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Abstract

A major challenge in frequent-pattern mining is the sheer size of its mining results.
To compress the frequent patterns, we propose to cluster frequent patterns with a
tightness measure δ (called δ-cluster), and select a representative pattern for each
cluster. The problem of finding a minimum set of representative patterns is shown
NP-Hard. We develop two greedy methods, RPglobal and RPlocal. The former has
the guaranteed compression bound but higher computational complexity. The latter
sacrifices the theoretical bounds but is far more efficient. Our performance study
shows that the compression quality using RPlocal is very close to RPglobal, and
both can reduce the number of closed frequent patterns by almost two orders of
magnitude. Furthermore, RPlocal mines even faster than FPClose[10], a very fast
closed frequent-pattern mining method. We also show that RPglobal and RPlocal

can be combined together to balance the quality and efficiency.
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1 Introduction

Frequent-pattern (or itemsets) mining has been a focused research theme in
data mining due to its broad applications in mining association [2], correlation
[5], causality [18], sequential patterns [3], episodes [14], multi-dimensional pat-
terns [13], max-patterns [9], partial periodicity [11], and many other important
data mining tasks.
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The problem of frequent-itemsets mining can be defined as follows. Given a
transaction database, let O = {o1, o2, . . . , od} be the set of items that appear
in the database, T = {t1, t2, . . . , tk} be the transaction set, and I(ti) ⊆ O be
the set of items in transaction ti. For any itemset P , let T (P ) = {t ∈ T |P ⊆
I(t)} be the corresponding set of transactions. We say P is the expression of
pattern P , and |T (P )| is the support of pattern P . An itemset P is frequent
if |T (P )| ≥ min sup, where min sup is a user-specified threshold. The task of
frequent-itemsets mining is to find all the frequent itemsets. Several extensions
have been made to the original frequent itemsets problem. A frequent itemset
P is closed if there is no itemset P

′

such that P ⊂ P
′

and T (P ) = T (P
′

),
a frequent itemset P is maximal if there is no frequent itemset P

′

such that
P ⊂ P

′

.

There have been many scalable methods developed for frequent-pattern mining
[12]. However, the real challenge in frequent-pattern mining is the sheer size
of its mining results. In many cases, a high min sup threshold may discover
only commonsense patterns but a low one may generate an explosive number
of output patterns, which severely restricts its usage.To solve this problem, it
is natural to explore how to “compress” the patterns, i.e., find a concise and
succinct representation that describes the whole collection of patterns.

Two major approaches have been developed in this direction: lossless compres-
sion and lossy approximation. The former is represented by the closed frequent
itemsets [16] and non-derivable frequent itemsets [6]. Their compression is loss-
less in the sense that the complete set of original frequent patterns can be
recoverd. However, the methods emphasize too much on the supports of pat-
terns so that its compression power is quite limited. The latter is represented
by the maximal frequent itemsets [9] , as well as boundary cover sets proposed
recently [1]. These methods only consider the expressions of patterns, while
the support information in most of the itemsets is lost.

To achieve high-quality pattern compression, it is desirable to build up a pat-
tern compression framework that concerns both the expressions and supports
of the patterns. A motivation example is shown as follows.

Example 1 Table 1 shows a subset of frequent itemsets on accidents data set
[8], where 39, 38, 16, 18, 12, 17 are the names of individual items. The closed
itemsets cannot get any compression on this subset. The maximal itemsets
will only report the itemset P3. However, we observe that itemsets P2,P3 and
P4 are significantly different w.r.t. their supports, and the maximal itemset
totally loses this information. On the other hand, the two pairs (P1,P2) and
(P4,P5) are very similar w.r.t. both expressions and supports. We suggest a
high-quality compression as P2, P3 and P4.

A general proposal for high-quality compression is to cluster frequent patterns
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Table 1
A Subset of Frequent Itemsets

Pattern ID Itemsets Support

P1 {38, 16, 18, 12} 205227

P2 {38, 16, 18, 12, 17} 205211

P3 {39, 38, 16, 18, 12, 17} 101758

P4 {39, 16, 18, 12, 17} 161563

P5 {39, 16, 18, 12} 161576

according to certain similarity measure, and then select and output only a rep-
resentative pattern for each cluster. However, there are three crucial problems
that need to be addressed: (1) how to measure the similarity of the patterns,
(2) how to define quality guaranteed clusters where there is a representative
pattern best describing the whole cluster, and (3) how to efficiently discover
these clusters (and hence the representative patterns)? This paper addresses
these problems.

First, we propose a distance measure between two frequent patterns, and show
it is a valid distance metric. Second, we define a clustering criterion, with
which, the distance between the representative pattern and every other pattern
in the cluster is bounded by a threshold δ. The objective of the clustering is to
minimize the number of clusters (hence the number of representative patterns).
Finally, we show the problem is equivalent to set-covering problem, and it
is NP-hard w.r.t. the number of the frequent patterns to be compressed. We
propose two greedy algorithms: RPglobal and RPlocal. The former has bounded
compression quality but higher computational complexity; whereas the latter
sacrifices the theoretical bound but is far more efficient. Our performance
study shows that the quality of the compression using RPlocal is very close to
RPglobal, and both can reduce the number of patterns generated by about two
orders of magnitude w.r.t. the original collection of closed patterns. Moreover,
RPlocal directly mines representative patterns from database and runs even
faster than FPClose[10], a fast closed frequent-itemset mining algorithm. We
also show that RPglobal and RPlocal can be integrated together to balance the
quality and efficiency.

The remainder of the paper is organized as follows. In Section 2, we formally
introduce the problem. The NP-hardness is proved in Section 3. Section 4 pro-
poses the RPglobal and RPlocal methods. Our performance study is presented
in Section 5. Section 6 discusses the related work. The potential extensions is
presented in Section 7, and we conclude the study in Section 8.
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2 Problem Statement

In this section, we first introduce a new distance measure on closed frequent
patterns, and then discuss the clustering criterion.

2.1 Distance Measure

Definition 1 (Distance measure) Let P1 and P2 be two closed patterns.
The distance of P1 and P2 is defined as:

D(P1, P2) = 1 −
|T (P1) ∩ T (P2)|

|T (P1) ∪ T (P2)|

Example 2 Let P1 and P2 be two patterns: T (P1) = {t1, t2, t3, t4, t5} and
T (P2) = {t1, t2, t3, t4, t6}, where ti is a transaction in the database. The dis-
tance between P1 and P2 is D(P1, P2) = 1 − 4

6
= 1

3
.

Theorem 1 The distance measure D is a valid distance metric, such that:

(1) D(P1, P2) > 0, ∀P1 6= P2

(2) D(P1, P2) = 0, ∀P1 = P2

(3) D(P1, P2) = D(P2, P1)
(4) D(P1, P2) + D(P2, P3) ≥ D(P1, P3), ∀P1, P2, P3

Proof. It is easy to verify that the first three properties are true. We prove the
fourth statement is true.

To simplify the presentation, we define the following variables: |T (P1)| = a,
|T (P2)| = b, |T (P3)| = c, |T (P1) ∩ T (P2)| = b1, |T (P2) − T (P1) ∩ T (P2)| = b2,
|T (P1)∩T (P3)| = c1, |T (P3)−T (P1)∩T (P3)| = c2, |T (P1)∩T (P2)∩T (P3)| = d1,
and |T (P2)∩T (P3)−T (P1)∩T (P2)∩T (P3)| = d2. The meanings of the variables
are shown in Fig. 1.

