-
ment a parallek-means algorithm to cluster data in the eigenvector spaceeduce
the memory use, our algorithm loads onto each computer belynecessary rows of
data for conducting parallel computation. Empirical sascghow that our parallel spec-
tral clustering algorithm is both accurate and efficient.

Chu et al. [[32] employed map reduce on multi-core computedsparallelized a
variety of learning algorithms including-means to obtain speedups. However, these
solutions are implemented on a shared memory, multi-ca®sy. The limit of mem-
ory space still exists. The closest work to our work is thald@], which presents a
parallel .-means clustering algorithm that is also based on disgtatemory. How-
ever, using:-means alone, it is not possible to deal with non-linearpesable datasets.

Moreover, the time complexity of themeans algorithm grows linearly with the dimen-
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sionality of the data, whereas spectral clustering doesurféer from this problem. The
eigenvalue decomposition procedure has the virtue of redutimensionality for the

k-means algorithm.

2.1 Spectral Clustering

In this section, we briefly review the eigenvalue decompasiproblem involved in
both spectral clustering and co-clustering. This revietroiuces notation that is used

in the rest of this chapter.

2.1.1 Spectral Analysis of Graph Cuts

Considerg = (V, &) as a weighted neighborhood graph that is constructed by the
point cloudX = (x4, ..., x,), wheren is the point numben,/ is the vertex set of graph,
and¢ is the edge set that contains the pairs of neighboring estic, ;). A typical

similarity matrix S of a neighborhood graph can be defined as:

S(xi, ;)  if (x,x5) € E
S, = ’ ’ 2.1)

0 otherwise

where S(z;, ;) is a similarity score given byg.g, a Gaussian kernel function. The

graph Laplacian of a neighborhood graphlis= D — S, and the normalized graph

16
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LaplacianisL = I — D~3SD~3, where the diagonal matrik satisfiesD;; = d;, and
d; = Y75, Sij is the degree of vertex; [33].

Consider the normalized cut. We need to find subgeend B such that the nor-

cut(A,B) cut(B,A)

2ss0c AV + mssoc(BY) 1S minimized. It has been

malized cut criterion7ycw: (A, B) =
shown [118] that the solution is given by optimizing the éaing criterion:

L

(2.2)

f; = argmin

J7 fo=0 JTDf
where f = (f(x1), f(x2), ..., f(x,))T € R"™'. The solution iis given by the sec-
ond smallest eigenvector of the generalized systefn= ADf, wheref, = 1 is
the eigenvector corresponding to the smallest eigenvalue- 0. Note that, if we

use the normalized graph Laplacian instead of the unnozethlone, the solution is

f; = argmin L= This solution is further related t5(2.2) becayse= D: f;.
IT fo=0

Note the following fact:

fTEf = argminfT(I — D_%SD_%)JC = argmaXngf
Ty frf frf

argmin

whereS = D~3SD~2. The spectral clustering problem can be solved in the scaled
kernel PCA (KPCA) framework. The difference is that KPCA si$ell connection
graphs, while spectral clustering methods can use neigbbdrgraphs. The advantage
of using neighborhood graphs is that their correspondimgjaiity matrices are sparse

and, therefore, fast algorithms can be introduced.
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2.1.2 Co-Clustering

For text categorization or community analysis problems word-by-document or
user-by-community co-occurrence matrices can be usedrerge a bipartite graph.
Taking user-by-community co-occurrence as an examplegridueh is defined a§ =
(U,C,E), whereld denotes the set of user verticesdenotes the set of community
vertices and€ denotes the edge set. We can make use of co-clustering geesnio
cluster users and communities simultaneously([40, 151]ikEithe edges of traditional
graphs, the edges of a bipartite graph are related only todteecurrences, such that
if a user; joins the communityj, we introduce an edge connecting them.

