
Searching Substructures with Superimposed Distance∗

Xifeng Yan† Feida Zhu† Jiawei Han† Philip S. Yu‡
†Department of Computer Science

University of Illinois at Urbana-Champaign

{xyan, feidazhu, hanj}@cs.uiuc.edu
‡IBM T. J. Watson Research Center

psyu@us.ibm.com

Abstract

Efficient indexing techniques have been developed for
the exact and approximate substructure search in large
scale graph databases. Unfortunately, the retrieval problem
of structures with categorical or geometric distance con-
straints is not solved yet. In this paper, we develop a method
called PIS (Partition-based GraphIndex andSearch) to
support similarity search on substructures with superim-
posed distance constraints. PIS selects discriminative frag-
ments in a query graph and uses an index to prune the
graphs that violate the distance constraints. We identify a
criterion to distinguish the selectivity of fragments in mul-
tiple graphs and develop a partition method to obtain a set
of highly selective fragments, which is able to improve the
pruning performance. Experimental results show that PIS
is effective in processing real graph queries.

1 Introduction

With the increasing volume of graph databases, there is
a strong need for fast graph search systems. Unfortunately,
traditional indexing mechanisms can no longer address
the challenging issues raised by complex graph databases:
Given an exponential number of subgraphs in a complex
structure, we simply do not know what to index and how to
index. Interest has been growing in using unconventional
indexing techniques to tackle the search problem. Previous
studies focused on two kinds of graph search tasks: (1) the
exact substructure (or full structure) search, and (2) the ap-
proximate substructure (or full structure) search. The exact
substructure search finds all of the graphs in a database that

∗ The work was supported in part by the U.S. National Science Foun-
dation NSF IIS-02-09199/IIS-03-8215, and an IBM Faculty Award. Any
opinions, findings, and conclusions or recommendations expressed in this
paper are those of the authors and do not necessarily reflect the views of
the funding agencies.

contain the query structure, while the approximate substruc-
ture search finds inexact matches in the database. Shasha et
al. [12] proposed a path-based approach for the exact sub-
structure search. Yan et al. [16] devised discriminative fre-
quent structures and used them as indexing features. Holder
et al. [7] adopted the minimum description length principle
for the approximate search. Raymond et al. [10] developed
a three-tier algorithm for structure similarity search.

The two search scenarios mentioned so far are mainly
involved with the topological structure of graphs. However,
there are other similarity search problems that are as im-
portant, but which we are unable to handle yet. Let us first
check an example.

(a) 1H-Indene

O

O

OH

(b) Omephine

OH

O

O
OH

H

(c) Digitoxigenin

Figure 1. A Chemical Database

Figure 2. A Query Graph

Example 1 Figure 1 shows a sample 2D chemical dataset
consisting of three molecules. Omephine in Figure 1(b)
is an anticoagulant. Digitoxigenin in Figure 1(c) is well-
known for its strong cardiotonic effect. Figure 2 shows
a query graph. The three sample molecules contain the
same topological substructures as the query graph. How-
ever, some of their edge labels are different from those in
the query graph. We define a mutation distance as the num-
ber of times one has to relabel edges in one graph in order

1

to get another graph. According to this definition, the mu-
tation distance between 1H-Indene in Figure 1(a) and the
query graph is1: we need to mutate one edge label in 1H-
Indene so that it contains exactly the query structure, with
exactly the same labels. If a user wants to find graphs whose
mutation distance from the query graph is less than 2, the
query system should return the first and the third graphs in
Figure 1.

The example above indicates that the substructure search
with superimposed distance constraints (SSSD) is a general
graph search problem. We formulate the SSSD problem as
follows: Given a set of graphsD = {G1, G2, . . . Gn} and
a query graphQ, find all graphsG in D such thatQ is iso-
morphic to a subgraphQ′ of G and the optimal distance
betweenQ andQ′ is less than a thresholdσ. We can also
rephrase the SSSD problem as a constrained graph align-
ment problem: We want to find an alignment of the query
graph in target graphs such that the minimum superimposed
distance betweenQ and its image in the target graphs is less
thanσ.

One solution to this new substructure search problem is
to enumerate all of the isomorphic images ofQ in the tar-
get graphs and check their distance. This brute-force ap-
proach may not work well since it is time-consuming to
check each graph in a large scale database. In this paper,
we develop an algorithm, called PIS (Partition-based Graph
Index andSearch), to tackle the SSSD problem. Our strat-
egy is to first build a fragment-based index on the graph
database, then partition each query graph into highly selec-
tive fragments, use the index to efficiently identify the set
of candidate graphs, and verify each candidate to find all
eligible answers. Our approach has two advantages over
the brute-force method: (1) All operations except the candi-
date verification are only involved with the index structure,
thus avoiding one-by-one subgraph isomorphism computa-
tion for graphs in the database. The isomorphism compu-
tation is performed on the candidate graph set, which is of
a significantly smaller size. (2) The candidate set itself is
identified efficiently by pruning most invalid graphs with
the help of selective fragments and a distance lower bound
introduced in this paper.

