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Abstract

Previous sequential pattern mining algorithms mine the
full set of frequent subsequences satisfying a min_sup
threshold in a sequence database. However, since a
frequent long sequence contains a combinatorial number
of frequent subsequences, such mining will generate
an explosive number of frequent subsequences for long
patterns, which is prohibitively expensive in both time
and space.

In this paper, we propose an alternative but equally
powerful solution: instead of mining the complete set of
frequent subsequences, we mine frequent closed subse-
quences only, i.e., those containing no super-sequence
with the same support (i.e., occurrence frequency).
By exploring novel global optimization techniques, an
efficient algorithm, called CloSpan (Closed Sequential
pattern mining) is developed, which outperforms the
previous work by one order of magnitude. Moreover,
CloSpan can mine really long sequences, which, to the
best of our knowledge, is un-minable by previous algo-
rithms. Finally, CloSpan produces a significantly less
number of discovered sequences than the traditional
(i.e., full-set) methods while preserving the same expres-
sive power since the whole set of frequent subsequences,
together with their supports, can be derived easily from
our mining results.

Keywords. Frequent pattern, sequential pattern, closed
pattern, long pattern, efficiency, scalability.

1 Introduction

Frequent sequential pattern mining is an active research
theme in data mining [4, 11, 8, 14, 17, 5], with broad
applications, such as discovery of motifs and tandem re-
peats in DNA sequences, analysis of customer shopping
sequences and Web click streams, study of engineering,
scientific and medical processes, and so on. Moreover, a
deep understanding of efficient sequential pattern min-
ing methods may also have strong implications on the
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development of efficient methods for mining frequent
subtrees, lattices, subgraphs, and other structured pat-
terns in large databases.

The sequential pattern mining algorithms devel-
oped so far have good performance in databases con-
sisting of short frequent sequences. Unfortunately, when
mining long frequent sequences, or when using very low
support thresholds, the performance of such algorithms
often degrades dramatically. This is not surprising: As-
sume the database contains only one long frequent se-
quence {(a;)(asz) . .. (aigo)), it will generate 2100 —1 fre-
quent subsequences if the minimum support is 1, al-
though all of them except the longest one are redun-
dant because they have the same support as that of
{(@1)(@2)- - (a100))-

A similar problem occurs at mining frequent item-
sets [3, 9]. An interesting solution, called mining fre-
quent closed itemsets [12], has been proposed to over-
come this difficulty. A frequent itemset I is closed if
there exists no superset of I with the same support
in the database. There have been quite a few inter-
esting and effective algorithms, such as CLOSET [13],
MAFIA [7], CHARM [18], and CLOSET+ [16] developed
for efficient mining of frequent closed itemsets. How-
ever, to the best of our knowledge, there have been no
efficient methods developed for mining closed sequential
patterns. This is, based on our analysis, partly because
it is a pretty challenging problem.

Since mining closed subsequences shares a similar
problem setting with mining closed itemsets, our first
try is to use some techniques developed in closed itemset
mining. Unfortunately, most of these techniques cannot
work for frequent subsequence mining because sub-
sequence testing requires ordered matching which is
more difficult than simple subset testing. Nevertheless,
closed itemset mining still sheds some light on this
problem.

There are two approaches for mining closed or max
frequent patterns: (1) greedily find the final closed pat-
tern set; and (2) find a closed pattern candidate set
and conduct post-pruning on it (for the extreme case,



do on-the-fly checking, i.e., for each newly discovered
pattern, check the previous patterns to see whether
this new one is closed w.r.t. discovered patterns). It
looks more preferable to use the first approach because
the second requires to store discovered patterns and do
post-pruning; however, when the patterns become more
complicated, it is difficult to guarantee that each gener-
ated pattern is closed without checking the previously
discovered patterns. Thus we explore the second ap-
proach here. Our argument is that based on today’s
technology and our experience, it is easy to maintain a
million sequences in main memory. Considering that se-
quences have overlapped parts, there exist compressed
data structures to store them.

In this paper, we propose a fundamentally different
technique from previous work. Our algorithm, called
CloSpan (Closed Sequential pattern mining), develops
several efficient search space pruning methods. A novel
concept about the equivalence of projected databases
is introduced, which can unify these optimizations in
a single step. A simple condition of such equivalence
is formalized. A hash-based algorithm is designed to
efficiently execute the search space optimization with
negligible cost. The performance of CloSpan in both
synthetic datasets and real datasets shows that CloSpan
not only generates a complete closed subsequence set
which is substantially smaller than that generated by
PrefixSpan, but also runs much faster.

CloSpan can be applied to both small and large
databases: If the entire sequence database (plus some
associated data structures used in CloSpan) can fit in
memory, which could be common with today’s hardware
technology, CloSpan can be applied directly; otherwise,
frequent pattern-based projection [9] can be applied first
before applying CloSpan on the projected databases.

The remaining of the paper is organized as fol-
lows. Section 2 introduces the basic concepts of fre-
quent closed sequential pattern mining problem as well
as some notations used throughout the paper. A search
framework is illustrated in Section 3. In Section 4,
the major result about the search space pruning is pre-
sented. Section 5 formulates the algorithm of CloSpan.
We report our performance study in Section 6, discuss
the related work in Section 7, and conclude our work in
Section 8.