IV :d2

I

II
III

IV
V

VI

VII

T(P1)

T(P2) T(P3)

I+II+III+VI :a
I+II+V+IV :b
I+III+IV+VII :c
I+II :b1
I+III :c1
V+IV :b2
IV+VII :c2
I :d1

Fig. 1. Meanings of Variables

Since (T (P1) ∩ T (P2)) ∪ (T (P1) ∩ T (P3)) ⊆ T (P1), we have
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|T (P1) ∩ T (P2)| + |T (P1) ∩ T (P3)|

−|T (P1) ∩ T (P2) ∩ T (P3)| ≤ |T (P1)|

=⇒ b1 + c1 − d1 ≤ a (1)

Plug in all the variables into the distance definition,

D(P1, P2) + D(P2, P3) ≥ D(P1, P3)

⇐⇒
b1

a + b2

+
c1

a + c2

≤ 1 +
d1 + d2

b1 + b2 + c1 + c2 − d1 − d2

Using Eq. (1), we have:

1 +
d1 + d2

b1 + b2 + c1 + c2 − d1 − d2

≥ 1 +
d1

b1 + b2 + c1 + c2 − d1

(d2 ≥ 0)

≥ 1 +
d1

a + b2 + c2

=
a + d1 + b2 + c2

a + b2 + c2

(Eq.1)

≥
b1 + c1 + b2 + c2

a + b2 + c2

=
b1 + c2

a + b2 + c2

+
c1 + b2

a + b2 + c2

(Eq.1)

≥
b1

a + b2

+
c1

a + c2

(a + b2 ≥ b1, c2 ≥ 0, a + c2 ≥ c1, b2 ≥ 0)

Thus the fourth statement is true.

Remark. The distance measure can be extended to the general frequent pat-
terns except that for non-closed patterns, we may have D(P1, P2) = 0 for some
P1 6= P2. This happens when P1 and P2 share the same support transactions
set.

2.2 Clustering Criterion

By defining the distance on the set of transactions, the support information
of patterns are well incorporated. We further consider the expressions of the
patterns. Given two patterns A and B, we say B can be expressed by A if
O(B) ⊂ O(A). Following this definition, assume patterns P1, P2, . . . , Pk are in
the same cluster. The representative pattern Pr of the cluster should be able
to express all the other patterns. Clearly, we have ∪k

i=1O(Pi) ⊆ O(Pr).

Using the distance measure defined in Section 2.1, we can simply apply a
clustering method, such as k-means, on the collection of frequent patterns.
However, it introduces two problems. First, the quality of the clusters cannot
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be guaranteed; and second, it may not be able to find a representative pattern
for each cluster (i.e., the pattern Pr may not belong to the same cluster).
To overcome these problems, we introduce the concept of δ-cluster, where δ
(0 ≤ δ ≤ 1) is the tightness measure of a cluster.

Definition 2 (δ-cluster) A pattern P is δ-covered by another pattern P
′

if
O(P ) ⊆ O(P

′

) and D(P, P
′

) ≤ δ. A set of patterns form a δ-cluster if there
exists a representative pattern Pr such that for each pattern P in the set, P is
δ-covered by Pr.

Remark. First, in δ-cluster, one pattern can belong to multiple clusters. Sec-
ond, using δ-cluster, we only need to compute the distance between each
pattern and the representative pattern in a cluster. Since a pattern P is δ-
covered by a representative pattern Pr only if O(P ) ⊆ O(Pr), we can simplify
the distance calculation by only considering the supports of the patterns:
D(P, Pr) = 1 − |T (P )∩T (Pr)|

|T (P )∪T (Pr)|
= 1 − |T (Pr)|

|T (P )|
. Finally, if we extend the distance

definition to non-closed patterns, it is easy to verify that a non-closed pat-
tern must be δ-covered by a representative pattern if its corresponding closed
pattern is covered. We have the following lemma with the proof omitted.

Lemma 1 Given a transaction database, a minimum support M and a cluster
quality measure δ, if a representative pattern set R δ-covers all the closed
frequent patterns, then R δ-covers all the frequent patterns.

In the remaining of the paper, when we refer to frequent patterns, we mean
closed frequent patterns. For simplicity, we use cover and cluster to represent
δ-cover and δ-cluster, respectively.

If we restrict the representative pattern to be frequent, then the number of
representative patterns (i.e., clusters) is no less than the number of maximal
frequent patterns. This is because a maximal frequent pattern can only be
covered by itself. In order to achieve more succinct compression, we relax the
constraints on representative patterns, i.e., allow the supports of representative
patterns to be less than min sup, M . For any representative pattern Pr, assume
its support is k. Since it has to cover at least one frequent pattern (i.e., P )
whose support is at least M , we have

δ ≥ D(P, Pr) = 1 −
|T (Pr)|

|T (P )|
≥ 1 −

k

M

That is, k ≥ (1−δ)M . This is the min sup for a representative pattern. To sim-
plify the notation, we use M̂ to represent (1− δ)M . The pattern compression
problem is defined as follows.

Definition 3 (Pattern Compression Problem) Given a transaction database,
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a min sup M and the cluster quality measure δ, the pattern compression prob-
lem is to find a set of representative patterns R, such that for each frequent
pattern P (w.r.t. M), there is a representative pattern Pr ∈ R (w.r.t. M̂)
which covers P , and the value of |R| is minimized.

3 NP-Hardness

We show that the problem defined above is NP-Hard.

Theorem 2 The problem of finding the minimum number of representative
patterns is NP-hard.

Proof. We show that the pattern compression problem can be reduced from
the set-covering problem.

First, for any pattern compression problem, we can construct a correspond-
ing set-covering problem. There are two min sups in the pattern compression
problem: min sup M and the representative pattern’s min sup M̂ . We denote
the set of frequent patterns (w.r.t. M) as FP (M), the set of frequent pat-
terns (w.r.t. M̂) as FP (M̂). For each pattern P̂ ∈ FP (M̂), we generate a set
whose elements are all the patterns P ∈ FP (M) which are coverd by P̂ . The
set-covering problem is to find a minimum number of sets which cover all the
elements, where each set corresponds to a representative pattern.

We then show that for any set-covering problem, we can construct a corre-
sponding pattern compression problem. Let the given set-covering problem
contain N elements {e1, e2, . . . , eN} and K sets {S1, S2, . . . , SK}. Each set Si

contains ni elements {e1
i , e

2
i , . . . , e

ni

i }. We assume that (1) there exist no two
sets Si and Sj such that Si ⊆ Sj; and (2) there exists no single set covering
all the elements.

By considering these elements as individual items, we first construct α(≥ 0)
transactions , each of which contains N items {e1, e2, . . . , eN}; then construct
β(≥ 1) transactions for each individual set (i.e., for each set Si, there will be
β transactions {e1

i , e
2
i , . . . , e

ni

i }). Now we have a database containing α + βK
transactions. If there is any individual item ei whose support is less than
α+βK, we further insert transactions with only one item (ei) until its support
reaches α + βK. Let M = α + βK and δ = βK−1

α+βK
, then M̂ = α + 1. Since α

and β can be chosen arbitrarily, the value of δ can be selected as any value in
(0, 1).