It is not difficult to verify that the similarity matrix can bealculated from the

adjacency matrix

S = (2.3)
AT 0

whered € R™™ is the adjacency matrix that indicates the co-occurrentbefisers
and communities, and andn’ are the number of communities and users, respectively.

Then the normalized graph Laplacian is

i I _D1—1/2AD2—1/2
I — (2.4)
_D2—1/2ATD1—1/2 I
whereD; and D are diagonal matrices, calculated @% );; = Z;il A;jand(Ds);; =

> i Aij-
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By using eigenvalue decomposition of the normalized gragplacianL f = \f

wheref = (fI, f)7 € RO)x1 we obtain

Dy PADY P fr = (1= V) e
(2.5)
Dy ATDT? fy = (1= M) fu.
Performing the SVD technique shows thatand f, are the left and right singular
vectors of the matrixD; /2 AD; /2.

The above analysis pertains to thevay clustering problem. For theway (k is
the number of clusters) clustering problem, many appraabhaee been proposed. For
example, we can use tleeway clustering algorithm to partition the data recursyvel
k — 1 times [118]. Other clustering algorithms.,g, k-means, can be used to cluster
the embedded points in the eigenvector spaceé [98]. Moreegenvectors can be
discretized into class indicators by means of matrix deamsitipn [150]. Becausé-

means is a fast way to cluster data and can be easily paratlelive select this way to

obtain the finak-way clustering results.

2.2 Parallel Spectral Clustering Algorithm

This section presents our parallel spectral clusteringrdtym that can be used to

cluster large-scale datasets.
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Table 2.1: The traditional ARPACK algorithm.

1. Input: ann x n matrix S.
2. Start: Build a lengthn Arnoldi factorization

SV = VinHp + fmel (2.6)

with the starting vector,, whereV,,, is ann x m matrix, with normalized orthogg
nal columns derived from the Krylov subspadé,, is the projection matrix (uppe
Hessenberg)f,.c% is the residual vector with length

3. Iteration: Until convergence.

according to the user selection criterion into a wanted 8get j = 1,2, ...k}, and an
unwanted sef); : j =k+1,k+2,...,m}.

{Nj:i=k+1,k+2,..,m},as shifts to obtailtd,,,Q,, = Q.. H,},, whereH,' is the
projection matrix in the next iteration.

3.3. Restart: Postmultiply the length Arnoldi factorization with the matrix);.
consisting of the leading columns of(),,, to obtain the lengtlk Arnoldi factorization
SV Qi = Vi QrLH;" + fif el where isH," is the leading principal submatrix of ord
kfor H. SetV), < V., Q.

3.4. Extend the lengtik” Arnoldi factorization to a lengtim factorization.

4. Calculate the eigenvalues and eigenvectors of the snadlixr,: The eigen;
values ofHy, {\; : 7 = 1,2,...,k}, is the approximation of’s eigenvalues. Thg
eigenvectors off; is {e; : j = 1,2, ..., k}, andE}, is the matrix formed by;.

5. GivenSV,, = V. Hy,, we can derive the approximate eigenvectors ofu; : j =

3.1. Compute the eigenvalugs; : j = 1,2,...m} of H,,. Sort these eigenvalugs

3.2. Performm — k = [ steps of theQRiteration with the unwanted eigenvaluges

=

W
=

A} %4

1,2, ..., k}, whereu; is thej™ column of matrixV;, - E..
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2.2.1 Parallel Matrix Decomposition

Parallel matrix decomposition includes eigenvalue deamsitipn (EVD) and paral-
lel singular value decomposition (SVD). First, we preséetEVD problem, and then

we show how the SVD problem can be converted into the EVD prabl

Parallel EigenValue Decomposition (EVD)