2 Preliminary Concepts

Let I = {i1,i2,...,ir} be a set of all items. A subset
of I is called an itemset. A sequence s = (t1,t2,...,tm)
(t; C I) is an ordered list. Without loss of generality,
we assume that the items in each itemset are sorted
in certain order (such as alphabetic order). The size,
|s|, of a sequence is the number of itemsets in the

sequence. The length, I(s), is the total number of items
in the sequence, i.e., I(s) = >, |ti|. A sequence a =
(a1,az2,...,a,) is a sub-sequence of another sequence
B = (by,ba,...,b,), denoted as a C S (if a # B,
written as a C ), if and only if Jiy,i2,...,%m, such
that 1 <41 <2 < ... < im <manda; Cby,ax C
biy,--., and a,, C b;,,. We also call 8 a super-sequence
of a, and B contains a. If B contains a and their
supports are the same, we call 8 absorbs a.

A sequence database, D = {s1,82,...,5,}, is a set
of sequences. Each sequence is associated with an id.
For simplicity, say the id of s; is i. |D| represents the
number of sequences in the database D. The support of
a sequence « in a sequence database D is the number
of sequences in D which contain «, support(a) =
[{s|]s € D and o C s}|. Given a minimum support
threshold, min_sup, the set of frequent sequential
pattern, F'S| includes all the sequences whose support
is no less than min_sup. The set of closed frequent
sequential pattern is defined as follows, C'S = {a]a €
FS and 3B € FS such that o C 8 and support(a) =
support(B)}. Since CS includes no sequence which
has a super-sequence with the same support, we have
CS C F'S. The problem of closed sequence mining is
to find C'S above a minimum support threshold. Finally,
we define a database containment relation: D T D'
means if 3 an injective function f : D — D', s.t.,
VseD,sC f(s).

ExaMpPLE 1. Table 1 is a sample sequence database,
referred as D when the context is clear. The alphabetic
order is taken as the default lexicographical order. If
min_sup = 2 (taken as default in this paper), C'S =
{@f)(d)) = 2,{(af)(e)) : 2,{(e)(a)) : 3,((e)(a)(b)) : 2}
while the corresponding F'S set has 16 sequences. CS
has the exact same information as F'S, but includes
much fewer patterns. [

Seq ID. | Sequence

0 {(af)(d)(€)(a))
1 {(e)(a) (D))
2 ((e)(abf)(bde))

Table 1: A Sample Sequence Database D

Given a sequence s = (ti,...,tn,) and an item «,
s o @ means s concatenates with a. It can be I-Step
extension [5], so; & = (t1,...,tm U{a}) f VK € tp, k <
a; or S-Step extension [5], sosa = (t1,...,tm,{a}). For
example, {(ae)) is an I-Step extension of {(a)). {(a)(c))
is an S-Step extension of {((a)). We extend the definition
of item extension to sequence extension. Given two



sequences, s = (t1,...,t,) and p = (t},...,t.,), sop
means s concatenates with p. It can be itemset-
extension, s o; p = (t1,...,tm U t], t) if Vk €
tm,j € ti,k < j; or sequence-extension, s o5 p =
(t1ye ey tm,th, .. th). If s =pos, pis a prefix of §
and s is a suffiz of s'. For example, {(e)(a)) is a prefix
of ((e)(abf)(bde)) and ((bf)(bde)) is its suffix.

An s-projected database is defined as Dy = {p| s’ €
D,s" = r o p st r is the minimum prefix (of ')
containing s (i.e., s C rand Pr',s C ' C r)}. In
the above definition, p can be empty. For the sample
database in Table 1, D,r) = {((d)(e)(a)),((bde))}.
D (e)(a)y = {8,((b)),{(-0f)(bde))}, where § means there
is a sequence in D which contains {(e)(a)), but its suffix
is an empty string, and (_bf) means that (bf) and the
last item a in the sequence belong to the same itemset.
For each suffix sequence p in Dy, the type of extension,
i.e., whether s’ is an itemset-extension or a sequence-
extension of s, is recorded. The type of extension is
useful to correctly grow s using the projected database.
For simplicity, we do not explicitly represent it. Since
the s-projected database will be used to mine frequent
sequences which share the same prefix s, the definition
of projected database can be refined in the way that it
contains only frequent items. For example, D (qy)) =
{{(d)(e)), {(de)))}, where “a” in the first sequence and
“b” in the second sequence are omitted because they
appear only once in the projected database.

There are two kinds of projections: physical projec-
tion and pseudo projection. Physical projection requires
D, to be stored in a separate table. For pseudo projec-
tion, Dy is not physically generated: only pointers to
the projected point is saved for each sequence.

3 Lexicographic Sequence Tree

In this section, we introduce the concept of lexicographic
sequence tree [6, 2, 5] which provides a necessary back-
ground for our algorithm development.

Assume that there exists a lexicographic order in
the set of all items in a database. Set Lexicographic
Order is a linear order defined as follows. Let t =
{7:1,7:2, e ,ik},tl = {jl,jz, e ,jl},where 7:1 < iz S

.Ligand j1 < jo < ... < Ji- Then t < t' iff either of
the following is true:

1. for some h, 0 < h < min{k,l}, we have i, = j, for
r < h, and ip < jp, or

2. k<l,and iy = j1, 92 = j2, ..., 0k = ji-
For example, (a, f) ®,f), (a,b) < (a,b,c), and
(a,b,c) < (b,c).