Now we have a database where the longest pattern {e1, e2, . . . , eN} is not fre-
quent w.r.t. M̂ . It will not be considered as a representative pattern. Each set
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in the original set-covering problem corresponds to an itemset whose support
is at least α + β ≥ M̂ (we denote the set of all of these itemsets as RP ) and
can be considered as representative patterns. Each element in the set-covering
problem corresponds to an item whose support is exactly M and has to be
covered. We show that the solution of the pattern compression problem will
only choose representative patterns from RP . This is because RP is the max-
imal pattern set w.r.t. M̂ . If there is a representative pattern P /∈ RP , we
can always find a P

′

∈ RP , such that O(P ) ⊂ O(P ′). Since all the frequent
patterns covered by P have supports at most M , they can also be covered
by P

′

. We conclude that the optimal selection of the representative patterns
corresponds to the solution of the original set-covering problem.

In the rest of the paper, we treat the following terms as equivalent: element vs.
frequent pattern (w.r.t. M); set vs. frequent pattern (w.r.t. M̂); and set-cover
vs. set of representative patterns. For any frequent pattern P (w.r.t. M̂), we
denote the set of patterns which can be covered by P as set(P ).

4 Discovering Representative Patterns

In this section, we describe algorithms for computing representative patterns.

4.1 The RPglobal Method

Generally, the size of the frequent patterns is quite large. It is undesirable
to enumerate all the combinations to find the optimal selection. Since the
problem is equivalent to the set-covering problem, it is natural to consider
some approximate algorithms available in the set-covering problem. The well-
known one is the greedy algorithm [7] which iteratively finds the current largest
set. The pseudo-code for the pattern compression problem is shown in Fig. 2.
Since the precondition for this method is to collect the complete information
over the elements and sets, we refer it as global method (in contrast to the
local method to be discussed in the next section).

The code is self-explanatory. Following the result of greedy set-covering[7], the
ratio between the number of the representative patterns selected by RPglobal
and that of the optimal one is bounded.

Theorem 3 Given a collection of frequent patterns F , let the set of repre-
sentative patterns selected by RPglobal be Cg, the set of optimal(i.e., minimal
number) representative patterns be C∗, then |Cg| ≤ |C∗|×H(maxP∈F |set(P )|),
where H(n) =

∑n
k=1

1
k
.
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Algorithm (RPglobal) Compute Representative Patterns by Greedy Set-
Covering.

Input: (1) A collection of frequent patterns FP w.r.t. M̂ , (2) a minimum
support, M , and (3) a quality measure for clustering, δ.

Output: The set of representative patterns.
BEGIN

for each P ∈ FP s.t. support(P ) ≥ M
Insert P into the set E;
for each Q ∈ FP , s.t. Q covers P

Insert P into set(Q);
while E 6= φ

Find a RP that maximizes |set(RP )|;
for each Q ∈ set(RP )

Remove Q from E and the remaining sets;
Output RP ;

END

Fig. 2. The RPglobal algorithm

Proof. See [7].

The RPglobal method contains two steps. The first one is to collect the com-
plete coverage information (i.e., find all the frequent patterns Q that can cover
P ), and the second one is to find the set-covers (i.e., find the set of represen-
tative patterns). The greedy set-covering step can be implemented in time
complexity of O(

∑

P∈F |set(P )|)[7]. The computational challenge comes from
finding the pattern coverage information. Note this coverage problem is differ-
ent from closedness checking, which can be handled more efficiently because of
the following reasons. First, closedness checking only needs to find one super-
pattern which subsumes the query pattern, whereas the coverage checking has
to find all super patterns that can cover it. Second, the closedness checking
can utilize transaction ID-based hash functions to do fast checking [20], while
the coverage checking cannot benefit from it since there is a δ tolerance be-
tween the support transaction sets. To facilitate the coverage search, we use
an FP-tree-like structure [12] to index all the frequent patterns (w.r.t M̂). An
example of FP-tree is shown in Fig. 3. The FP-tree has a head table associated
with it. Single items are stored in the head table. The entry for an item also
contains the head of a list that links all the nodes with the same name.

The construction of the index tree is similar to FP-tree, except that in FP-tree,
the counts of the nodes are updated by summing the counts of the inserted
itemsets, while here, the counts of the nodes are updated by choosing the
maximum count over the inserted itemsets. To differentiate from traditional
FP-tree, we call our index tree as RP-tree (representative pattern tree). The
coverage checking using RP-tree works as follows. Suppose the current pattern

9



p

Root

f:4

a:3

m:2

p:2

b:1

m:1

b:1 b:1

p:1

c:1

c:3

Head table

item head of node−links

f

c

a

b

m

Fig. 3. A sample FP-tree

is Q, O(Q) = {o1, o2, . . . , ok} (items are ordered as in the RP-tree head table),
and its support is C. The support region for a valid representative pattern is
[C × (1 − δ), C]. Following the linked list of ok in RP-tree, for each node n in
the list, we test whether (1) the count is within the support region; and (2)
the query itemset is a subset of the ancestors of n.

The worst case computation complexity for coverage checking could be O(|F|2).
The RPglobal method works well when |F| is not large. However, when the
number of frequent patterns to be compressed increases, the method does not
scale well. It is necessary to develop an alternative method which discovers the
set of representative patterns efficiently, while still preserves the high quality
of the results.

4.2 The RPlocal Method

In this subsection, we introduce the idea of a local method and show how
this method can be efficiently incorporated into the frequent-pattern mining
process.

4.2.1 Local Greedy Method

Computing the complete coverage information is necessary for RPglobal, since
the method needs to find a globally maximum set at each step. To develop a
scalable method, this expensive computational requirement has to be relaxed.
Our objective is to report the representative patterns by an almost linear scan
of the whole collection of patterns, without knowing the complete coverage
information. The intrinsic relationship among the nearby patterns (according
to the order generated by frequent pattern mining algorithms) can be utilized
for this purpose.

Most frequent pattern mining algorithms conduct depth-first enumerations in
the pattern space. It starts from an empty pattern set, recursively calls the
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pattern-growth routine to expand the pattern set. Since the individual items
are sorted, at any stage of the algorithm, all the single items can be partitioned
into three disjoint sets: the conditional set (the items appearing in the current
pattern), the todo-set (the items to be expanded based on the current pattern)
and the done-set (all the other items).

Example 3 Fig. 10 shows a search space with five single items a,b,c,d,e. At
the time when the depth-first search reaches pattern {a,c}, the conditional set
is (a,c), the todo-set is (d,e) and the done-set is (b).

{a,b,c,d,e}

{a,d}

{a,c,d}{a,b,e}{a,b,d}{a,b,c}

{a}

{a,e}

{a,d,e}{a,c,e}

{a,c,d,e}{a,b,c,d} {a,b,d,e}{a,b,c,e}

{a,b} {a,c}

Fig. 4. Depth-First Search in Pattern Space

The depth-first search scans each pattern twice: the first visit from its parent,
and the second visit after finishing the calls to its children. One can verify that
after a pattern is visited in its second time, all the patterns that can possibly
cover it have been enumerated. The future patterns are not able to cover it.