The traditional ARPACK algorithm (shown in Talile P.1) [7 lculates the approx-
imated topk eigenvalues and the corresponding eigenvectors of a laafyexm Given

a matrixS € R"*", we build a lengthn Arnoldi factorization[9] as

SV = VinHp + fel (2.7)

whereV,, € R™™; H,, € R™™; f..el isthe residual orthogonal 4, andH,, is the
projection of S in the spaceRange(V,,,). If f,.el is small, H,, can be viewed as an
approximation ofS of dimensionm x m. Eigenvalues and eigenvectors®ican be

calculated fron¥{,,’s eigenvalue decomposition:

)\j ~ 6j,j S {1,2, ,m}

u; = Ve, €{1,2,...,m} (2.8)

2 The traditional ARPACK algorithm, as used on a single corapta determine approximate eigen-
vectors for a large matris.
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where the); are the eigenvalues of matrix thed, are the eigenvalues of matriX,,;
thew; are the eigenvectors of matri and thee; are the eigenvector of matri,,,.
To parallelize the process, the data and work space are séggirend loaded onto

multiple computers tha operate in parallel:
e Sis distributed across the computers in a row-based, roahui-fashion.
e H,, is replicated on every computer.
e 1, is distributed across computers in a row-based, roundiraishion.

e f,, and the workspace are distributed accordingly.

Distributed Matrix-Vector Multiplication

Compared to the single-computer algorithm, our paralggbathm has the features
that the local block of the séf'>* is passed in place df,,, and the dimension of the
local blockn!°c@! is passed instead @f Thus, we need to implement a matrix-vector
multiplication to calculate the Krylov vectors. In our casee divide the similarity
matrix.S into rows.

Figure[2.1 illustrates the matrix-vector multiplication distributed computers. In
each step, first we reduce each column of the Arnoldi vecbaaseplicated vector using
the standard message-passing interface. Although theabthie similarity matrix are

stored on different computers, the products of each losally the replicate Arnoldi
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vector can be locally computed. Therefore, the updated ldirnvectors are actually
stored on different computers. The elements that correspmithe local rows of the
similarity matrix are non-zero, whereas the other elemargsstill zero. By summing
the results from all computers, matrix-vector multiplioatis achieved.

In addition to matrix-vector multiplication, our algorithrequires two communica-
tions: Computing thd.,-norm of the distributed vectof,,, and orthogonalizing,,, to

V.». These can be performed by using the parallel computing sogimterface.

SR

I
B o B

Figure 2.1: lllustration of the distributed matrix-vector multiplican.

23



Chapter 2. Parallel Spectral Clustering

master initializes the cluster centers
and broadcasts to all slaves
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Figure 2.2: The parallelK-means clustering algorithm.

Parallel Singular Value Decomposition (SVD)

For each rectangular matrik € R™*", there exists a singular value decomposition:

A=USVT, (2.9)
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whereU (the left singular vectors) arid” (the right singular vectors) are matrices with
orthonormal columns and S is a diagonal matrix with singuédues as the diagonal
elements.

Given the Parallel EVD algorithm described in Secfion 2.2:é can calculate the
SVD as follows:

ATA=VvS*VT (2.10)
U=AVvSst (2.11)
By calculating EVD on the matrixA” A using Equation[(2.10), we can obtain the

right singular vectors in the matriX” and the singular values in the mati$x Equa-

tion (2.11) gives a solution of the left singular vectéfs

2.2.2 Parallel K-Means

The inputs to thé&-means algorithm are the eigenvectors generated by thégbara
EVD/SVD algorithm described in Sectién 2.P.1. The outpdthe k-means algorithm
are the cluster labels of each data point in the original sipsee.

Here, thek-means algorithm aims to minimize the total intra-clustarancej.e.,
the squared error function in the spectral space:

k
V=303l il 2.12)

i=1 x]-eCZ-
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where there aré clustersC;, {i = 1,2, ..., k}, andy; is the centroid or mean point of
all the pointsr; € C;.