Based on this set lexicographic order, Sequence

Lezicographic Order is given as follows: (i) if s’ = s ¢ p,
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<(a)> <(b)>

<(aa)> <(a)@y> <(a
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<(aa)(a)> <(aa)(b)>

A>v

<(@)(bb)>  <(a)( be)>

<(aa)(bb)>

(b) prefix search tree

(a) lexicographic sequence tree

Figure 1:
Search Tree

Lexicographic Sequence Tree and Prefix

then s < s'; (i) if s = ao; p and 8’ = aos p', no matter
what the order relation between p and p' is, s < s'; (iii)
if s=ao;pand s’ = ao;p', p < p' indicates s < s;
and (iv) if s = aosp and s’ = a o, p', p < p' indicates
s < s

For example, ((ab)) < ((ab)(a)) (i-e., a sequence
is greater than its any prefix); {(ab)) < {(a)(a)) (i.e.,
an itemset-extended sequence is less than sequence-
extended sequence if their prefixes are the same).

A Lexicographic Sequence Tree can be constructed
as follows:

1. each node in the tree corresponds to a sequence,
and the root is a null sequence;

2. if a parent node corresponds to a sequence s,
its child is either an itemset-extension of s, or a
sequence-extension of s; and

3. the left sibling is less than the right sibling in
sequence lexicographic order.

Figure 1(a) shows a lexicographic sequence tree.
For a finite database, all the frequent sequences can
be arranged in this tree. Figure 2 shows the complete
search space for the sample database in Table 1 with
min_sup = 2. The numbers in Figure 2 represent the
support of each frequent sequence. A small difference
between ours and [5] is that we define the order relation
among all the sequences, not only among sequences and
their super-sequences. If we do pre-order transversal
in the tree, an operational picture of lexicographic
sequence tree is depicted in Figure 1(b). It shows that
the process grows a sequence by adding one I-Step item
or S-Step item. We always first perform I-Step, then
S-Step, following the lexicographical order (we use a
subscript “” to denote I-Step, and “s” for S-Step).

Algorithm 1 from PrefixSpan [14] provides a gen-
eral framework for depth-first search in the prefix search
tree. It finds all the frequent sequences, closed or non-
closed. For each discovered sequence s and its pro-
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Figure 2: Lexicographic Sequence Tree for the Sample
Database

jected database D, it performs I-Step extension (line
5) and S-Step extension (line 7) recursively until all the
frequent sequences which have the prefix s are discov-
ered. Line 3 shows the termination condition: when
the number of sequences in the s-projected database is
less than min_sup, it is unnecessary to extend s any
more. CloSpan formulates other termination conditions
to make this recursive process “return” as early as pos-
sible for closed sequence mining.

Algorithm 1 PrefixSpan(s, Dy, min_sup, F)

Input: A sequence s, a projected DB Dy, and min_sup.
Output: The frequent sequence set F'.

1: insert s to F’;
2: scan D, once, find every frequent item « such that
(a) s can be extended to (s o; a), or
(b) s can be extended to (s o5 @);
: if no valid « available then
return;
for each valid a do
Call PrefixSpan(s ¢; a, Do, min_sup, F);
: for each valid a do
Call PrefixSpan(s o5 a, Dgo, 0, min_sup, F');
: return;

© XD oW

4 Search Space Pruning and Prefix Sequence
Lattice

CloSpan divides the mining process into two stages. In
the first stage, a candidate set is generated. Usually this
candidate set is larger than the final closed sequence set.
The second stage helps eliminate non-closed sequences.

In this section, our pruning techniques for the first
stage are introduced. It is possible to generate the
candidate set exactly the same as C'S. However, it is
too expensive to do so. Our design is to make a trade-
off between the size of the candidate set and the cost to
compute it.

LEMMA 1. (COMMON PREFIX) Given a subsequence s,
and its projected database D, if Ja, a is a common
prefix for all the sequences with the same extension type
(either itemset-extension or sequence-extension) in Dy,
then VB,ifs o B is closed, o must be a prefix of B.
That means VB C a, we need not search s o  and its
descendants except the branch of s < a.

Assume D; = {((d)(e)(af)),((d)(e)(fg)}}. Since

all the sequences in D, share a common prefix {(d)(e)),
any sequence which begins with the prefix s but not
s ((d)(e)) must not be closed. So it is unnecessary to
extend s o ((e)). When a common prefix « is detected
in Dy, we can directly “jump” to the branch s ¢ «
without even checking other branches below s in the
search space. At the first glance, it seems that the
occurrences of common prefix may not be that frequent.
However, our experiments indicate that the common
prefix does often take place when the threshold goes
lower and the patterns turn to be longer. As observed
in our experiments, more than 90% nodes in the search
space can be skipped when min_sup is low. Certainly
most of skipped nodes are located in the deep levels of
the search space, but more frequently than people feel.

We first came up with this simple idea before we
devised the salient result of CloSpan. An intermediate
algorithm, CommonPrefix, has been developed which
adopts the PrefixSpan framework plus the common
prefix pruning technique. Although the idea is simple,
the experiments indicate that it outperforms PrefixSpan
by an order of magnitude for some datasets [1].

LEMMA 2. (PARTIAL ORDER) Given a sequence s, and
its projected database D, if among all the sequences
in Dg, an item o does always occur before an item (3
(either in the same itemset for all sequences in Dy or in
a different itemset, but not both), then Dssnop = Dsop.
Therefore, Vv, so B¢~ is not closed. We need not search
any sequence in the branch of s ¢ [.