We call the index strategy of PISfragment-based in-
dex. Graphs in the database are decomposed into fragments
(probably overlapping) and indexed to facilitate similarity
search. Fragments with the same topology can be indexed
using an R-tree [4, 11] or a metric-based index [6]. We ob-
served that, for many distance measures, the superimposed
distance between a query graph and a target graph is lower-
bounded by the sum of distances between their correspond-
ing indexed non-overlapping fragments.

This lower bound leads to efficient pruning of most in-
valid graphs in the database. A query graph is partitioned
into fragments according to the index structure. Since there

are multiple ways to partition a query graph, it is important
to choose the optimal one that achieves the best pruning per-
formance. We identify the criterion of an optimal partition
that should give a set of non-overlapping fragments with
the highest selectivity. This optimization problem is, as we
will later prove, equivalent in computational complexity to
a well-known NP-hard problem: maximum weighted inde-
pendent set (MWIS). Although theoretical results show that
MWIS does not have any polynomial approximation solu-
tion, the heuristic greedy algorithm we developed works
well for real chemical datasets. We call the overall search
strategypartition-based search.

Our contribution in this study is an examination of a
new search problem in graph databases and the proposal
of a partition-based index and search algorithm. The devel-
opment of our method exposes new database management
challenges in complicated graph databases.

2 Preliminaries

Graphs with attributes are calledlabeled graphs. A
graphG is a subgraph ofG′ if there exists a subgraph iso-
morphism fromG to G′, denoted byG ⊆ G′. G′ is called a
supergraph ofG. The skeleton (without labels) of a graph is
called itsstructureor topology. The definition of subgraph
isomorphism in this paper only considers the structure of a
graph.

If G is a subgraph ofG′ and vice versa, we sayG is
isomorphic toG′, writtenG ∼= G′. If G is a subgraph ofG′

and also has the same label information withG′, we sayG
is a subgraph ofG′ with reserved label information, written
G ⊑ G′.

Q

G

Q'

Figure 3. Superposition

Example 2 Figure 3 shows a superposition between the
query graph in Figure 2 (Q) and the first graph in Figure
1 (G). Q′ is the image ofQ in G. As one can see,Q 6⊑ G
althoughQ ⊆ G.

Subgraph isomorphism only gives the structural compar-
ison between two graphs. The label information is also crit-
ical in determining the characteristics of graphs. Thus, we
need a distance measure to differentiate labeled graphs with

2

the same structure. This kind of distance is termedsuper-
imposed distance, a distance measure applied to two super-
imposed graphs. Here we introduce two commonly used
measures: Mutation Distance (MD) and Linear Mutation
Distance (LD).

Suppose we have two isomorphic labeled graphs,G and
G′. We can build a superposition fromG to G′, which maps
each vertex ofG to a unique vertex inG′. The mutation
distance betweenG andG′ is defined as follows,

MD =
∑

v′=f(v)

D(l(v), l′(v′)) +
∑

e′=f(e)

D(l(e), l′(e′))

whereD is a mutation score matrix,l is a label function,
andf is an isomorphic function,f : V (G) → V (G′). The
mutation score matrix includes the distance score between
a mutation from one label to another label. If the labels are
numeric, a linear distance function may be appropriate for
distance measure, e.g.,

LD =
∑

v′=f(v)

|w(v) − w′(v′)| +
∑

e′=f(e)

|w(e) − w′(e′)|

wherew andw′ are the weight functions ofG andG′.
Since multiple superpositions may exist for two isomor-

phic graphs, we usually select the best superposition that
has the smallest distance.

Definition 1 (Minimum Superimposed Distance) Given
two graphs,Q andG, let M be the set of subgraphs inG
that are isomorphic toQ, M = {Q′|Q′ ⊑ G ∧ Q′ ∼= Q}.
The minimum superimposed distance betweenQ and G is
the minimum distance betweenQ andQ′ in M ,

d(Q,G) = min
Q′∈M

d(Q,Q′), (1)

whered(Q,Q′) is a distance function of two isomorphic
graphsQ andQ′.

Definition 2 (Substructure Search with Superimposed
Distance (SSSD))Given a set of graphsD = {G1, G2,
. . . Gn} and a query graphQ, SSSD is to find allGi ∈ D
such thatd(Q,Gi) ≤ σ.

A naive solution is to scan the whole database and check
whether a target graph has a superposition with a dis-
tance less than the threshold. This solution is not scal-
able. A better solution, which we calltopoPrune, gets rid of
graphs that do not contain the query structure first, and then
checks the remaining candidates to find the qualified graphs.
topoPrune is more efficient than the naive approach. How-
ever, it still suffers huge computational costs since it hasto
enumerate the superpositions of a query graph in a large set
of candidate graphs. If most of the candidate graphs are not
qualified, topoPrune could be very inefficient.

3 Framework of PIS

Besides structure pruning, we can also utilize the super-
imposed distance constraint to prune candidates. In PIS, we
partition a query graphQ into non-overlapping fragments
g1, g2, ..., andgn, and use them to do pruning. If a distance
function satisfies the following inequality,

n∑

i=1

d(gi, G) ≤ d(Q,G), (2)

we can set the lower bound of the superimposed distance
betweenQ andG by the superimposed distance between
gi andG. Whenever

∑n

i=1 d(gi, G) > σ, we can safely
removeG from the answer set. For this kind of pruning,
we only need two operations: (1) enumerate fragments in
the query graph and (2) search the index to calculate the
superimposed distanced(gi, G). We have

d(gi, G) = min
g′⊑G∧g′∼=gi

d(gi, g
′). (3)

Therefore, if we index all of the fragments inG that have the
same topology withgi, we can calculated(gi, G) through
the index directly. This kind of pruning needs to check the
index only, not the original database.