We implemented the parallétmeans algorithm in such a way to minimize commu-
nication and maximize parallel computation. The flowchathe algorithm is shown
in Figure[2.2. In the parallel EVD algorithm, the output mdati/ is formed by the
eigenvectors and is distributed across all computers baséte rows. Each row of the
matrix U is regarded as one data point for theneans algorithm. These data points
are naturally distributed on the computers, and don’t neeoet moved them for the
k-means algorithm.

To initialize the process, the master computer choosesdd setial cluster centers
and broadcasts the coordinates of the centers to all of timpeters. Each computer
works on its local data independently. New labels are assigimd local sums of clus-
ters are calculated without any inter-computer commuignatAgain, we make use of
the message-passing interface to combine the local intowmafter each local com-
puter has finished the computation. By gathering the stlshformation (including
the sum of data points in each cluster, the cluster numbetshenlocal cost values),
each computer can update the cluster center coordinatestama@ new round of com-
putation until the computation converges. The output elulstbels for data points in

the spectral space are mapped to the original data space.
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Table 2.2: The parallel spectral clustering algorithm.

1. Each computer loads a set of rows of the similarity magrinto memory.

2. Multiply the matrix.S with vectorl = [1,1,...,1]7. The product vector is th
diagonal elements of the matrix.

3. Calculate the scaled similarity mati§

D

4. Compute the approximated eigenvalue decompositighusging parallel matrix
decomposition.

5. Use parallek-means to cluster the rows of matiix
6. Map the cluster labels to original data points.

Table 2.3: Spectral clustering matrix comparison.

Form of S Method
XTX Relaxedk-means
Gram matrixG Relaxed kernet-means
Similarity matrix on graph Min-cut
D~ 25Dz Normalized cut
AAT whereA = D;%AD;% Co-clustering

2.2.3 Complexity Comparison

Our algorithm is shown in Table 2.2. Steps 4 and 5 are the kegflpkization steps.
For step 3, we do not constrain the form of the scaled sirbjlaniatrix S. If we use
the original similarityS = X7 X, we obtain the relaxed version bfmeans. If we use
S = G whereG is the Gram matrix computed by the kernel function, we obta@

relaxed kernek-means algorithm. If the matriX is constructed by a graph similarity
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matrix, which can be either fully connected (can be the sasnkeanelk-means) or

a neighborhood graph, we obtain the min-cut algorithm. Ifwge the normalized
similarity matrix S = D-2SD~2, we obtain the normalized cut algorithm. For the
co-clustering problem, we input the matrix= DI%AD;% and then computd A” as

S. We summarize the above analysis in Tdblé 2.3.

Now, we analyze the memory requirement and the computdtoomaplexity. We
usen to denote the number of data pointsto denote the dimensionality, aridto
denote the number of clusters. Here, we introduce a newblaria Because we
assume that the data similarity matrix is sparsely storesl ez denote the mean
number of rows in the similarity matrix. For the iteratedaithms, we let;;.,. denote
the iteration time. If we have computers, the computational complexity of the key
steps is determined as follows:

k-means For the traditionak-means algorithm, the memory requiremern®ig.d)
and the computational complexity €(ndk - i,..), because we need to compute the

Euclidean distance between every point and every clustdece

Parallel k.-means For parallelk-means, the memory requirement is reduced to

O("?ji) for each computer and the computational complexity is redmoO(”T‘f"C “iter )
Because the parallel algorithm also involves communicaimong computers, we

need to estimate the communication time. Most of the cdlicuids done in paral-
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lel. Only the summation is performed repeatedly on each coenp Therefore, the
communication time i€ (pkd - i;; ).

Spectral Clustering. For spectral clustering based on the Arnoldi method, the
memory requirement of loading the similarity matrix andegigectors i (n(z + k)).
The computational complexity of the eigenvalue decompmsdf the similarity matrix
is O(nzk - ijer).

Parallel Spectral Clustering. For our parallel spectral clustering algorithm, the
memory requirement for each computeO@@) and the computational complexity
is O(%). Moreover, because we compute the Arnoldi vector using tessage-
passing interface, the communication coDignk - iy, ).