Let’s consider the sample database in Table 1.
Before projecting D into D((a)), D((b)); D((d», D((e)),
and D)), we find in D the first occurrence of a
is always before the first occurrence of f in all the
sequences. Then we need not search any sequence
beginning with ((f)) because all of them will not be
closed with respect to sequences beginning with ((af)).
We can completely ignore the search branch of {(f))
in the prefix search space. Note that one restriction
for partial order is that either the first occurrence of
a and B should be in the same itemset for all the
sequences in D; or the itemset containing « is always
before that containing 5 in all the cases. For example,
D (apyy = {{(d)(e)),((de))} in D, but we cannot say that



there exists a partial order between d and e because
in the first sequence d and e (first occurrence) are in
a different itemset, while in the second sequence they
are in the same itemset. D(,s) ) = {$,$}, which is
different from D((af)(de)) = {$} and D((af)(d)(e)) = {$}
Therefore, both {(af)(d)) and {(af)(e)) are closed and
should be searched separately.

Lemma 1 is a special case of Lemma 2 because
partial order can do whatever common prefix can. So
partial order can prune more search space than common
prefix. However, the major challenge of partial order
pruning is how to efficiently implement it. We once
implemented two complicated algorithms to find partial
orders. However, the search space that the partial order
helps prune, i.e., the corresponding cost it saves, is
sometimes even less than the additional effort needed
to compute the partial orders. Thus the techniques
developed became obsolete even before put to use.
Instead, we started seeking for other pruning methods
which may have efficient implementation.

Let Z(D) represent the total number of items in D,
defined as

n

(D) =Y I(sy).

i=1

We call Z(D) the size of the database. For the sample
dataset in Table 1, Z(D) = 15.

THEOREM 1. (EQUIVALENCE OF PROJECTED DATABASES) (a) backward sub-pattern

Given two sequences, s, s', s C s', then

(4'1) D,=Dy <:>I(Ds) = I(Ds’)

Proof. It is obvious that Dy = Dy = I(D,) = Z(Dy).
Now we prove the sufficient condition. Since s C §',
then Dy C Ds and Z(Dy) < Z(Ds). The equality
between Z(Dy) and I(Ds) holds only if Yy € Dg,
v € Dy, and vice vera. Therefore, Dy = Dy . [

For the sample database in Table 1, D,z =
Dy = {{(d)(e)),((de))} (physical projection), and
I(Dasy) = I(D(py) = 4-

Based on Theorem 1, the following search space
pruning can be achieved.

LEMMA 3. (EARLY TERMINATION BY EQUIVALENCE)
Given two sequences, s C s' and also Z(Ds) = Z(Dg),
then Yy, support(s ¢ y) = support(s' ¢ ).

Considering the previous example, we have

Z(D((af)))=Z(D((sy)) and both ((af)(d)) and {(af)(e))
are frequent. Then we can conclude that the support

of {(af)(d)) and ((f)(d)), ((af)(e)) and ((f)(e)) are

the same without knowing the support of {(f)(d)} and
(F)(e))-

It is recognized that if s and all of its descendants
(s©+) have been discovered, it is unnecessary to search
the branches under s’ in the prefix search tree. In-
stead, s and s’ share exactly the same descendants in
the prefix search tree. So we can directly transplant the
branch under s to s’ with small modification of exten-
sion types. The power for such transplanting is that
only two operations needed to detect such condition:
first, containment (s C s'); second, Z(D,) comparison
(Z(Ds) = Z(Dy)). Since Z(Ds) is just a number and
can be produced as a side-product (using a counter)
when we project the database, the computation cost is
nearly negligible. We define projected database closed
set, LS = {s | support(s) > min_sup and Ps',s.t. s C
s' and Z(Ds) = I(Dy)}. We have CS C LS C FS.
In our algorithm, instead of mining CS directly, it first
produces the complete set of LS, then it applies the
non-closed sequence elimination in LS to generate the
exact set of C'S. Based on Lemma 3, efficient search
space pruning methods are developed to detect Early
Termination condition.

(b) backward super-pattern

Figure 3: Backward Sub-Pattern and Super-Pattern

COROLLARY 1. (BACKWARD SUB-PATTERN) If a se-
quence s < s and s 1 ', the condition of
I(Ds)=Z(Dy) is sufficient to stop searching any de-
scendant of s' in the prefiz search tree.

We call s’ a backward sub-pattern of s if s < &'
and s O s' (s’ is discovered after s). For the sample
database in Table 1, if we know Z(D (s)y) = Z(D((ar)))>
we can conclude that D), = Day). We even
need not compare the sequences in D), and D))
one by one to determine whether they are the same.
This is the advantage of only comparing their size,
just as proved in Theorem 1. If their size is equal,
we can conclude D)y = Dyqy)). For ((f)), it
has two frequent children d and e in this case. We
need not grow ((f)) anymore since all the children of
((f)) are the same as that of {((af)) and vice versa
under the condition of D5y = D{(ys)- Moreover,
their supports are the same. Therefore, any sequence
beginning with ((f)) is absorbed by the sequences



beginning with ((af)). Figure 3(a) shows that their
subtrees (descendant branches) can be merged into one
without mining the subtree under {(f)).

COROLLARY 2. (BACKWARD SUPER-PATTERN) If

a sequence s < s and s T s', if the condition of
I(Ds) = Z(Dgy) holds, it is sufficient to transplanting
the descendants of s to s' instead of searching any
descendant of s' in the prefiz search tree.