We output a pattern in its second visit. The local greedy method sequentially
scans the output patterns, at any time when an uncovered pattern (called
probe pattern) is found, the algorithm finds the current largest set (i.e., a
representative pattern) which covers it. Here the current largest set has the
same meaning as it has in the global greedy method (i.e., the already covered
pattern does not count for the set size). The following theorem shows a bound
of the local method.

Theorem 4 Given a collection of frequent patterns F , let the set of represen-
tative patterns selected by the local method be Cl, the set of optimal represen-
tative patterns be C∗. Assume the minimum number of patterns that cover all

the probe patterns be T . Then |Cl| < |C∗| × (
√

2T × maxP∈F |set(P )| + 1).

Proof. For the simplicity of presentation, we prove the theorem in the set-
covering framework. Let the sequence of probe elements be e1, e2, . . . , el (l =
|Cl|), the sets selected by the local method be S1, S2, . . . , Sl. Similar to the
approaches in [7], we assign a cost 1 to each set which is selected by the local
method, distribute this cost evenly over the elements covered for the first
time. If e is covered for the first time by Si, then ce = 1

|Si−(S1∪S2∪...∪Si−1)|
, and

|Cl| =
∑

ce. The cost assigned to the optimal cover is
∑

S∈C∗

∑

e∈S ce. Since
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each element is in at least one set in the optimal cover, we have

|Cl| =
∑

ce ≤
∑

S∈C∗

∑

e∈S

ce =
∑

S∈C∗

KS

Where KS =
∑

e∈S ce =
∑

S′∈Cl

|R(S′)∩S|
|R(S′)|

and R(Si) = Si− (S1∪S2∪ . . .∪Si−1).

Let the minimum sets covering all the probe elements be {M1,M2, . . . ,MT}.
We further assume that set Mi, i ∈ {1, 2, . . . , T}, covers probe elements Ei =
{ei1 , ei2 , . . . , eip} (i1 < i2 < . . . < ip), where Ei ∩ Ej = φ, (∀i 6= j), and
∪T

i=1Ei = {e1, e2, . . . , el}.

Let the set (selected by the local method) associated with probe element ei1 be
Si1 . Since Si1 is one of the current largest sets which cover probe pattern ei1 ,
we have |R(Si1)| ≥ |R(Mi)|. Because ei1 , ei2 , . . . , eip are in the order of probe
elements, these elements must have not been covered at the time when ei1 is
selected as probe element. Thus, |R(Mi)| ≥ p, and we conclude |R(Si1)| ≥ p.
Similarly, we have |R(Si2)| ≥ p − 1, |R(Si3)| ≥ p − 2, . . . , |R(Sip)| ≥ 1.

For all S ′ ∈ Cl, assume S ′
1, S

′
2, . . . , S

′
l is in in ascending order of |R(S ′)|. KS

achieves the maximum value if we distribute the elements of S first in set S ′
1

fully, then S ′
2, . . ., until S ′

k+1. Since distributing fully on S ′ means R(S′)∩S

R(S′)
= 1,

we have KS ≤ k + 1.

Evenly distribute the first k S ′ into T buckets, and assign minimum |R(S ′)|
value for them, we have,

|S| ≥ |R(S ′
1)| + |R(S ′

2)| + . . . + |R(S ′
k)| ≥ T ×

k
T

∑

i=1

i = T ×
k
T
× ( k

T
+ 1)

2
>

k2

2T

We have KS ≤ k + 1 <
√

2T |S| + 1, thus

|Cl| ≤ |C∗| × (maxS∈C∗(KS)) < |C∗| × (
√

2T × maxS|S| + 1)

The difference between the local method and the global method is the se-
lections of the probe patterns. Clearly, if the probe patterns are selected as
patterns in the current largest set, the local method is identical to the global
method. Since the complete coverage information is not available, the bound
on the local method is worse than the global method. However, in our experi-
ments, we found that the performance of the local method is very close to that
of the global method. This is because in the pattern compression problem, the
layout of the patterns and their coverage is not arbitrary. Instead, most fre-
quent patterns are strongly connected if they are in the same cluster, i.e., a
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pattern P is covered by the representative pattern Pr if and only if Pr sub-
sumes P and the distance between P and Pr is within δ. As a result, for each
pattern Pr, set(Pr) preserves local compactness, that makes the selections of
probe patterns not a dominant factor for compression quality. Meanwhile, in
most pattern compression problem, the sizes of sets are somewhat balanced. It
is unlikely to have a very large set which is selected by the global method but
missed by the local method, thus leads to a significant performance difference.

The local method relaxes the requirement of global comparison of sets sizes.
However, it still needs to find the current largest set at each step, which in-
volves the coverage checking for the future patterns. We further relax the
method by finding a reasonably large set, instead of the largest set. The rea-
sonably large set is expected to cover more future patterns. Intuitively, the
candidate set should be as long as possible, since longer patterns generally
have larger coverage. The candidate set should also contain more items within
the probe pattern’s todo-set. This is because items in todo-set are expected to
appear more in the future.
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These intuitions are well justified by the real experimental statistics. Fig. 5
(connect data set [8] with minsup = 0.8 × #transactions, δ = 0.1) shows
the future coverage w.r.t. a probe pattern which is output at position 5043.
The future coverage counts the number of coverable patterns which are out-
put after the probe pattern. We ignore the patterns which cannot cover the
probe pattern (i.e., the future coverage is 0). The values on the y-axis are nor-
malized w.r.t. the largest coverage. The x-axis is the order in which patterns
are output. The probe pattern is first visited at position 4952. Fig. 6 shows
the corresponding pattern length (normalized w.r.t. the longest length). We
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observe that the largest future coverage appears between the first visit and
second visit of probe pattern, and it also has the longest length within the
same region. Based on the above observations, we select the reasonably large
set as the longest pattern, which can cover the probe pattern, among all the
patterns between the first visit and second visit of the probe pattern (i.e.,
patterns expanded by the probe pattern).

Since the local method only requires the knowledge on already-discovered
patterns, we further integrate it into frequent pattern mining process in order
to improve the computational efficiency. The new method is called RPlocal.

4.2.2 The Algorithm

We develop an FP-growth-like algorithm [12,10] to discover representative
patterns. Since FP-growth is a well-known method, we omit the detailed de-
scription here due to the limited space.

The RPlocal algorithm is described in Figure 7. We explain the algorithm line
by line. Line 1 picks an item to be expanded from the head table. Line 2 pushes
the item onto a global stack IS which keeps track of the itemsets along the
path from the root in the pattern space. Each entry of IS has the following
fields: item name, counts, covered, and cover pattern (among its children). Line
3 checks whether closed pruning can be applied on IS(top). We discuss the
challenge and our solution to the closed pruning problem in section 4.2.3. Line
4 traces all the itemsets in the IS stack to check whether the current itemset
can cover the itemsets in the stack. If yes, and the current pattern is longer
than the one stored in the cover pattern field, then the cover pattern field is
updated by the current pattern. Line 5 checks current itemset’s support. If it
is less than M , then it is not required to be covered. It also checks whether
it is covered by a previous representative pattern (the previous representative
patterns are indexed in RP-tree R, as shown in RPglobal ). Line 8-11 are
the same as the FP-growth algorithm. It collects the todo-set based current
itemset, constructs a conditional FP-tree and a conditional RP-tree for the
coverage checking, then recursively calls the FPrepresentative routine with
the new trees. The details of coverage checking and the conditional RP-tree
are discussed in section 4.2.4. Line 12 checks whether the current itemset can
be a probe pattern. If it is, then the cover pattern stored in the IS stack is
selected as a new representative pattern. Meanwhile, the covered fields of all
the other itemsets in the IS stack are set as true if they can be covered by the
new representative pattern. The new representative pattern is inserted into all
RP-trees for future coverage checking.Finally, line 16 is a pruning technique
that we will discuss in section 4.2.5.
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Algorithm (RPlocal) Compute Representative Patterns by Local Search.