Those costs are summarized in Tdblg 2.4.

Table 2.4: Computational cost comparison.APmeans represents paralikemeans, S.
C. represents spectral clustering and P. S. C. represaialtepapectral clustering.

Method Memory Comp. Time | Comm. Time
k-means O(nd) O(ndk - ier) -
P.k-means|  O(%4) O™ - iirer) | Opdk - 1jser)

S.C. | O(n(n+k) | Onzk - iye) -
P.S.C. | o™=k | o(rkiuer) | O(pnk - ije,)

p p

29



Chapter 2. Parallel Spectral Clustering

2.3 Experiments

First, we conducted experiments on artificial datasets westigate the accuracy
and time cost of our parallel algorithm. Then, we performealability experiments on
a large real-world dataset. We ran all of our experiments oagl’s production data

centers.

2.3.1 Accuracy Experiments

For the accuracy experiments, we collected nine datasétsdifferent sizes and
numbers of clusters. These nine datasets consist,af0k, and100k data points dis-
tributed acrosd, 9 and16 non-overlapping circles, as shown in Tablel 2.5. We denote

these datasets ad @ C9.

Table 2.5: Description of datasets.
| | 4 clusters| 9 clusters| 16 clusters]

1K data points C1 C4 C7
10K data points C2 C5 C8
100K data points  C3 Co6 C9
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(a) 4 classes. (b) 9 classes. (c) 16 classes.

Figure 2.3: Atrtificial test datasets.

Figure[2.3 shows three of the above nine datasets for theopespof illustration.
Pairwise similarity between two data points is calculatsithg an RBF kernel function.
The width of the RBF kernel is tuned by the self-tuning tecjuei of [149]. Then, the

RBF is modified as

]2
S, = exp (—M) (2.13)

20’in

, the distance betweer) andk’s neighborhood of;. For the

Whereai = ||Zl§'z — Ty,

neighborhood graphs, we seequal to one-half of the neighborhood number.

The Speedup Factor

Ideally, withp computers, we have a linear speedup, compared to a singleutem
However, because of the communication overhead, the spasdisually not linear.

The speedup factor is defined as follows:

T
speedup = Tl (2.14)

p
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Figure 2.4: Time analysis of parallel spectral clustering.

whereT; is the execution time using one computer, dhds the execution time using

p computers.

Results

We applied parallel spectral clustering on all of the aiifidatasets. The purpose

of this experiment is to evaluate the accuracy of the cligjeesults. (Using multiple
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computers on a small dataset does not yield much benefit, aglixsee shortly.) We
compared the clusters generated by the original spectratering algorithm and our
parallel version, and they yield identical results.

We document the running time of these nine datasets in Ege Each dataset
was run onl, 2, 5, 10, 20, and50 computers, respectively. As predicted, when the
dataset size is very small, the running time for the dataGet€4, and & shows that
adding computers actually increases the total running.tifffee reason is that inter-
computer communication results in greater time than paizadition can save. When
the dataset size grows froii to 10k, parallelization yields a benefit. When using up
to 10 computers, 8 enjoys a speedup of aboRiR times. When the dataset continues
to grow beyond what the main memory of one computer can si@diave to employ
enough computers to do the job. For the datas8is3G, and ©®, we can complete the

clustering task only wheR0 or 50 computers are used.