We call s’ a backward super-pattern of s if s < s’
and s C s (s is discovered after s). For example,
if we know Z(D(@)y) = Z(D((e)v))); We can conclude
that D))y = D(@s)- There is no need to grow
{(e)(b)) since all the children of {(b)) are the same as
that of ((e)(b)) and vice versa, with the same support.
Therefore, the sequences beginning with (e)(b) can
absorb any sequence beginning with (b). Figure 3(b)
shows that their subtrees can be merged into one
without discovering the subtree under {(e)(b)).

A further analysis of Lemma 2 shows that Corollar-
ies 1 and 2 cover the situation that Lemma 2 can prune.
Let us look at the previous case of D(s)y = D (ay)) in
detail. For Partial Order, we find that a always occurs
before f, so we need not generate the projected database
with the prefix of ((f)). For Corollary 1, we have to gen-
erate D((y)) and compare its size with D (,y)). Then we
find that they are equal, and thus stop searching the
branch of ((f)). It seems that one step projection is
wasted in this case; however, the advantage is that there
is an efficient algorithm to implement “Early Termina-
tion by Equivalence”. Furthermore, it can prune much
larger search space than Partial Order can.

Figure 4: A Partial Prefix Sequence Lattice for D

The above discussion indicates that by subtree
merging under the condition of early termination, a
prefix search tree can be replaced with a Prefix Se-
quence Lattice. Fig. 4 shows a part of prefix sequence
lattice for the sample database in Table 1 by merg-
ing the corresponding subtrees in Figure 2. We have
IDeop) = D) L(Dgeer@®)) = LD (@yw))s
and I(D((af») = I(D((f))) as illustrated in Fig. 4. Pre-
fix sequence lattice is not only a search space, but also

an internal data structure that stores the LS set. The
mining result of CloSpan in the first stage is a prefix
sequence lattice. The dotted links between nodes in
Figure 4 are not saved.

5 CloSpan: Design and Implementation

In this section, we formulate our CloSpan based on the
early termination techniques. CloSpan can be outlined
as two major steps: (1) it generates the LS set, a
superset of closed frequent sequences, and stores it in
a prefix sequence lattice; and (2) it does post-pruning
to eliminate non-closed sequences.

Algorithm 2 ClosedMining(D, min_sup, L)

Input: A database D, and min_sup.
Output: The complete closed sequence set L.

1: remove infrequent items and empty sequences,
and sort each itemset of a sequence in Dy;
: S « all frequent 1-item sequence;
S« St
for each sequence s € S do
CloSpan(s, Dy, min_sup, L);
: eliminate non-closed sequences from L;

QoW

Algorithm 2, ClosedMining, illustrates the frame-
work which includes the necessary preprocessing step.
It first sorts every itemset and removes infrequent items
and empty sequences. Then it calls CloSpan recursively
by doing depth-first search on the prefix search tree and
building the corresponding prefix sequence lattice. Fi-
nally, it eliminates non-closed sequences. Algorithm 3,
CloSpan, is similar to PrefixSpan, however, it performs
a major improvement using the search space pruning
techniques developed above. That is, before explor-
ing a discovered sequence and its corresponding pro-
jected database to mine its successive super-sequences,
CloSpan first checks whether a discovered sequence s’
exists, s.t. either s C s’ or s' C s, and Z(D;) = Z(Dy).
If the condition is satisfied, based on Lemma 3, it is
unnecessary to continue expansion since all its possible
descendants have been discovered before. Algorithm 3
outlines the pseudo code of CloSpan.

Now one problem remains: how to do line 1-4 of
Algorithm 3 efficiently. There are two approaches to
check the condition of Theorem 1 since the condition
has two components: (1) the containment, and (2) the
size of projected database. The containment testing is
involved with a large testing space. If we first check
the containment, i.e., finding all the sequences which
are sub-sequences or super-sequences of the current se-
quence, it is expensive. Although when a new sequence



Algorithm 3 CloSpan(s, D, min_sup, L)

Algorithm 4 checkProjectedDBSize(s, k, H)

Input: A sequence s, a projected DB Dg, and min_sup.
Output: The prefix search lattice L.

1: Check whether a discovered sequence s’ exists s.t.
either s C s’ or ' C s, and Z(Dy) = Z(Dy);

: if such super-pattern or sub-pattern exists then

modify the link in L, return;

: else insert s into L;

: Scan D, once, find every frequent item « such that
(a) s can be extended to (s ¢; a), or
(b) s can be extended to (s o5 @);

6: if no valid a available then

T return;

8: for each valid a do

9: Call CloSpan(s ¢; @, Dgo,q, min_sup, L);

10: for each valid a do

11:  Call CloSpan(s s a, Dss,qo, min_sup, L);

12: return;

is extended from the current sequence, its sub-sequence
and super-sequence set can be directly computed from
the current set, it is still costly based on our testing.
Thus, we devised an alternative approach which uses
a hash index on the size of projected database. Then
only the sequences whose projected database size is the
same as that of the current sequence are tested. We
found this approach significantly improves the perfor-
mance and makes the cost of such checking nearly neg-
ligible compared to the total running time.