Input: (1) a transaction database D, (2) a minimum support, M and (3) a
quality measure for clustering, δ.

Output: The set of representative patterns.
BEGIN

IS = φ; // global stack to keep itemsets
scan D, create FP-tree F ;
Initiate an empty RP-tree R;
call FPrepresentative(F,R);

END

procedure FPrepresentative(F,R) {
1. for each item in F.headtable {
2. push item into IS;
3. if (closed pruning(IS(top)) = true) continue;
4. set representative();
5. if F.headtable[item].count < M

or coverage checking(IS(top), R) = false;
6. IS[top].covered = true;

else
7. IS[top].covered = false;

8. Todo − set = {frequent (w.r.t M̂) items based on
the current conditional set };

9. Build a new FP-tree Fnew based on Todo − set;
10. Initiate Fnew’s RP-tree, Rnew;
11. call FPrepresentative(Fnew, Rnew);
12. if ((RP = get representative()) 6= NULL)
13. Insert RP into R and its predecessor RP-trees;
14. Output RP ;
15. pop item from IS;
16. item reordering();

}
}

Fig. 7. The RPlocal algorithm

4.2.3 Prune Non-Closed Patterns

Here we discuss the implementation of closed pruning in the RPlocal algo-
rithm. Assume a pattern P is not closed, and the related closed pattern is
Pc. There are two possibilities for Pc. One is (O(Pc) − O(P )) ∩ done − set 6=
φ, then Pc is a pattern discovered before the first visit of P . The other is
(O(Pc) − O(P )) ∩ done − set = φ, then Pc is a pattern expanded by P (i.e.,
Pc is discovered between the first visit and the second visit of P ).
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The second case is intrinsically handled by the RPlocal algorithm at line 8,
where items with the same frequency as P are directly merged into the con-
ditional set, and the non-closed itemsets are skipped. The first case is more
interesting w.r.t. the computation pruning. The following lemma has been
widely used in most of the closed frequent pattern mining methods [20], and
we state it without proof.

Lemma 2 In the RPlocal method, for any pattern P , if there exists a pattern
Pc which was discovered before the first visit of P , s.t. O(P ) ⊂ O(Pc) and
|T (P )| = |T (Pc)|, then all the patterns being expanded by P (i.e., patterns
within the first and second visits of P ) are not closed.

We call this pruning technique as closed pruning. The function closed pruning
is to check whether the pattern is not closed w.r.t. a previously discovered pat-
tern. The challenge for closed pruning in the RPlocal algorithm is that only
representative patterns are kept, and generally it is a small subset of closed
patterns. It is not possible to check the closedness of a pattern using the
previous outputs. Keeping all the closed patterns is one option. However, an
interesting observation from our experiments shows that even without closed
pruning, RPlocal runs faster than the closed frequent pattern mining algo-
rithm. This is because the coverage checking in RPlocal is much more efficient
than the closedness checking in closed frequent pattern mining since the num-
ber of representative patterns to be checked with is significantly less than the
number of closed frequent patterns in closedness checking. Keeping all the
closed patterns obviously will degrade the performance of RPlocal.

Instead of checking the closedness with the previous output, RPlocal uses a
closedness checking method which tries to memorize the information of items
in done-set. Since we only need to know whether an item is present or not in
the closed pattern, we use 1 bit to represent an item’s presence. If there are N
single frequent items, we use a N -bit array (referred as closed index) for each
pattern. The closed index of a pattern is computed by the bit-and operation
between the closed indices of all the related transactions. An example on how
to use closed index is shown as follows.

Example 4 Given a database having 5 transactions: {f,c,a,m,p}, {f,c,a,b,m},
{f,b}, {c,b,p}, {f,c,a,m,p}, we use N = 6 bits for the closed index. Items
f, c, a, b,m, p are assigned to the 1st to 6th bits, according to the computa-
tion order. The closed indices of transactions 1 and 5 are 111011, and the
closed index of transaction 2 is 111110. The closed index of pattern {c, a} is
111010. Since item f is in the done-set of pattern {c, a} and f ’s bit is 1. We
conclude that the closed pruning can be applied on pattern {c, a}.

To efficiently compute the closed index for each pattern, we attach closed index
to each node in the FP-tree. The closed index can be aggregated along with
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the count measure, except that the count is updated by sum, while the closed index
is updated by bit-and. Since the closed index is attached to every node, the
method is limited by the memory requirement. Fortunately, our task is not
to identify all closed pruning. Instead, we aim to prune as much as possible,
and the unpruned non-closed patterns will go to the coverage checking. The
problem turns out: Given a fixed number of k for closed index, if the total
number of single frequent items is larger than k, how to select k items from
them, and how much pruning can be achieved?

It is natural to choose the first k items according to the computation order
because the closed pruning checks patterns with items in done-set. The ex-
perimental statistics on pumsb star [8] data set is shown in Fig. 8, where we
collect the percentage of closed pruning achieved, by setting k as 32 and 64.
We observe this simple optimization works quite well. With only one integer
(k = 32) as closed index, the method misses less than 2% and 15% closed
pruning when the number of frequent items are 2 and 6 times of k, respec-
tively. Using two integers (k = 64) as closed index, the method misses less
than 1% of the closed pruning. The similar phenomena are also observed on
all the other data sets (e.g., mushroom, connect, accidents, chess) in our ex-
perimental evaluations. It is interesting to see that these limited k bits achieve
good pruning percentages. We give a detailed explanation in the rest of this
subsection.

Assume there are totally n independent frequent items, whose computation
order is o1, o2, . . . , ok, . . . , on (for simplicity, we assume the order of items keeps
unchanged). We leave the first k for closed index, and r = n−k as left items.
The percentage of the closed pruning by closed index is defined as function
h(k, r).

For any pattern, let the conditional set be {oi1 , oi2 , . . . , oim}, where i1 < i2 <
. . . < im, we say m is the length of the pattern and im is the span of the
pattern. The position j is called a hole if j < im and j /∈ {i1, i2, . . . , im}. If the
set of holes is not empty (i.e., the done-set is not empty), then this pattern
is possible to be subsumed by a previously output pattern (i.e., the closed
pruning is possible to be applied on). A hole is active if the closed pruning
takes effect.