In summary, we are able to use the lower bound given in
Eq. (2) to prune more unqualified graphs by indexing frag-
ments in graph databases. This method consists of two com-
ponents:fragment-based indexandpartition-based search.
We first formalize the definition of graph partition.

Definition 3 (Graph Partition) Given a graph Q =
(V,E), a partition of G is a set of subgraphs
{g1, g2, . . . , gn} such thatV (gi) ⊆ V andV (gi)∩V (gj) =
∅ for anyi 6= j.

Interestingly, many distance functions hold the inequal-
ity in Eq. (2) for a given partition. Both distances we men-
tioned, mutation distance and linear mutation distance, have
this inequality. We leave the proof to readers.

In Eq. (3), if a fragmentg is indexed, then all of the frag-
ments having the same topology asg should be indexed,
since the right side of Eq. (3) has to access all of the super-
positions ofg in G.

Definition 4 (Structural Equivalence Class) Labeled
graphsG and G′ belong to the same equivalence class if
and only ifG ∼= G′. The structural equivalence class ofG
is written[G].

We formulate the framework of PIS (partition-based
graph index and search) in the following three steps.

1. Fragment-based Index: We select a set of structures
as indexing features according to the criteria proposed

3

in GraphGrep [12] or gIndex [16]. For each structuref
(f is a bare structure without any label), we enumerate
all of the fragments in the database that belong to[f]
and build an index in which a range queryd(g, g′) ≤ σ
can be evaluated efficiently, whereg andg′ are labeled
graphs and their skeleton isf .

2. Partition-based Search: For a given query graphQ,
we partition it into a set of indexed non-overlapping
fragments,g1, g2, . . . , gn. For each fragmentgi, we
find its equivalence class in the index and submit a
range queryd(gi, g

′) ≤ σ to find all of the fragments
g′ in the database that meet the superimposed distance
threshold. We then sum up their distance to obtain
the lower bound ofd(Q,G) for each graphG in the
database,

n∑

i=1

d(gi, G) =
n∑

i=1

min
g′⊑G∧g′∼=gi

d(gi, g
′). (4)

If G does not have any subgraphg′ such thatg′ ∼= gi,
we dropG from the answer set (structure violation).
If the lower bound in Eq. (4) is greater thanσ, we
also dropG from the answer set (superimposed dis-
tance violation). The resultingcandidate answer set,
CQ, will include all of the graphs that pass the filter-
ing: CQ = {G|G ∈ D ∧

∑n

i=1 d(gi, G) ≤ σ}.

3. Candidate Verification: We calculate the real super-
imposed distance betweenQ and the candidate graphs
returned in the second step, and then remove graphs
that do not satisfy the distance threshold.

4 Fragment-based Index

In this section, we present the details of constructing a
fragment-based index, the first step in the framework of PIS.
The index construction has two steps. In the first step, we
select structures as features. These structures do not include
label information. In the second step, any fragment in the
database that has the selected structure is identified and in-
dexed. That is, for each selected structuref , we enumerate
all of the fragments in the graph database that belong to[f].

Figure 4 illustrates the procedure of inserting a selected
fragmentg into the index. The structure ofg is first trans-
formed into a sequences(g), which is indexed in a hash ta-
ble. We use a canonical representation ofg that can translate
a graph into a unique sequence. If two graphs belong to the
same class, they will share the same canonical representa-
tion. When the hashing is performed ong, we only consider
the canonical representation of its structure, not its labels.
By doing so, we can group different fragments according to
their structural equivalence class. There are several forms

scan the database, for each

fragment g, if the structure

of g is in T

insert s(g) to H

[
g
1
]

Is s(g) indexed ?

[
g
2
]
 [
g
n
]
...

create an index

of [g]

insert g to the

 index of [g]

No

Yes

select a set of structures (T)

Figure 4. Index Construction

of canonical representation available. A naive one is to con-
catenate rows or columns of the adjacency matrix of a graph
into an integer sequence and use the minimum sequence as
the canonical representation for this graph. There are more
sophisticated canonical representations such as DFS coding
[15]. Overall, we can always find a representation function
s : G 7→ S such that ifG ∼= G′, s(G) = s(G′) and if
G 6∼= G′, s(G) 6= s(G′), whereS is a sequence space.

Using a canonical representation system, we can quickly
identify the class of a graph by checking its canonical rep-
resentation. The canonical representations are indexed ina
hash tableH, as shown in Figure 5.

s(
g
1
)

s(
g
2
)

g
1

g
2

[
g
1
]

[
g
2
]

Hash Table
 Trie
, R-tree or

 Metric-based Index

H

Figure 5. The Index Components of PIS

For each equivalence class (every hash table entry), we
build an index structure to facilitate range queriesd(g, g′) ≤
σ. There are various kinds of indexing structures available

4

for this task. The selection of index structure is determined
by the type of distance function. For the mutation distance,
we can use a trie to accommodate the sequential represen-
tations of the labeled graphs. For linear mutation distance,
we can use an R-tree to do the range query.