Hash Table: <key,s>

Figure 5: Hashing for Fast Condition Checking

The idea is illustrated in Figure 5. Basically, the
hash table uses Z(D,) as a hash key and store the
following pair (Z(Dy),s) in the hash table. When a
new sequence s comes in, the hash value of Z(D;) is
calculated to index it in the hash table. Then we check
the hash table to see whether the value of Z(D;) already
exists. If it does, for example, s’ has the same projected

Input: A sequence s, its key k, and a hash table H
Output: An updated hash table H

: lsup — z;lsub — g
: index the hash table with the key k;
: find a list of pairs (k, s');
: for each pair (k,s’) do
if support(s) = support(s') then
if ' C s then Iy, + lgp U {(k,s")
if s C &' then gy « Lsup U {(k, s")
: if lgyp not empty then
remove all pairs in Iy, from H;
merge descendant subtrees (of s’ in ls,,) in LY;
8: if lgyp not empty then
merge descendant subtrees (of s’ in lgyp) in L;
return;
9: insert (k, s) into H;

b
}.

?

database size as s, we then check whether s C s’ or
s' C s. If the former is true, we do not add (Z(D;), s)
into the hash table. If the latter is true, we replace
(Z(Dsg),s"y with (Z(D,),s). In our implementation,
we do not put the whole sequence into the hash table,
instead, we only record a pointer which points to the
corresponding node in the prefix sequence lattice as
shown in Figure 5. The sequence can be retrieved
if we traverse the path from this node to the root.
This procedure of hashing and checking is outlined in
Algorithm 4, which corresponds to line 1-4 in Algorithm
3.

Line 7 of Algorithm 4 can discover the condition
of backward super-pattern, s’ C s. It removes all
satisfying (Z(Dyr), s') pairs in the hash table and merges
their corresponding descendant subtrees in L, which
means deleting the duplicate subtrees produced by s’
and retaining only one such tree for the new super-
pattern s so that s need not grow any descendant.

The case for s C ' in line 8, backward sub-
pattern, is a little bit different. There may exist several
sequences s’ such that s C s’. For example, it is possible
that

(52)  Dyay@)e) = Diwyaye) = Diayey

In this case, ((d)(c)) shares the same descendants with
((a)(d)(c)) and ((b)(d)(c)). However, before the size
of projected database of ((d)(c)) is known, we can-
not make any valid conclusion that {((a)(d)(c)) and

TSubtrees are the trees below the node that s’ points in L. s’

is from the pairs in lsyp.



{(b)(d)(c)) have the exactly same descendant set just be-
cause I(D((a)(d)(c))) and I(D((b)(d)(c))) are equal. The
reason is I(D((a)(d)(c))) =7 D((b)(d)(c))) does not imply
D((a)(d)(c)) = D((b)(d)(c))- When we find equation (5.2)
holds, one of duplicated subtrees from ((a)(d)(c)) and
{(b)(d)(c)) can be eliminated. For another instance, if it
is discovered that D (a)()(c)) = Di@)(e) = D) oye)-
Not only one of duplicated subtrees from {(a)(b)(c)) and
{(b)(¢)) can be eliminated, but also it is unnecessary
to grow {(f)(b)(c)) as indicated by Lemma 3. Unfor-
tunately, in our current implementation, this situation
cannot be detected because ((b)(c)) has been absorbed
by ((a)(b)(c)). When {(f)(b)(c)) comes, it cannot con-
tain or be contained by {(a)(b)(c)) while the trace of
{(b)(c)) also disappears. This difficulty makes our cur-
rent approach cannot cover all the situations in Lemma
3. However, its implementation is succinct and efficient.

For this hash approach, the performance is related
to how often the following situation happens: Two
sequences do not have any containment relationship, but
their projected database size is equal. The projected
database size, theoretically, can range from 0 to Z(D)
(D is the original whole database). If the values of
Z(Dy) for lots of s are dense in a small range, the
performance will degrade. We use another hash key
which has a larger value distribution. Remember the
core of equivalence, D, = Dy < Z(D;) = Z(Dy), is
D, = D,. Therefore, any necessary propositions of
holding D, = Dy can be used as a part of hash key
in order to make the key more uniformly distributed.
The following are some of these propositions. Given
an s, D = {s1,82,...,8n}, D% = {84,,8i9,---,8i, },1 <
i <idz < ... <im < n,8C 8,7 =1..m, we assign a
random number to each sequence in D as a signature
(r; = random(s;)),

1. Z(Dy).

2. support(s).

3. E;-”:l(ij), a sum of sequences’ identifiers, denoted
by T(Ds)

4. Z;n:l(Tij)'

5. I(Ds)+3 521 2 k—i;+1L(sk) (pseudo projection) or
I(Ds)+2;n:;1 > k=ji1l(ri) (physical projection,
let Dy = {ri,r2,....,Tm})-

We denote Z(D,)+327%, 324 41 U(sk) by £(Ds). The
intuitive explanation of £(Dy) is that £(Dy) sums up
the distance between the start position of a projected
sequence and the end position of the whole database in
pseudo projection. For the sample database in Table

1, I(D((af))) =242 =4, ﬁ(D((af))) =44+2=6
(physical projection), and L(D(@yp)y) = 6 +3 = 9

(pseudo projection). This proposition is a little bit
different from the first fours. In fact, we have if s C &',

‘C(Ds) = ‘C(Ds') <$I(l)s) =I(Ds’)

We use the fifth proposition as a replacement of Z(Dy).
There are two reasons: first, £(D;) is easy to compute
since the end position of the database is always known;
second, it generates a better distribution of hash keys
since it not only includes the size of the projected
database, but also contains the information of sequence
ids. We also think the propositions 3 and 4 besides 1
and 2 are good candidates to be added to prune some
candidates inside the loop (line 4, Algorithm 4).