The items in the conditional set are distributed into two parts: the first k
items set and the rest r items set. Let the number of items falling in the
rest r items set be v, and the number of holes falling in the rest r items set
be u (referred as (u, v)-configuration). To estimate the percentage of closed
pruning for a (u, v)-configuration (defined as g(k, u, v)), we need to further
define two parameters: the expect number of active holes c and the maximal
pattern length l.
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Assume items are independent, every hole has an equal opportunity to be
active. If there is one hole, which exists in the first k items, then the closed
pruning is caught by the closed index, otherwise, it misses. Since there are
at most l − v items falling into the first k items set, for each 0 ≤ i ≤ m =
max(l − v, k), there are

(

k

i

)

different patterns. For each pattern, the number

of all different placements for c active holes is
(

k−i+u

c

)

, and the number of

placements that all c active holes falling in the rest r items set is
(

u

c

)

. Thus

the pruning percentage by closed index is 1 −
(u

c)
(k−i+u

c )
, We have g(k, u, v) =

∑m

i=0
(1−

(u
c)

(k−i+u
c )

)×(k

i)
∑m

i=0
(k

i)
.

Now we examine the value of h(k, r). Among all patterns, there are two cases
which are divided evenly. First, the last item is not in the conditional set.
In this case, the pruning percentage is same as h(k, r − 1). Second, the last
item is in the conditional set. In this case, we enumerate all possible (u, v)-
configurations. There are at most l − 1 bits to be placed within the latter r
items (since the last item is already in, there are r−1 selections). For each 0 ≤

i ≤ m = max(l − 1, r − 1), there are
(

r−1
i

)

different (u, v) configurations(u =

r − 1 − i, v = i + 1), and for each configuration, the pruning percentage is
g(k, r − 1 − i, i + 1), we have:

h(k, r) =
1

2
h(k, r − 1) +

∑m
i=0

(

r−1
i

)

× g(k, r − 1 − i, i + 1)

2
∑m

i=0

(

r−1
i

)

The base case is h(k, 0) = 1. We run simulations by setting k = 32 and varying
r from 0 to 64. We observe that, in most cases, the maximal pattern length
is approximately proportional to the number of frequent items. Typically, we
select the ratio as 1

3
, which is close to the experiments in pumsb star data set.

The value of expected active closed bits c is varying from 1 to 4.

The simulation result in Fig. 9 shows that the percentage of pruning increases
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as c increases. This is because when c is large, the probability that at least
one active holes are caught by closed index is high. Typically, when c = 4,
the simulation curve is close to the real experimental results. Note c = 1 is
the base line where the corresponding curve represents the lower bound of
closed pruning. We believe the closed index method has practical usage in
real applications. The reason is as follows. The number of frequent patterns is
exponentially explosive w.r.t. the number of items. Within the current compu-
tational limit, if the number of items is large, either the maximal length of the
pattern is small or the pattern length is not small but the value of c is reason-
ably large (thus the output closed patterns can be kept in a reasonable size). In
the former case, the effect of closed pruning (using whatever methods) to the
whole computational efficiency is limited; while in the latter case, our study
shows that closed index can achieve considerable improvement. Furthermore,
the closed index approach only involves bit operations, which is very efficient.

4.2.4 Coverage Checking

The task of coverage checking is to check whether an itemset is covered by a
previous output representative pattern. We have made two efforts to improve
the efficiency: First, we use conditional RP-tree to check the coverage; Second,
we use coverage index to speedup the subset checking. The idea of building
a conditional RP-tree for each FP-tree has been used for closed checking in
[10]. Since the FP-tree is conditional (i.e., all the itemsets generated by the
current FP-tree share the same conditional items), it is natural to construct
a conditioned RP-tree associated with the current FP-tree, such that all the
representative patterns stored in the conditional RP-tree share the same con-
ditional items. We can expect that the conditioned RP-tree would be smaller
than the whole RP-tree.

The function coverage checking works as we described in RPglobal algorithm.
The major part of the computational cost is to traverse upword in the RP-tree
to verify whether the query pattern is subsumed. We improve it by adopting
a similar technique used in section 4.2.3. Every node in RP-tree is attached
with a coverage index, which summarizes whose ancestor items. We allocate
M bits for the coverage index, and each item is assigned to one bit. In our
experiments, we set M = 32 (one integer), this is because the coverage check-
ing runs heavily in the whole mining procedure, and we want this part as
efficient as possible. A bit is set to 1 iff the corresponding item appears in
the ancestors. The following rule is used to reduce the comparisons: Let the
coverage index of the query pattern be Q, the coverage index in the node be
N , if Q & N 6= Q, where & is bit-and operation, then the query pattern cannot
be a subset of the ancestors of the node.

There are several differences in the coverage index and closed index: First,
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the bit assignment in closed checking is global (i.e., an item is assigned to the
same bit from scratch to the end), while in coverage checking, it is local, (i.e.,
bits are dynamically reassigned in each RP-tree for the remaining frequent
items). Second, if the number of remaining items is larger than M , we assign
not only bits for the first M items, but also multiple items to one bit by dis-
tributing all items evenly on the M bits. Finally, the closed index is updated
when new itemsets are inserted, while the coverage index of each node is fixed
by all its ancestors.

4.2.5 Item Reordering

We now discuss the item reordering routine on line 16 of the algorithm. This
pruning method is based on the following lemma. Due to the limited space,
we omit the proof.

Lemma 3 Let Pr be a representative pattern, if pattern Pu is covered by Pr,
then for any pattern P , such that O(Pu) ⊆ O(P ) ⊆ O(Pr), Pr covers P .

For example, if itemset {a} is covered by a representative pattern {a, b, c, d}, so
are patterns {a, b},{a, c},{a, d}, {a, b, c}, {a, b, d}, and {a, c, d}, thus all these
patterns can be safely pruned. However, the pruning technique is nontrivial
because the prunable space is embedded in the whole search space, removing
this space would leave the whole search space unconnected.

(a)

{a,d}

{a,c,d}{a,b,e}{a,b,d}{a,b,c}

{a}

{a,e}

{a,d,e}{a,c,e}

{a,c,d,e}{a,b,c,d} {a,b,d,e}{a,b,c,e}

{a,b} {a,c}

{a,b,c,d,e}

{a,c}

{a,e,c}{a,b,d}{a,b,e}{a,b,c}

{a}

{a,d}

{a,c,d}{a,e,d}

{a,e,c,d}{a,b,c,d} {a,b,e,d}{a,b,e,c}

{a,b} {a,e}

{a,b,c,d,e}

(b)

Fig. 10. Reorder items (c,d)

Example 5 Take Fig. 10 as an example. Assume itemset {a, b, c, d} covers
{a}, and {a, b, c, d} has been selected as a representative pattern. According
to Lemma 3, the search space containing {a, b, d}, {a, c}, {a, d}, and {a, c, d}
can be pruned. However, if we remove them, there are several patterns which
contain item e (i.e., {a, b, d, e}, {a, c, d, e}, {a, c, e}, and {a, d, e}) will be un-
reachable. To overcome this problem, we dynamically reorder the search space
as part (b) in Fig. 10, where we search item e first, items c, d will be skipped
under node {a} and {a, b}, but will go back to search space after item e is
considered. The search space within the dashed lines in part (b) of Fig. 10 are
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pruned.