3Because we conducted experiments on Google’s productianceaters, we could not ensure that
all these computers are fully dedicated to our task. Thegethe running time is partially dependent on
the slowest computer being allocated for the task.
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Table 2.6: Algorithm running time on different datasets using multipbmputers.
| Data| Number of computers |
1 2 5 10 20 50
Cl | 295%|7.70% | 21.70: | 465.0; | 503.%
C2 |199.5|139.8 | 58.7G: | 62.13 | 589.1s
C3 | NA NA NA NA NA 343.%
C4 |1.936: | 5.548 | 21.8% | 120.% | 232.1s
C5 |140.96{ 67.63 | 51.71s | 283.6s | 91.7%
C6 | NA NA NA NA 558.5 | 348.&
C7 | 1570 |545% | 20.43% | 17.65 | 52.36:
C8 | 281.22 255.80: 185.92 132.7% 491.%
C9 | NA NA NA NA 757.3% | 820.%

Given the total time spent on each task, we can calculatepiedsip using Equa-
tion (2.14). The results are shown in Fig{ire 2.4(a). As tleblem scale grows, the
speedup can be more significant, which implies that our |[gdusppectral clustering al-
gorithm is more efficient for large-scale problems than foall ones. Figuré 2.4(b)
shows the percentage of time spent on computation. The raeiarfthat affects the
percentage of computation time is the problem scale. Usingd number of comput-
ers, the percentage of computation time ok datasets is larger than that of the three
1k datasets. Again, this substantiates that our algorithnoierefficient for large-scale

problems.
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2.3.2 Experiments Using Text Data

In this experiment, we used the pre-processed 20 newsgdatigset given ir [160]
to investigate the accuracy of our parallel spectral chusgealgorithm. The dataset
originally included20, 000 messages withiR0 different newsgroups. The data were
pre-processed by the Bow toolkit [90]. We chopped off thedees, removed stop
words and also words that occurred in fewer than three doots1j#60]. Thus, the
document is represented by a feature which48,&86 dimensional sparse vector. Sev-
eral empty documents were also removed [160]. Finally waiobtl19, 949 examples.

For comparison of the results, we used the Normalized Muhdafmation(NMI)
method to evaluate the algorithm&V A/ between two random variablé§ and Y5
is defined asVM I (Y1;Ys) = % wherel(Y1;Y5) is the mutual information
betweenY; andY,;. The entropiesH (Y;) and H(Y;) are used for normalizing the

mutual information to be in the rande, 1]. To estimate the NMI score, we used the

following formulation [125], 160]:
Ef:1 Zfil ns¢log (%)
J(Cnelog ) (2, melog 2)

wheren denotes the number of data points,andn, denote the number of data points

NMI = (2.15)

in classs and clustet, n,, denotes the number of data points in classd cluster.

The NM 1 score isl if the clustering results perfectly match the category Isshgis
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0 if the clustering algorithm returns a random partition. $hilne larger the score, the

better are the clustering results.

Table 2.7: Comparison result for text categorization.
| Method | NMI |

E-k-means | 0.10+£7.0e-05
S-k-means | 0.30+1.6e-06
Co-clustering | 0.54+3.6e-06
Normalized cut| 0.55+4.9e-05

We compared the following algorithms: relaxgéemneans algorithm based on the
Euclidean distance (E-means), the relaxed spheriéameans based on the cosine dis-
tance (Sk-means)[[44], the co-clustering algorithm [40], and thennalized cut algo-
rithm using the 30 neighborhood adjacency graph (withougkts on graph edges) [118].
The results are shown in Talile P.7. We see that the normalisteglgorithm performs
the best. The parallel normalized cut on @& documents using computers took

only aboutl0 seconds to complete.

2.3.3 Experiments Using Orkut Data

Social networks have become increasingly popular. Theldpreent of those so-
cial networks has enabled people to find new friends with commterests. User can
create communities as well as join existing communitieshenWeb. Orkut is an In-

ternet social network service run by Google. Since Octob8620rkut has permitted
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Table 2.8: Cluster examples.