With this design, we have a pretty good key distri-
bution. For the same key value or the same hash value of
different keys, probably there exist several candidates.
By comparing the above propositions, it can quickly fil-
ter out some potential invalid candidates without doing
containment test. After that, a final containment test
is executed to find s C s’ or s' C s. In order to have
I(D,) =I(Dy), s and s’ must share the same last item.
We also use this simple property to prune some invalid
candidates.

5.1 Non-Closed Sequence Elimination The re-
maining task is to eliminate non-closed sequences from
the prefix sequence lattice. The problem is to check
out for each sequence s, whether there exists a super-
sequence s’ s.t. support(s) = support(s'). Obviously
a naive algorithm, which compares each sequence with
other sequences in the lattice, does not work because
of its O(N?) complexity. We adopt the fast subsump-
tion checking algorithm introduced by Zaki [18], which
shares the same data structure in Figure 5. It uses
support of a sequence as its hash function. CloSpan first
finds all the sequences that have the same support of s,
then it checks whether there is a super-sequence contain-
ing s. Since the value of support is very dense, we need
some other hash key to make the key distribution sparse.
In fact, if s C s" and support(s) = support(s'), their cor-
responding sequences’ id sum should be the same, i.e.
T(Ds) = T(Dy). Because the value of T(D,) is dis-
tributed much sparse, [18] proposes using T (D;) as its
hash key instead of using support. However, since the
equivalence of T (D;) does not imply the equivalence of
support, for the sequences that have the same 7 (Dy)
value, their supports have to be checked to eliminate
invalid candidates. Finally, the containment is tested
to see whether a sequence can be absorbed. This elimi-
nation design is similar to our design for early termina-
tion by equivalence. The advantage is that the hash key
is easy to compute and is good at reducing the search
space.



6 Performance Study

A comprehensive performance study has been con-
ducted in our experiments on both synthetic and
real world datasets. We use a synthetic data
generator provided by IBM and a click stream
dataset from KDDCup2000. The synthetic dataset
generator can be retrieved from an IBM website,
http://www.almaden.ibm.com/cs/quest. It can accept
parameters like the number of sequences (customers),
the average number of itermsets (transactions) in each
sequence (customer), the average number of items
(products) in each itemset (transaction), and the num-
ber of different items in the dataset. It also allows the
users to define parameters of frequent patterns in the
dataset and their correlation. Table 2 shows some major
parameters in this generator and their meanings. More
details can be referred in [4]. The performance of three
algorithms are compared: PrefixSpan, CommonPrefix,
and CloSpan.

abbr. | meaning

Number of sequences in 000s

Average itemsets per sequence

Average items per itemset

Number of different items in 000s
Average itermsets in maximal sequences
Average items in maximal sequences

wlZ8 0o

Table 2: Parameters for IBM Quest Data Generator

All experiments are done on a 1.7GHZ Intel
Pentium-4 PC with 1GB main memory, running Win-
dows XP Professional. All three algorithms are written
in C++ with STL library support and compiled by g+-+
in cygwin environment with -O3 optimization.

Figure 6 shows the performance and mining result
for the dataset D10C10T2.5N10S612.5 (-seq.npats 2000
-lit.npats 5000). Figure 6(a) illustrates the running
time.  Overall, CloSpan outperforms CommonPrefix
while CommonPrefix is much faster than PrefixSpan.
PrefixSpan even cannot complete the job below the
minimum support of 0.001 due to too long running
time. Figure 6(b) shows the distribution of discovered
frequent closed patterns in terms of their length. It is
reasonable to see with the decreasing minimum support,
the maximum length of frequent closed sequences grows
larger. Figure 6(c) shows the number of frequent
sequences which are discovered and checked in order
to generate the frequent closed sequence set. This
number is roughly equal to how many times the inner
procedure (CloSpan) is called and how many times
projected databases are generated. Surprisingly, this

number accurately predicates the total running time
as the great similarity shows between Figure 6(a) and
6(c). Therefore, for the same dataset, the number of
checked frequent sequences approximately determines
the performance.

Figure 7 shows a dataset with larger parameters
of C, T, S, and I. That means each transaction and
sequence are longer, and the patterns also turn to be
longer, which can be concluded by comparing Figure
7(b) (o = 0.006) and Figure 6(b) (¢ = 0.003). There-
fore, it is much more difficult to mine this dataset with
the same minimum support threshold as the previous
one. However, CloSpan still has a similar performance
improvement opposed to CommonPrefix and PrefixSpan.

We then test the performance of these three algo-
rithms as some major parameters in the synthetic data
generator are varied. The impact of different parame-
ters is presented on the running time of each algorithm.
We select the parameters shown in Table 2 as varied
ones: the number of sequences in the dataset, the aver-
age number of itemsets per sequence, and the average
number of items per itemset. For each experiment, only
one parameter varies with the others fixed. The experi-
mental results are shown in Figure 8. We also discovered
in other experiments, the speed-up decreases when the
number of different items (V) in the dataset goes down.
However, it is still faster than PrefixSpan.