We refer items (c, d) as the set of prunable-items. There will be at most one
prunable-items set directly under one node. If there are two prunable sets,
we have to make choice to select one. For example, if both {a, b, c, d} and
{a, b, c, e} are selected as representative patterns under node a, we know that
both (c, d) and (c, e) can serve as prunable-items set. However, if we reorder all
of them (i.e., (c, d, e)) to the tail part, the itemset {a, c, d, e} are not reachable,
but {a, c, d, e} has not yet been examined for coverage. In this case, we select
the prunable-items set which contains more items in hope to prune more search
space.

4.3 Combining RPglobal and RPlocal

We have developed two algorithms for the pattern compression problem. The
RPglobal method has guaranteed compression bound but is worse on scalabil-
ity, whereas the RPlocal method is efficient but worse on the compression. In
this subsection, we discuss a combined method: RPcombine.

The main idea of RPcombine is to first use RPlocal to get a small subset of
candidate representative patterns, then use RPglobal to find the final results.
To ensure that all the frequent patterns (w.r.t. M) are δ-covered, we need to
choose the parameters for each step carefully.

Assume the quality measures for RPlocal and RPglobal are δl and δg, respec-
tively. Any frequent pattern P must be δl-covered by a candidate representa-
tive pattern Pl, which is further δg-covered by a final representative pattern
Pg. An obvious result from Theorem 1 shows if we choose δl + δg = δ, then P
is guaranteed to be covered by Pg. Here we exploit a better assignment. We
have:

D(P, Pl) = 1 −
|T (Pl)|

|T (P )|
≤ δl, D(Pl, Pg) = 1 −

|T (Pg)|

|T (Pl)|
≤ δg

The constraint given by the problem is

D(P, Pg) = 1 −
|T (Pg)|

|T (P )|
≤ δ

To achieve more compression, we would like the values of δl and δg to be as
large as possible. This implies:

(1 − δl) × (1 − δg) = 1 − δ
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We use λ to control the tradeoff between δl and δg, such that δl = λδ and δg =
(1−λ)δ
1−λδ

. We further discuss the selection of min sup for RPlocal and RPglobal:
Ml and Mg. Since the original compression problem has parameter M and δ,

we have M̂ = (1− δ)×M for representative patterns. The RPlocal step needs
to keep the same min sup for representative patterns. Thus,

Ml =
M̂l

1 − δl

=
M̂

1 − δl

=
(1 − δ)M

1 − λδ

All the frequent patterns(w.r.t. M) are δl-covered in the RPlocal step. To
ensure that they are δ-covered finally, the RPglobal step needs to δg-cover all
the patterns that possibly δl-cover the frequent patterns (w.r.t. M). Thus,

Mg = (1 − δl) × M = (1 − λδ) × M

In conclusion, RPcombine takes three parameters: M, δ, λ. The RPlocal step
uses parameters Ml, δl on the database, and the RPglobal step uses parameters
Mg, δg on the outputs of the first step.

5 Performance Study

We first demonstrate the quality and computational performance using the
benchmark data sets in the frequent itemset mining dataset repository [8], then
show a case study on a real text document data. All the algorithms were
implemented in C++, and all the experiments were conducted on an Intel
Pentium-4 2.6GHz system with 1GB RAM. The system ran Linux with the
2.6.1 kernel and gcc 3.3.2. The methods to be compared are summarized as
follows. In the FPClose method, we generate all the closed frequent patterns
w.r.t. M (we use FPClose package[10], which is the winner of FIMI workshop
2003 [8]). In the RPglobal method, we first use FPClose to get all the closed
frequent itemsets with min sup M̂ = M × (1 − δ), then use RPglobal to find
a set of representative patterns covering all the patterns with min sup M . In
the RPlocal method, we directly compute all the representative patterns from
database.

5.1 Number of Presentative Patterns

The first set of experiments compare three algorithms w.r.t. the number of
output patterns. We select accidents, chess, connect and pumsb star data sets
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Fig. 11. Number of Output Patterns
w.r.t. min sup, Accidents Data Set
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Fig. 12. Number of Output Patterns
w.r.t. min sup, Chess Data Set
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Fig. 13. Number of Output Patterns
w.r.t. min sup, Connect Data Set
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Fig. 14. Number of Output Patterns
w.r.t. min sup, Pumsb star Data Set

[8]. For each data, we vary the value of min sup as the percentage of the num-
ber of total transactions and fix δ = 0.1 (we think it is a reasonably good
compression quality).The results are shown from Fig. 11 to Fig. 14. We have
the following observations: First, both RPglobal and RPlocal are able to find
a subset of representative patterns, which is almost two orders of magnitude
less than the whole collection of the closed patterns; Second, although RPlo-
cal outputs more patterns than RPglobal, the performance of RPlocal is very
close to RPglobal. Almost all the outputs of RPlocal are within two times of
RPglobal. The results of RPglobal are partial in that when minimum support
becomes low, the number of closed patterns grows very fast, the running times
of RPglobal exceed the time limit (30 minutes).

5.2 Running Time

The corresponding running time of the three methods are shown from Fig.
15 to Fig. 18. The times for RPglobal include FPClose procedure. The results
show that RPglobal does not scale well w.r.t. the number of patterns, and is
much slower than RPlocal. Comparing FPClose and RPlocal, we observe that
although RPlocal examines more patterns than FPClose (i.e., RPlocal examines
the patterns with min sup M̂ , while FPClose only examines the patterns with
min sup M), RPlocal runs faster than FPClose, especially when min sup is low.
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Fig. 16. Running Time w.r.t. min sup,
Chess Data Set
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Fig. 17. Running Time w.r.t. min sup,
Connect Data Set
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Fig. 18. Running Time w.r.t. min sup,
Pumsb star Data Set

We further investigate the benefit of closed pruning. Fig. 19 shows the results
on pumsb star data set, with three configurations: FPClose, RPlocal (δ = 0.1)
with and without closed pruning. We observe that even without closed pruning,
RPlocal is more efficient than FPClose. This is because in RPlocal, the number
of representative patterns is much less than the number of closed patterns.
As a result, both the construction and query on RP-trees are more efficient.
We use two integers as closed index and the improvement by applying closed
pruning is significant. When M = 0.04, the closed pruning version runs three
times faster than the version without closed pruning, and four times faster
than FPClose. At that time, the number of frequent items is 173.

5.3 Distribution of Representative Patterns

The distributions of representative patterns w.r.t. pattern lengths and pat-
tern supports are shown from Fig. 20 to Fig. 23. We use accidents data set,
with min sup = 0.4. In order to get a high-level summary of support distri-
butions, we group supports into 10 buckets. The bucket id is computed by
b 10×support

#transactions
c. Fig. 20 shows the distributions w.r.t. the pattern lengths for

three methods: FPClose, RPglobal and RPlocal(δ = 0.1). We observe that the
overall shape of the distributions of RPglobal and RPlocal are similar to the
shape of closed patterns. RPglobal and RPlocal have certain shifts to longer
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Fig. 20. Distribution of Patterns w.r.t.
Pattern Length, Accident Data Set
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Fig. 21. Distribution of Patterns w.r.t.
Support Buckets, Accident Data Set
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Fig. 22. Distribution of Patterns w.r.t.
Pattern Length, Accident Data Set

length because the nature of the compression problem favors larger itemsets.
Fig. 21 compares the distributions (w.r.t. pattern supports) of close itemsets,
maximal itemsets, and representative itemsets by RPglobal and RPlocal(δ =
0.2). While the maximal itemsets catch the boundary supports only, RPglobal
and RPlocal are able to get a reasonable distribution which is similar to the
original closed itemsets. These suggest that both RPglobal and RPlocal achieve
high quality compressions.