In summary, for a fragmentg in the database, when hash-
ing is performed, the label information ofg is ignored, i.e,
only the skeleton structure is considered. Wheng is inserted
into the index of[g], its label information is included.

Example 3 LetD be a graph database where graphs have
weighted edges. A user applies a linear mutation distance,
LD(G,G′) =

∑
e′=f(e′) |w(e) − w′(e′)|, to measure the

superimposed distance inD. Assume we index all of the
fragments having the same structure withg2 shown in Fig-
ure 5. For any fragmentg′ in D, if g′ ∼= g2, we can trans-
form g′ into a feature vector in a three dimensional space,
where each dimension records the weight of one of its edges.
We construct an R-tree to indexg′. If a query fragmentg is
isomorphic tog2, we submit a range query to that R-tree to
find all of the vectorsg′ such thatLD(g, g′) ≤ σ.

5 Partition-based Search

Using the fragment-based index, we develop a search
strategy to prune candidates for a given query graph. In or-
der to apply the lower bound in Eq. (2), we need to partition
the query graph into several non-overlapping indexed frag-
ments. Since the index is built beforehand, a query graph
may be partitioned in more than one way. Thus, we have to
select an optimal partition that can achieve the best pruning
performance. Let us first check an example.

Example 4 Suppose we index all of the edges in the sample
database (Figure 1) and want to find the graphs whose mu-
tation distance with the query graph (Figure 2) is less than
2. If we partition the query graph into single edges, we will
not be able to filter any graph since

∑10
i=1 d(gi, G) = 0,

wheregi is an edge in the query graph (the query graph has
10 edges). In contrast, if we select a six-carbon ring frag-
ment, we may successfully prune the graph in Figure 1(b)
since its mutation distance with this fragment is3, greater
than the threshold.

As shown in the above example, different partitions may
have different pruning power. The question is how to find
an optimal partition. Intuitively, a partition is optimal if it
generates the highest lower bound ford(Q,G) such that, if
the lower bound is greater than the thresholdσ, G can be
immediately discarded from the candidate set. The optimal
partition of a query graphQ for SSSD on a single graphG
is given by:

Popt(Q,G) = arg max
P

n∑

i=1

d(gi, G) (5)

whereP = {g1, g2, . . . , gn} is a partition ofQ.
However, when we are given a large graph database, it is

simply unaffordable to find an optimal partition between the
query graph and each graph in the database. As a tradeoff,
we need to find a partition in the query graph that is gener-
ally good for all of the graphs in the database, in the sense
that it can simultaneously prune away most invalid graphs
and quickly give us a small candidate set for further verifi-
cation. In other words, we need a partition whose fragments
have the greatest pruning power, which we measure by the
notion ofselectivitydefined as follows.

Definition 5 (Selectivity) Given a graph databaseD =
{G1, G2, . . . , Gn} and a fragmentg, if [g] is indexed, the
selectivity ofg is defined by its average minimum dis-
tance betweeng and the graphs in the database, written
asw(g) =

∑ n
i=1

d(g,Gi)

n
.

The selectivity can roughly measure the distance be-
tween a fragment and an average graph in the database.
When g 6⊆ G, d(g,G) = ∞. In order to avoid the sin-
gularity of w(g), we set the cutoff value ofd(g,G) to the
maximum distance thresholdσ. The closerw(g) to σ, the
more selective the fragmentg. Using the selectivity as a
weight function, we are able to define an optimal parti-
tion of a query graphQ for a large graph database with a
fragment-based indexI,

Popt(Q,I) = arg max
P

n∑

i=1

w(gi) (6)

whereP = {g1, g2, . . . , gn} is a partition ofQ. We call this
optimization problemthe index-based partition problem.

w
1

w
2

w
3

w
5

w
7

w
6

w
4

Figure 6. Overlapping-Relation Graph

The Index-based partition problem has a connection to
the Maximum Weighted Independent Set problem (MWIS
[1]) . Let g1, g2, . . . , gm be the indexed fragments inQ.
We construct anoverlapping-relation graph̃Q to model the
overlapping relation among{gi}: each fragmentgi is rep-
resented as a nodevi in Q̃; and ifgi andgj overlap, we con-
nectvi andvj . Each vertexvi is associated with a weight
wi = d(gi, G) equal to the selectivity ofgi. Figure 6 depicts

5

an overlapping-relation graph that has seven vertices, corre-
sponding to seven fragments in a query graph. The Index-
based Partition is equivalent to finding an independent set
with maximum weights iñQ.

Definition 6 (Maximum Weighted Independent Set)A
finite Graph G=(V, E) and a function w:V 7→ R+. A max-
imum weighted independent set is a subsetSopt ⊆ V such
that

Sopt = arg max
S

∑

v∈S

w(v), (7)

where S is an independent set ofG, i.e. ∀v, w,∈ S,
(v, w) 6∈ E.

A general MWIS problem is NP-hard, as can be shown
by an immediate reduction from MIS (Maximum Indepen-
dent Set), which is a well-known NP-hard problem [3]. Un-
fortunately, the Index-based Partition problem has the same
hardness.

Theorem 1 Index-based Partition is NP-hard.