The gazelle dataset comes from click-stream data
from gazelle.com, which no longer exists. The dataset
was once used in KDDCup-2000 competition and is now
available through the website: http://www.ecn. pur-
due.edu/KDDCUP. [10] describes the background infor-
mation about this dataset. Basically the original data
includes a set of page views (each page contains a spe-
cific product information) in a legwear and legcare web-
site. Each session contains page views done by a cus-
tomer over a short period. Product pages viewed in one
session are considered as an itemset, and different ses-
sions for one user is considered as a sequence. We use
the combination of the productID and AssortmentID
as the product code. SessionID is considered to iden-
tify items in one itemset. For linking itemsets to cre-
ate a sequence we use the cookieID. The database con-
tains 1423 different products and assortments which are
viewed by 29369 different users. There are total 29369
sequences, 35722 sessions, and 87546 page views. The
average number of sessions in a sequence is around 1.
The average number of pageviews in a session is 2. The
largest session contains 342 views, the longest sequence
has 140 sessions, and the largest sequence contains 651
page views. Thus each session and each sequence is
short on average, but this dataset does have very long
sequences.
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Figure 7: Varying Support for Dataset D5C20T20N10S20120

Figure 9(a) shows the runtime with min_sup varying
from 0.03%-0.013%. The distribution of the length of
the discovered sequences is shown in Figure 9(b). The
longest sequence has the length of 57, which is un-
minable using previous algorithms.

All the experiments show that CloSpan outperforms
PrefixSpan by over one order of magnitude when the
minimum support is low and the length of patterns is
long. CloSpan also demonstrates a better scalability
over PrefixSpan and CommonPrefix since it succeeds in
completing the mining process with larger database.
Therefore, CloSpan achieves our original design goal.
That is, it not only efficiently works out the final result,
but also outperforms the underlying mining algorithm
without changing its framework.

7 Related Work

Previous studies have developed some efficient tech-
niques for mining sequential patterns and closed fre-
quent itemsets, which are related to this study.
MaxMiner [6] is an Apriori-based [3], level-wise, breadth-
first search method to find maz-itemset (an itemset is
a maz-itemset if it is frequent but none of its supper-

pattern is). It performs superset frequency pruning and
subset infrequency pruning for search space reduction.
Other works for mining frequent or closed patterns in-
cluding DepthProject [2], MAFIA [7], CLOSET [13], and
CHARM [18] adopt space-efficient depth-first search.
These studies show that depth-first search is time-
efficient especially in case when the database can be
put into main memory. DepthProject proposes heuris-
tic rules for selective projection to reduce the database
size. Also, an efficient counting technique is proposed in
DepthProject. MAFIA uses the vertical bitmap to com-
press transaction id (#id) list, thus improves the count-
ing efficiency. Algorithms like CLOSET and CHARM
mine closed frequent itemsets in transactions. CLOSET
recursively projects the database in each level and uses
a compressed database representation called FP-tree to
mine closed patterns. CHARM develops a compact ver-
tical tid list structure called diffset which only records
the difference in the tid list of a candidate pattern from
its prefix pattern. A fast hash-based approach is also
used in CHARM to prune non-closed patterns.

In sequential pattern mining, efficient algorithms
like SPADE [17], PrefixSpan [14], and SPAM [5] were
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developed. All of them adopt depth-first search (SPADE
has breadth-first search option). SPADE proposes a
vertical id-list database format and performs frequent
sequences enumeration through a simple join on id-
lists.  PrefixSpan proposes using projected database
to accelerate the mining process. SPAM uses vertical
bitmap representation of database for efficient candidate
generation and support counting. [5] shows on small
datasets, PrefixSpan runs faster. But on large datasets,
SPAM outperforms PrefixSpan and SPADE. However,
SPAM has much higher space consumption than the
other two methods.

In principle, CloSpan is not directly comparable
with the traditional sequential pattern mining algo-
rithms, since CloSpan mines closed sequential patterns
whereas the algorithms listed above mine the nonclosed
ones. Direct mining of closed patterns leads to much
fewer patterns, especially when the patterns are long
(often lead to savings by over one order of magni-
tude when patterns are long or the threshold is low—
considering our initial example of pattern length 100,

the contrast is obvious), but it has the same expressive
power compared with the traditional sequential pattern
mining algorithms. Based on the performance curves
reported in these papers [5, 18] and the explosive num-
ber of subsequences generated for long sequences, it
is expected that CloSpan will outperform SPADE and
SPAM when the patterns to be mined are long and the
database is large.

8 Conclusions

In this paper, we investigated issues for mining closed
frequent sequential patterns in large data sets and ad-
dressed the possible inefficiency and redundancy of fre-
quent sequential pattern mining problem. We intro-
duced a new lexicographic ordering system and formu-
lated CloSpan to mine frequent closed sequences effi-
ciently. To the best of our knowledge, this is the first
piece of work to solve closed sequential pattern mining
problem. CloSpan outperforms PrefixSpan by more than
one order of magnitude and is capable of mining longer
frequent sequences in a large data set with low mini-



mum support without information loss. CloSpan adopts
a novel pruning technology, and thus provides a new
insight for scalable mining of long patterns.

Since the search space pruning does not modify the
underlying frequent pattern mining algorithm, and it
only defines the early termination condition of search
branches, this method can be extended to other existing
well-known sequential pattern mining algorithms like
SPADE and SPAM. We analyze the structure of vertical
bitmap in SPAM and find it is feasible to calculate the
corresponding size of projected database in SPAM with
a little additional cost. We speculate that it can achieve
similar performance gain if our pruning algorithm is
applied there.

There are many interesting research problems re-
lated to CloSpan that should be pursued further. For
example, how to take full advantage of the search space
pruning property proposed in this paper, how to incor-
porate user-specified constraints [8, 15] in the mining of
closed sequential patterns, and how to extend CloSpan
to mining other complicated structured patterns are in-
teresting problem for future research.
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