Searching Substructures with Superimposed Distance

Xifeng Yan' Feida Zhti Jiawei Han Philip S. YU
TDepartment of Computer Science
University of lllinois at Urbana-Champaign
{xyan, feidazhu, hagf@cs.uiuc.edu
{IBM T. J. Watson Research Center
psyu@us.ibm.com

Abstract contain the query structure, while the approximate substru
ture search finds inexact matches in the database. Shasha et
Efficient indexing techniques have been developed foral. [12] proposed a path-based approach for the exact sub-
the exact and approximate substructure search in large structure search. Yan et al. [16] devised discriminatiee fr
scale graph databases. Unfortunately, the retrieval pgoll ~ quent structures and used them as indexing features. Holder
of structures with categorical or geometric distance con- et al. [7] adopted the minimum description length principle
straints is not solved yet. In this paper, we develop a methodfor the approximate search. Raymond et al. [10] developed
called PIS Partition-based Graphindex andSearch) to a three-tier algorithm for structure similarity search.
support similarity search on substructures with superim- The two search scenarios mentioned so far are mainly
posed distance constraints. PIS selects discriminatag-fr involved with the topological structure of graphs. However
ments in a query graph and uses an index to prune thethere are other similarity search problems that are as im-
graphs that violate the distance constraints. We identify a portant, but which we are unable to handle yet. Let us first
criterion to distinguish the selectivity of fragments inlmu check an example.
tiple graphs and develop a partition method to obtain a set
of highly selective fragments, which is able to improve the
pruning performance. Experimental results show that PIS
is effective in processing real graph queries. 3

. (a) 1H-Indene (b) Omephine (c) Digitoxigenin
1 Introduction

Figure 1. A Chemical Database
With the increasing volume of graph databases, there is

a strong need for fast graph search systems. Unfortunately,

traditional indexing mechanisms can no longer address O@

the challenging issues raised by complex graph databases:

Given an exponential nhumber of subgraphs in a complex

structure, we simply do not know what to index and how to Figure 2. A Query Graph

index. Interest has been growing in using unconventional

indexing techniques to tackle the search problem. Previous i)

studies focused on two kinds of graph search tasks: (1) theEx@mple 1 Figure 1 shows a sample 2D chemical dataset
exact substructure (or full structure) search, and (2) fhe a CONSisting of three molecules. Omephine in Figure 1(b)
proximate substructure (or full structure) search. Theexa IS @n anticoagulant. Digitoxigenin in Figure 1(c) is well-

substructure search finds all of the graphs in a database thdf"oWwn for its strong cardiotonic effect. Figure 2 shows
a query graph. The three sample molecules contain the
’.‘ The work was supported in part by the U.S. National Scienaso same topo|0gica| substructures as the query graph_ How-
dation NSF 1S-02-09199/11S-03-8215, and an IBM Facultyakd: Any — ayer some of their edge labels are different from those in
opinions, findings, and conclusions or recommendations egptkin this . . .
paper are those of the authors and do not necessarily refesigws of the query graph. We define a mutation distance as the num-

the funding agencies. ber of times one has to relabel edges in one graph in order

to get another graph. According to this definition, the mu- are multiple ways to partition a query graph, it is important
tation distance between 1H-Indene in Figure 1(a) and the to choose the optimal one that achieves the best pruning per-
query graph isl: we need to mutate one edge label in 1H- formance. We identify the criterion of an optimal partition
Indene so that it contains exactly the query structure, with that should give a set of non-overlapping fragments with
exactly the same labels. If a user wants to find graphs whosethe highest selectivity. This optimization problem is, a&s w
mutation distance from the query graph is less than 2, the will later prove, equivalent in computational complexity t
query system should return the first and the third graphs in a well-known NP-hard problem: maximum weighted inde-
Figure 1. pendent set (MWIS). Although theoretical results show that

MWIS does not have any polynomial approximation solu-

The example above indicates that the substructure searclvon the heuristic greedy algorithm we developed works
with superimposed distance constraints (SSSD) is a generay || for real chemical datasets. We call the overall search
graph search problem. We formulate the SSSD problem ASstrategypartition-based search

follows: Given a set of graph® = {G1, G, ... G} and Our contribution in this study is an examination of a

aquer:y gtrapI"Q,E)ind all qraprSG igﬁ]SUChcha?diszso' new search problem in graph databases and the proposal
morphic to a subgrapl)’ of G and the optimal distance of a partition-based index and search algorithm. The devel-

L
between) and @' is less than a threshold. We can also ._opment of our method exposes new database management
rephrase the SSSD problem as a constrained graph align-

ment problem: We want to find an alignment of the query challenges in complicated graph databases.
graph in target graphs such that the minimum superimposed o)
distance betweef? and its image in the target graphsisless 2 Preliminaries

thano.
One solution to this new substructure search problemis Graphs with attributes are callddbeled graphs A
to enumerate all of the isomorphic images(pin the tar- graphG is a subgraph of” if there exists a subgraph iso-

get graphs and check their distance. This brute-force ap-morphism fromG to G/, denoted byG C G’. G is called a
proach may not work well since it is time-consuming t0 sypergraph ofs. The skeleton (without labels) of a graph is
check each graph in a large scale database. In this papegalled itsstructureor topology The definition of subgraph
we develop an algorithm, called PIB4(tition-based Graph jsomorphism in this paper only considers the structure of a
Index andSearch), to tackle the SSSD problem. Our strat- graph,

egy is to first build a fragment-based index on the graph |t ; is a subgraph ofx’ and vice versa, we sa§f is
database, then partition each query graph into highly selec jsomorphic toc’, written G = G”. If G is a subgraph o’

tive fragments, use the index to efficiently identify the set g a1s0 has the same label information with we sayG

of candidate graphs, and verify each candidate to find all g a subgraph of” with reserved label information, written
eligible answers. Our approach has two advantages ovei; — .