Proof. We prove the theorem by showing that Index-based
Partition is at least as hard as MWIS. We give polynomial-
time reduction from an instance of MWIS to an instance
of Index-based Partition. Let an instance,(I,Q), of index-
based partition be an index structureI and a query graphQ.
Let an instance,(G,w), of MWIS be a graphG = (V,E)
with a weight functionw : V 7→ R+.

Given an instance(G,w) of MWIS, we construct an in-
stance(I,Q) of Index-based Partition as follows:(assuming
G contains no self-loops, andit’s easy to extend the argu-
ment to cases containing self-loops) For each vertexvi ∈
V (G), 1 ≤ i ≤ |V (G)|, let all the neighbors ofvi be
{v1

i , v2
i , . . . , vni

i }. Replacevi with a ring of ni vertices
Ring(vi) = {u1, u2, . . . , uni

}, addi self-loops to each ver-
tex on this ring, and replace each edgeviv

j
i with a new edge

ujv
j
i , 1 ≤ j ≤ ni. Do this to all vertices ofG and we thus

obtain our query graphQ. Each ring,Ring(vi), together
with all its adjacent edges now forms a subgraphsub(vi) of
unique topology inQ. We then construct the indexI with
eachsub(vi) as a key[sub(vi)] and setw(sub(vi)), the se-
lectivity of sub(vi), equal tow(vi), the weight of vertexvi,
in the original MWIS instance. Run an algorithm for Index-
based Partition on this constructed instance(I,Q) and let
the solution beP . Observe that, constrained by the indexI,
P must be a set of subgraphs as described, i.e. each is a ring
whose vertices all have the same number of self-loops and
each vertex has one ”dangling” adjacent edge. GivenP , we
obtain a solutionS to the original MWIS problem as fol-
lows: S is initially empty. For each subgraph inP , if each
vertex on the ring hasi self-loops, addvi to S. It’s easy
to verify that this is by construction a bijection between the

set of solutions to MWIS and the set of solutions to Index-
based Partition, because every maximum weight indepen-
dent set induces a unique partition of maximum weight and
every partition of maximum weight uniquely corresponds to
a maximum weight independent set.

Since MWIS is NP-hard and Index-based Partition is at
least as hard as MWIS, Index-based Partition is also NP-
hard.

Figure 6 illustrates the connection between an optimal
partition and MWIS. In our problem setting, we often have
knowledge about the size of a partition, i.e., the maximum
independent set size iñQ.

Lemma 1 Given a query graphQ, letQ̃ be the correspond-
ing overlapping-relation graph. LetSopt be the maximum
weighted independent set ofQ̃, then|Sopt| ≤ |Q|/l, where
l is the minimum indexed fragment size.

Assume the weighted graph̃Q = (Ṽ , Ẽ) is given in a stan-
dard adjacency list representation and letLv be the linked
list of Ṽ . Algorithm 1 shows a greedy algorithm to solve
MWIS. At each iteration,Greedy() selects a vertex with
the maximum weight inLv and removes all of its adjacent
vertices fromLv. This process is repeated untilLv becomes
empty.

Algorithm 1 Greedy

Input: A graphQ̃ = (Ṽ , Ẽ) and a functionw : Ṽ 7→ R.
Output: An independent setS.

1: letS ← ∅;
2: while Lv 6= ∅ do
3: scanLv and findv with maximumw(v);
4: S ← S ∪ {v};
5: removev and all neighbors ofv from Lv;
6: return S;

w
1
 w
3
w
5
 w
7
w
6
w
4
 w
2

Figure 7. Greedy Selection

Example 5 Figure 7 shows a running example of
Greedy(). Suppose the weights of vertices have the fol-
lowing order,w4 ≥ w6 ≥ w5 ≥ w1 ≥ w7 ≥ w2 ≥ w3.
Greedy() choosew4, w5, andw2 as a solution.

The result returned byGreedy() may not be optimal. We
use the optimality ratio, defined byw(S)

w(Sopt)
, to measure the

6

quality of a returned independent set in comparison with an
optimal solution.

Theorem 2 Given a graphQ̃ = (Ṽ , Ẽ), Greedy() runs
in O(cn) time and has an optimality ratio of1/c, where
n = |Ṽ | andc = arg maxS |S|, S is an independent set of
Q̃,

In Theorem 2,c is the maximum independent set size of
Q̃, which is also the maximum partition size ofQ. Accord-
ing to Lemma 1,c ≤ |Q|/l, where|Q| is the query graph
size andl is the minimum indexed fragment size. In prac-
tice, we always findc to be a small constant.

We can further improveGreedy() so that a⌈c/k⌉ opti-
mality ratio can be guaranteed. Instead of selecting a ver-
tex with the maximum weight, we select amaximum in-
dependentk-set, a set ofk vertices that are not adjacent
and whose sum of weights is maximum among all indepen-
dent k-sets. The maximum independentk-set is allowed
to have less thank vertices. In each iteration, we select a
maximum independentk-set and remove all the neighbors
of its vertices inQ̃. Since we have to enumerate all in-
dependentk-sets inn vertices, the new algorithm, called
EnhancedGreedy(k), runs inO(cknk).