Sample Cluster 1:Cars

Sample Cluster 2: Food

Community Community title Community Community title

ID ID

22527 Honda CBR 622109 Seafood Lovers

287892 Mercedes-Benz 20876960 | Gol gappe

35054 Valentino Rossi 948798 | LOVE ICECREAM

5557228 | Pulsar Lovers 1614793 | Bounty

2562120 | Top Speed Drivers 1063561 | Old Monk Rum

19680305 | The Art of Drifting 970273 Fast Food Lovers

3348657 | | Love Driving 14378632 | Maggi Lovers

726519 Luxury & Sports Cars 973612 Kerala Sadya

2806166 | Hero Honda Karizma 16537390 | Baskin-Robbins
Ice Cream

1162256 | Toyota Supra 1047220 | Oreo Freax!!

Sample Cluster3: Education

Sample Cluster4: Pets, animals, wildlife

Community Community title Community Community title

ID ID

15284191 | Bhatia Commerce 18341 Tigers
Classes

7349400 | Inderprastha Engineering245877 German shepherd
Clige

1255346 | CCS University Meerut | 40739 Naughty dogs

13922619 | Visions - SIES collegel 11782689 | We Love Street Dogs
fest

2847251 | Rizvi College of Engg.| 29527 Animal welfare
Bandra

6386593 | Seedling public schoo|, 370617 Lion
jaipur

4154 Pennsylvania State 11577 Arabian horses
University

15549415 | N.M. College, Mumbai | 2875608 | Wildlife Conservation

1179183 | Institute of 12522409 | | Care For Animals
Hotel Management

18963916 | | Love Sleeping In Class|| 1527302 | | hate cockroaches
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users to create accounts without an invitation; now, Orlag more tharb0 million
users an@0 million communities.

In our experiments, we used Orkut’s user-by-community codorence data. All
of the users are anonymized, and each community is asseidtie a name and an
optional description. To make the clustering results rbbjdirst we filtered out the
non-English-language communities. We also removed vactbmmunities that con-
tain few users. We obtaindd 1, 973 communities with more than 10 million users.

We ran our parallel spectral clustering algorithm99rcomputers to group the com-
munities into 100 clusters. The program finished wittiinminutes. Communities with
similar topics are clustered together. We choose four etastmong the clustering re-
sults. Popular communities are listed in Tablg 2.8 as reptasve examples of the

clusters.

2.4 Summary

This chapter presented a parallel approach for spectrahgaaalysis, including
spectral clustering and co-clustering. By using multippenputers in a distributed
system, we have increased the scalability of spectral rdstimboth computation time
and memory use. This approach makes it possible to analybes@#e data using

spectral methods. Experiments show that our parallel sgdedustering algorithm
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performs accurately on artificial datasets and real text.daf also applied our parallel

spectral clustering algorithm to a large Orkut dataset toatestrate its scalability.
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Chapter 3

Extraction and Integration of Data

from Distributed Sources

Fully automatic methods that extract lists of objects fromn\\Veb have been studied
extensively. Record extraction, the first step of this obgatraction process, identifies
a set of Web page segments, each of which represents andualivobject €.9, a
product). State-of-the-art methods suffice for simpledgdut they often fail to handle
more complicated or noisy Web page structures due to a ketation — their greedy
manner of identifying a list of records through pairwise gamson {.e., similarity
match) of consecutive segments. This chapter introduces/@l method for record
extraction that captures a list of objects in a more robusgthvesed on a holistic analysis

of a Web page. The method focuses on how a distagpathappears repeatedly in the
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DOM tree of the Web document. Instead of comparing a pairdifidual segments, it
compares a pair of tag path occurrence patterns (caitel signal$to estimate how
likely these two tag paths represent the same list of objédie chapter introduces a
similarity measure that captures how closely the visualag appear and interleave.
Clustering of tag paths is then performed based on this @iityilmeasure, and sets of
tag paths that form the structure of data records are egttagixperiments show that