We also run RPlocal with different δ from 0.1 to 0.3. Fig. 22 and Fig. 23
show the pattern distributions w.r.t. lengths and supports. As we expected,
the number of representative patterns decreases when the value of δ increases,
because a larger value of δ enables a representative pattern to cover more
patterns. Increasing the value of δ also shifts the distributions of the patterns
to longer and lower support patterns.

5.4 Additional Tests

We examine the performance of RPcombine w.r.t. the different values of λ.
Fig. 24 shows the final number of representative patterns by RPglobal, RPlocal
and RPcombine on chess data set (with M = 0.6, δ = 0.1). Fig. 25 shows the
corresponding running time. The times of RPcombine are the sums of local and
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Fig. 24. Number of Output Patterns
w.r.t λ, Chess Data Set
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Data Set
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Accidents Data Set

global steps. The λ for RPcombine is varied from 0.01 to 0.4. When λ is small
(i.e., 0.01), the local step reports more candidates and the global step takes
more time, but the compression quality is better. The compression quality
degrades as λ increases, the number of representative patterns is even larger
than RPlocal when λ = 0.4. This is because at that time, Mg decreases a lot
in order to guarantee all the original frequent patterns are covered, and δg

also decreases. As a result, the global step needs to cover more pattern with
tighter quality measure. In most applications, we suggest to choose λ = 0.1.

The final experiment is designed to verify the benefit to allow the support of
representative patterns to be beyond of min sup M . We compare the number
of output patterns with three different options: (1) the Beyond case where
the min sup of representative patterns is M̂ ; (2) the Not Beyond case where
the min sup of representative patterns is M ; and (3) maximal patterns with
min sup M . We use the accident data set, varying δ from 0.05 to 0.3, while
fixing M as 0.3. The results in Fig. 26 show that the beyond case gets fewer
number of representative patterns, especially in the case when δ is large, while
the not beyond case has maximal patterns as its lower bound.
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5.5 Document Theme Extraction: A Case Study

Theme discovery uses knowledge about the meaning of words in a text to
identify broad topics covered in a document [15]. One way to find themes
from text document is to extract the frequent patterns of term occurrence.
For example, a frequent pattern of “database management...” indicates that
the document might be related to a collection of database papers, whereas a
frequent pattern like “red cross...” might identify the topic of the documents
as aid and relief. In this case study, we show how to apply our methods to
discover term occurrence patterns efficiently and understand the underlying
text data effectively.

The document collection is constructed by a mixture of documents of four
topics: 386 news articles about Tsunami, 367 research papers about data min-
ing, 350 research papers about bioinformatics, and 347 blog articles about
iPod Nano. A document is broken into sentences as transactions. For all three
algorithms (FPClose, RPglobal and RPlocal), we use min sup as 0.0002. The δ
value for RPglobal and RPlocal is set as 0.5. Since it is not possible to show all
the mining results in the paper, we report a subset of top significant patterns
(Table 1). A pattern’s significance is modeled by a tf -idf scoring function
similar to the Pivoted Normalization weighting based document score [19].
Specifically, given a theme pattern p = w1...wt, the significance is defined by

S(p) =
t

∑

i=1

1 + ln(1 + ln(tfi))

(1 − s) + s dl
avdl

· ln
N + 1

dfi

,

where tfi equals the support of the pattern p and dfi is the inverse document
frequency of word wi in the whole transaction set.

Without considering redudnacy, the top-5 results returned by FPClose only
consist of two valuable themes (themes 1 and 3), and all the others are redun-
dant. RPglobal and RPlocal report 5 significantly different themes. The third
theme appears at 17th (12rd) in RPglobal (RPlocal) results. This is because
both RPglobal and RPlocal allow the frequencies of representative patterns to
be less than min sup, and they can discover more significant patterns w.r.t.
tf -idf score. Since RPglobal and RPlocal use different heuristics, their results
are not identical. However, both of them cover patterns discovered by FPClose
with δ = 0.5.
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Table 2
Top-5 Document Themes

FPClose RPglobal RPlocal

permission make digital permission make digital permission make digital

copy personal grant copy personal grant copy personal grant

without fee distribute without fee distribute without fee distribute

permission make digital thailand authority lack color lcd display

copy personal distribute sufficient refrigerate unit hour battery life

commercial full citation stop corpse rot apple click wheel

database manage database volunteer specialist account thailand authority lack

application mine algorithm firm pricewaterhousecooper sufficient refrigerate unit

keyword work unite nation stop corpse rot

database manage database state department spokesman grow frustrate

mine algorithm keyword comment intend estimate slow process

long military operate whittle down list

database manage database dna test carry tv radio station

application mine algorithm confirm dead bid broke normal

clear misidentification programming broadcast

6 Related Work

Lossless methods have been proposed to reduce the output size of frequent
itemset patterns. [16] developed the concept of closed frequent patterns, and
[6] proposed mining non-derivable frequent itemsets. These kinds of patterns
are concise in the sense that all of the frequent patterns can be derived from
these representations. However, they emphasize too much on the supports of
patterns so that the compression power is limited.

Our work belongs to the family of Lossy compression methods. Previous works
in this direction include maximal patterns [9], error-tolerant patterns [17], δ-
free itemsets [4] and boundary cover sets [1]. Typically, our work is close to
error-tolerant patterns and δ-free itemsets. Our work is different in that we
define a new distance measure and formulate the problem as set-covering. Fur-
thermore, we allow extended (i.e., longer) patterns to represent the compressed
patterns, and it leads to stronger compression.
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7 Discussions

In this section, we discuss several related issues. First, to approximate a collec-
tion of frequent patterns, people always favor the more succinct compression.
However, the explosive output pattern size restricts the application of most
advanced algorithms. The RPlocal method can be used as sampling proce-
dure as we did in RPcombine, since it is efficient and achieves considerable
compression. Second, the compressed pattern sets generated by our method
can be used for queries of finding approximate supports. We can construct
an RP-tree with all the representative patterns. The query process is similar
to the coverage checking, except that in coverage checking, the query pattern
comes with its support, while here, the support is unknown. Among all the
patterns which subsume the query pattern, we report the maximum support
C. The support of the query pattern is bounded in [C, C

1−δ
]. Finally, although

our algorithms are developed for frequent itemset problems, the methodology
can be easily applied on frequent sequential patterns and graph patterns. This
is because our method does not rely on the structure of the patterns, but only
the containment relationship. As long as the mining procedures follow the
pattern growth principle, we can always integrate RPlocal into the depth-first
search.

8 Conclusions

We have considered the problem of compressing frequent patterns. The prob-
lem was shown to be NP-Hard. Several methods have been proposed. The
RPglobal method has theoretical bound, and works well on small collections of
frequent patterns. The RPlocal method is quite efficient, and preserves reason-
able compression quality. We also discuss a combined approach, RPcombine,
to balance the quality and efficiency.
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