Theorem 3 Given a graph Q̃ = (Ṽ , Ẽ), Enhanced
Greedy(k) achieves a guaranteed optimality ratio of⌈c/k⌉

in O(cknk) time, wheren = |Ṽ |, c = argmaxS |S|, S is an
independent set of̃Q, and1 ≤ k ≤ |Ṽ |.

Theoretically,EnhancedGreedy(k) has a better opti-
mality ratio thanGreedy() in the worst case, though it
is very slow whenk is large. However, we found that
EnhancedGreedy(k) (k is set at2) has comparable perfor-
mance withGreedy() in real datasets, indicatingGreedy()
actually works well on average. Theorems 2 and 3 also in-
dicate that if we can increase the size of the smallest in-
dexed fragments, we can improve the optimality ratio in the
worst case. Therefore, we prefer indexing larger fragments.
Furthermore, larger fragments are usually more selective
than small ones. Unfortunately, the number of fragments
increases exponentially with their size. In practice, we have
to make a tradeoff.

6 Implementation

In this section, we outline our partition-based graph
search method in Algorithm 2.

We denote the candidate graph set byCQ for a given
query graphQ and the set of indexed fragments inQ by F .
F may contain many overlapping fragments inQ. In the
first step, it enumerates the indexed fragments in a query

Algorithm 2 Partition-based Graph Search

Input: Graph databaseD = {G1, . . . , Gn},
Query graphQ,
Maximum distance thresholdσ.

Output: Candidate answer setCQ.

1: CQ ← D;
2: F ← ∅;
3: for each fragmentg ⊑ Q and[g] is indexeddo
4: F ← F ∪ {g};
5: remove fragmentsg from F if w(g) ≤ ǫ;
6: for each fragmentg ∈ F do
7: calculateg’s canonical label,s(g);
8: locate the index structureI pointed bys(g);
9: submit a range queryd(g, g′) ≤ σ to I;
10: T ← ∅;
11: for eachpair 〈g′, G〉 s.t.d(g, g′) ≤ σ do
12: if G ∈ T then
13: d(g,G) ← min(d(g,G), d(g, g′));
14: else
15: d(g,G) ← d(g, g′);
16: T ← T ∪ {G};
17: CQ ← CQ ∩ T ;

18: w(g) ←
∑

G∈T
d(g,G)

n
+ n−|T |

n
× σ;

19: construct an overlapping relation graph forQ;
20: select a partitionP according toGreedy();
21: for eachG ∈ CQ do
22: if

∑
g∈P d(g,G) > σ then

23: CQ ← CQ \ {G};
24: return ;

graphQ (Lines 3–4). On Line 5, we drop all of the frag-
ments whose selectivity is less thanǫ. Since they are con-
tained nearly by all graphs in the database, these fragments
do not have pruning capability. We may tune the value ofǫ
to maximize the performance.

For each fragment inF , we submit a range query to find
all of the graphs whose distance with that fragment is less
than or equal to the maximum distance threshold (Lines 7–
17). The range query will be answered by the corresponding
index structure such as trie, R-tree, or metric-based index.
Line 17 eliminates the graphs that do not contain a fragment
in Q or the graphs whose superimposed distance with that
fragment is greater thanσ. The intersection operation in
Line 17 will retain those qualified graphs.

Line 18 computes the selectivity of each fragment. We
note that there are(n − |T |) graphs that do not contain
the structure ofg (or whose superimposed distance withg
is greater thanσ), and each of them will contributeσ/n
to w(g) according to Definition 5. Lines 19–20 construct
an overlapping relation graph and find a partition through

7

the Greedy() algorithm. The resulting partition is used
to prune graphs that do not satisfy the minimum distance
threshold (Lines 21–23).

In our implementation, we do not store real graphs in
the index. Instead, we assign a unique graph identifier (an
integer) to each graph in the database. Thus,〈g′, G〉 (Line
11) actually is a pair of a fragment identifier and a graph
identifier. Algorithm 2 will return an identifier list. Overall,
Algorithm 2 does not directly access the original graphs in
the database.

7 Experimental Results

In this section, we perform an empirical study to evaluate
the efficiency of PIS. The performance of PIS is compared
with topoPrune, the structure pruning algorithm introduced
in Section 2. We demonstrate that PIS can substantially im-
prove search efficiency in real graph databases.

The real dataset is from an AIDS antiviral screen
database containing the structures of chemical compounds.
This dataset is available on the website of the Develop-
mental Therapeutics Program (NCI/NIH)1. In this dataset,
thousands of compounds have been checked for evidence
of anti-HIV activity. The dataset has around 44,000 struc-
tures.

We build topoPrune and PIS based on the gIndex al-
gorithm [16]. gIndex first mines frequent structures and
then retains discriminative ones as indexing features. Other
kinds of features can also be used in PIS. For example, PIS
can take paths [12] as features to build the index. topoPrune
and PIS are implemented in C++ with standard template li-
brary. All of the experiments are done on a 2.5GHZ, 1GB-
memory, Intel Xeon PC running Fedora 2.0.