this method achieves higher accuracy than previous methods

3.1 Motivation

The Web contains a large amount of structured data, and sewe good user
interface for databases available over the Internet. Aelangount of Web content
is generated from databases in response to user queriek. cBotent is sometimes
referred to as theleep Web A deep Web page typically displays search results as
a list of objects €.g, products) in the form of structured data rendered in HTML. A
study in 2004 found 450,000 databases in the deep Web [31lictBted data also
plays a significant role on theurface WebGoogle estimated that their crawled dataset
contains 154 millionWeb tablesi.e., relational data rendered as HTML tables|[27].
In addition to relational tables, the Web contains a varadtlists of objects, such as

conference programs and comment lists in blogs. It is an itapband challenging
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task to identify such object lists embedded in Web pages wakakle manner, which
enables not only better search engines but also variougapphs related to Web data
integration {(.e., data mashups) and Web data minirgd, blog analysis).

There have been extensive studies of fully automatic methodextract lists of
objects from the Wel [8, 35]. A typical process to extractegtg from a Web page
consists of three steps: record extraction, attributenatignt, and attribute labeling.
Given a Web page, the first step is to identifyMeb record[81], i.e., a set of HTML
regions, each of which represents an individual objeaj.(a product). The second
step is to extract object attributes g, product names, prices, and images) from a set of
Web records. Corresponding attributes in different Welongs are aligned, resulting
in spreadsheet-like data [152, 159]. The final step is theooat task (which is very
difficult in general) of interpreting aligned attributesdaassigning appropriate labels
[136/163].

In this chapter we focus on Web record extraction. Our stsdyétivated by our
experience in developing an automatic data extraction corapt of a data mashup sys-
tem [130], where we scrape a set of objects fromaaety of Web pages automatically.
The extraction component, developed with existing stétie-art technologies, some-
times fails at the very first stepge., record extraction, which significantly affects the

entire mashup process.
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Most state-of-the-art technologies for Web record eximacemploy a particular
similarity measure between Web page segments to identégiam in the page where
a similar data object or record appears repeatedly. A reptave example of this
approach is MDR[[81], which uses the edit distance betweéa skegments (called
generalized nodgs By traversing the DOM tree of a Web document, MDR discovers
a set of consecutive sibling nodes that form a data regiomeexent work([120, 152]
extends this approach by introducing additional featutesh sas the position of the
rendered data. In our experience, an approach based on M8Higent for simple
search, but it starts to fail as the Web page structure besomeee complicated.

We observe that, on many Web pages, objects are renderedighlg decorated
manner, which affects the quality of extraction. For insgran image that is inserted
between objects as a separator makes objects no longercatimeeAs a work around,
we employ a heuristic rule to exclude decorative images flloenDOM tree. In fact,
such visual information can be helpful or harmful. A heucistile might utilize such
decorations to identify object boundaries. However, ito$ @asy to generalize such
a heuristic rule so that it applies to a variety of Web pagesusT in general, the
irregularity that decorative elements introduce is moneartial than helpful. Moreover,
as [159] notes, the same HTML tag can sometimes work as a atenfaken (that

contributes to form an object structure) and can sometinoek as a decorative element
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(that is used in an unstructured manner).  Such tags can leneesy but, if the
algorithm ignores these tags, it can miss useful evidens&roétured objects.

We also observe that objects are sometimes embedded in dicateq \Web page
structure with various context information. In such caségects are not necessarily
rendered consecutively. Existing work tries to address smnplex Web page struc-
tures [8| 158]. However, that work typically assumes atlity of multiple Web page
instances.

A key limitation that we have identified in the MDR approaclit$sgreedy manner
of identifying adata region(a region containing records) through pairwise comparison
of consecutive segments. In many cases, one misjudgmertbchease causes sepa-
ration of an object list into multiple lists. We can imagine extended algorithm that
employs more sophisticated search for data regions instee greedy approach, but
its computational cost is very high.

We have developed an alternative approach to the Web regtmatgon problem,
which captures a list of objects based on a holistic anabfsasWeb page. Our method
focuses on how a distintdg path(i.e., a path from t