The test dataset consists of10, 000 graphs that are ran-
domly drawn from the AIDS screen database. These graphs
have 25 nodes and 27 edges on average. The maximum
one has 214 nodes and 217 edges in total. Note that in
this dataset most of the atoms are carbons and most of the
edges are carbon-carbon bonds. This characteristic makes
the substructure search very challenging. We use the edge
mutation distance to define the superimposed distance be-
tween two isomorphic graphs. The distance is the number
of edges whose labels are mismatched when we superim-
pose the query graph to a target graph. We select around
2, 000 fragments in this dataset as indexing features, which
are grouped together according to their structural equiva-
lence class. Fragments belonging to the same class are put
in a trie after they are sequentialized.

The query graphs are directly sampled from the database
and are grouped together according to their size. We denote
a query set byQm, wherem is the query graph size. For

1http://dtpsearch.ncifcrf.gov/FTP/AIDO99SD.BIN

example, if the graphs in a query set have 20 edges each, the
query set is writtenQ20. Different from the experimental
setting in [16], the edges in our dataset are assigned with
edge labels, such as single bond, double bond, and so on.
We ignore vertex labels in this test in order to make the
problem hard. The queries under examination are “finding
graphs in the database that contain the query structure and
have at mostσ mismatched edge labels”.

104

103

102

10

1
Q>5kQ5kQ3kQ1.5kQ750Q<300

of

 c
an

di
da

te
 g

ra
ph

s

query subset

topoPrune
PIS σ=4
PIS σ=2
PIS σ=1

Figure 8. Structure Query with 16 edges

Figure 8 depicts the performance of topoPrune and PIS
for the query setQ16. For a given query, we write the num-
ber of candidate graphs returned by topoPrune asYt and
that returned by PIS asYp. We divide the query graphs into
6 groups based on the value ofYt: 0 ≤ Yt < 300, 300 ≤
Yt < 750, 750 ≤ Yt < 1, 500, 1, 500 ≤ Yt < 3, 000,
3, 000 ≤ Yt < 5, 000, and5, 000 ≤ Yt ≤ 10, 000. These
six groups are written asQ<300, Q750, Q1.5k, Q3k, Q5k,
andQ>5k. In each group, we averageYt and its counter-
partYp. The X axis shows the six groups in an order. The
Y axis shows the average number of candidate graphs in
each group. A better algorithm should filter as many graphs
as possible before performing real superimposed distance
computation. We plot the performance of PIS with different
superimposed distance thresholds (σ). The performance of
topoPrune will not change with the distance threshold since
it only applies structure pruning.

Figure 8 demonstrates that PIS outperforms topoPrune
up to 100 times. We depict the candidate graph reduction
ratio Yt

Yp
in Figure 9. We can see that there is a huge re-

duction in the number of candidate graphs returned by PIS
when topoPrune returns less than1, 000 candidates. The re-
duction ratio gradually decreases when more graphs contain
the query structure. In the query setQ>5k, the reduction ra-
tio is down to300% whenσ = 1 and150% whenσ = 4.

Figure 10 depicts the candidate graph reduction ratio of
PIS for the query setQ24. Similar performance patterns
show in this query set. The pruning process in PIS takes
less than 1 second per query, which is negligible compared
to the result verification cost.

8

102

10

1
Q>5kQ5kQ3kQ1.5kQ750Q<300

re
du

ct
io

n
ra

tio

query subset

PIS σ=1
PIS σ=2
PIS σ=4

Figure 9. Reduction: PIS over topoPrune

102

10

1
Q>5kQ5kQ3kQ1.5kQ750Q<300

re
du

ct
io

n
ra

tio

query subset

PIS σ=1
PIS σ=3
PIS σ=5

Figure 10. Structure Query with 24 edges

Next, we check the sensitivity of the cutoff setting in the
selectivity computation. In the previous experiments, we
setd(g,G) = σ, wheng 6⊆ G or d(g,G) > σ. This setting
seems to be ad hoc. However, it can be justified through the
following experiments. Suppose the cutoff value ofd(g,G)
is set toλσ (0 ≤ λ). We vary the value ofλ. If λ ≫
1, the selectivity ofg turns out to be proportional to the
number of graphs that do not containg; Figure 11 shows the
pruning performance for the query setQ16 with the distance
constraint,σ = 2.

According to Figure 11, we find that the pruning per-
formance descends whenλ < 1. In contrast, there is no
performance change whenλ > 1. The two curves ofλ = 1
andλ = 2 are completely overlapping, indicating that the
pruning is not sensitive to the setting ofλ when it is greater
than 1.

We then test the pruning performance with varying sizes
of maximum indexed fragments, from4 edges to6 edges.
The results are depicted in Figure 12. As discussed in Sec-
tion 5, the pruning performance will improve if we index
larger fragments, since larger fragments are not only more
selective, but also result in smaller partition sizes. In this
case, the greedy partition algorithm has a better bound in
comparison with the optimal one.

102

10

1
Q>5kQ5kQ3kQ1.5kQ750Q<300

re
du

ct
io

n
ra

tio

query subset

PIS λ=0.5
PIS λ=1
PIS λ=2

Figure 11. Cutoff Value Sensitivity

102

10

1
Q>5kQ5kQ3kQ1.5kQ750Q<300

re
du

ct
io

n
ra

tio

query subset

PIS size=4
PIS size=5
PIS size=6

Figure 12. Performance vs. Fragment Size

8 Related Work

Structure search including similarity search has been
studied in several fields. Shasha et al. [12] proposed a path-
based approach for the exact substructure search. Yan et
al. [16] devised discriminative frequent structures and used
them as indexing features to improve search performance.
Holder et al. [7] adopted the minimum description length
principle for the approximate search. Raymond et al. [10]
developed a three-tier algorithm for full structure similarity
search, which became a commercial tool in Pfizer. Funk et
al. studied how to build a 3D model search engine using
spherical harmonics [2]. For 3D structure comparison and
protein structure superposition, efficient algorithms such as
geometric hash [14], DALI [8], and LOCK [13] were de-
veloped. However, these methods mainly focus on align-
ing 3D points along a sequential skeleton (protein primary
structure), not the general SSSD problem that we examined
in this paper.

The initial work on substructure similarity search was
done by Hagadone [5]. He applied vertex and edge labels to
screening. Messmer and Bunke [9] studied the reverse sub-
structure similarity search problem in pattern recognition.
Our recent work [17] accessed the substructure similarity

9

problem based on the number of allowable missing edges,
instead of the SSSD problem studied in this paper.

9 Conclusions

In this paper, we proposed a new graph search problem
that has additional similarity requirements for the categor-
ical or geometric attributes associated with graphs. Exist-
ing algorithms are unable to process this new search re-
quest efficiently. Thus, we proposed a novel strategy that
selects “discriminative” fragments in a query graph and uses
an index to find graphs that contain isomorphic subgraphs
to these fragments while the overall distance is retained
within a given threshold. We developed two components,
fragment-based index and partition-based search, to imple-
ment this strategy. We also identified a criterion to dis-
tinguish the selectivity of different fragments and demon-
strated that a good partition should have a set of highly
selective non-overlapping fragments. Surprisingly, we can
transform this partition selection problem to the well-known
maximum weighted independent set problem (MWIS). Al-
though MWIS does not have a polynomial-time solution,
we showed that a greedy solution works well for improving
search efficiency in real datasets.

References

[1] C. Bron and J. Kerbosch. Algorithm 457: Finding all
cliques of an undirected graph.Comm. of the ACM,
16:575–577, 1973.

[2] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. Hal-
derman, D. Dobkin, and D. Jacobs. A search engine
for 3d models.ACM Trans. on Graphics, 22:83–105,
2003.

[3] M. Garey and D. Johnson.Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. Free-
man & Co., New York, 1979.

[4] A. Guttman. R-trees: a dynamic index structure for
spatial searching. InProc. 1984 ACM Int. Conf. on
Management of Data (SIGMOD’84), pages 47 – 57,
1984.

[5] T. Hagadone. Molecular substructure similarity
searching: efficient retrieval in two-dimensional struc-
ture databases.J. Chem. Inf. Comput. Sci., 32:515–
521, 1992.

[6] G. Hjaltason and H. Samet. Index-driven similarity
search in metric spaces. InACM Trans. on Database
Systems (TODS), pages 517 – 580, 2003.

[7] L. Holder, D. Cook, and S. Djoko. Substructure
discovery in the subdue system. InProc. AAAI94
Workshop on Knowledge Discovery in Databases
(KDD94), page 169 180, 1994.

[8] L. Holm and C. Sander. Protein structure comparison
by alignment of distance matrices.J. of Molecular
Biology, 233:123–138, 1993.

[9] B. Messmer and H. Bunke. A new algorithm for error-
tolerant subgraph isomorphism detection.IEEE Trans.
on Pattern Analysis and Machine Intelligence, 20:493
– 504, 1998.

[10] J. Raymond, E. Gardiner, and P. Willett. Rascal: Cal-
culation of graph similarity using maximum common
edge subgraphs.The Computer Journal, 45:631–644,
2002.

[11] T. Sellis, N. Roussopoulos, and C. Faloutsos. The
R+-Tree: A dynamic index for multi-dimensional ob-
jects. InProc. 1987 Int. Conf. on Very Large Data
Bases (VLDB’87), pages 3–11, 1987.

[12] D. Shasha, J. Wang, and R. Giugno. Algorithmics
and applications of tree and graph searching. InProc.
21th ACM Symp. on Principles of Database Systems
(PODS’02), pages 39–52, 2002.

[13] A. Singh and D. Brutlag. Hierarchical protein struc-
ture superposition using both secondary structure and
atomic representations. InProc. 5th Int. Conf. on In-
telligent Systems for Molecular Biology (ISMB’97),
pages 284 – 293, 1997.

[14] H. Wolfson and I. Rigoutsos. Geometric hashing: An
introduction. IEEE Computational Science and Engi-
neering, 4:10–21, 1997.

[15] X. Yan and J. Han. gSpan: Graph-based substructure
pattern mining. InProc. 2002 Int. Conf. on Data Min-
ing (ICDM’02), pages 721–724, 2002.

[16] X. Yan, P. Yu, and J. Han. Graph indexing: A frequent
structure-based approach. InProc. 2004 ACM Int.
Conf. on Management of Data (SIGMOD’04), pages
335 – 346, 2004.

[17] X. Yan, P. Yu, and J. Han. Substructure similarity
search in graph databases. InProc. 2005 ACM Int.
Conf. on Management of Data (SIGMOD’05), pages
766 – 777, 2005.

10