the brute-force method: (1) All operations except the candi

date verification are only involved with the index structure

thus avoiding one-by-one subgraph isomorphism computa-

tion for graphs in the database. The isomorphism compu-

tation is performed on the candidate graph set, which is of

a significantly smaller size. (2) The candidate set itself is

identified efficiently by pruning most invalid graphs with

the help of selective fragments and a distance lower bound

introduced in this paper.) N
We call the index strategy of PIBagment-based in- Figure 3. Superposition

dex Graphs in the database are decomposed into fragments

(probably overlapping) and indexed to facilitate simikari

search. Fragments with the same topology can be indexedExample 2 Figure 3 shows a superposition between the

using an R-tree [4, 11] or a metric-based index [6]. We ob- query graph in Figure 2@) and the first graph in Figure

served that, for many distance measures, the superimposet (G). @’ is the image of) in G. As one can se&) Z G

distance between a query graph and a target graph is loweralthough@ C G.

bounded by the sum of distances between their correspond-

ing indexed non-overlapping fragments. Subgraph isomorphism only gives the structural compar-
This lower bound leads to efficient pruning of most in- ison between two graphs. The label information is also crit-

valid graphs in the database. A query graph is partitionedical in determining the characteristics of graphs. Thus, we

into fragments according to the index structure. Sincecther need a distance measure to differentiate labeled graphs wit

the same structure. This kind of distance is terrsgger- 3 Framework of PIS
imposed distange distance measure applied to two super-

imposed graphs. Here we introduce two commonly used Besides structure pruning, we can also utilize the super-
measures: Mutation Distance (MD) and Linear Mutation imposed distance constraint to prune candidates. In PIS, we
Distance (LD). partition a query grapl®) into non-overlapping fragments

Suppose we have two isomorphic labeled graghand g, g,, ..., andg,,, and use them to do pruning. If a distance
G'. We can build a superposition frofito G’, which maps function satisfies the following inequality,

each vertex of7 to a unique vertex irG’. The mutation
distance betwee@ andG’ is defined as follows,

n

> dlgi, G) < d(Q,G), @
MD =} D) I'(t)+ Y D(le)l() =
v'=f(v) e'=f(e) we can set the lower bound of the superimposed distance

between@ and G by the superimposed distance between

whereD is a mutation score matriX, is a label function, .

and f is an isomorphic functionf : V(G) — V(G'). The ¥ andG. Whenevery_;_, d(g;,G) > o, we can safely
mutation score matrix includes the distance score betweenremoveG from the answer sgt. For this kind of pruning,
a mutation from one label to another label. If the labels are € only need two operations: (1) enumerate fragments in

numeric, a linear distance function may be appropriate for the query graph_ and (2) search the index to calculate the
distance measure, e.g., superimposed distancgg;, G). We have

i,G) = min i q). 3
D= Y ju@)—w@)+ 3 |ule) - w() dlgin @) = v, d9i-9) 3

v=re) =1 Therefore, if we index all of the fragmentsdhthat have the

wherew andw’ are the weight functions af andG’. same topology witly;, we can calculatel(g;,) through
Since multiple superpositions may exist for two isomor- the index directly. This kind of pruning needs to check the
phic graphs, we usually select the best superposition thathdex only, not the original database.

has the smallest distance. In summary, we are able to use the lower bound given in

Eq. (2) to prune more unqualified graphs by indexing frag-
Definition 1 (Minimum Superimposed Distance) Given ments in graph databases. This method consists of two com-
two graphs, and G, let M be the set of subgraphs @ ponents:fragment-based indeandpartition-based search

that are isomorphic t@), M = {Q'|Q" C G A Q" = Q}. We first formalize the definition of graph partition.
The minimum superimposed distance betw@esnd G is

the minimum distance betweéhand Q’ in M, Definition 3 (Graph Partition) Given a graph Q =
(V,E), a partition of G is a set of subgraphs
d(@Q,G) = Join, d@,Q"), A {g1,92,...,9n} suchthat/(g;) C V andV (g;)NV (g;) =

o for anyi # j.

whered(Q, Q') is a distance function of two isomorphic))))
graphsQ and ()’ Interestingly, many distance functions hold the inequal-

ity in Eqg. (2) for a given partition. Both distances we men-
Definition 2 (Substructure Search with Superimposed tioned, mutation distance and linear mutation distanoes ha
Distance (SSSD))Given a set of graph® = {G1, Go, this inequality. We leave the proof to readers.
...G,} and a query graphQ, SSSD is to find ally; € D In Eq. (3), if a fragmeny is indexed, then all of the frag-
such thatd(Q, G;) < 0. ments having the same topology ashould be indexed,
since the right side of Eq. (3) has to access all of the super-
A naive solution is to scan the whole database and checkpositions ofg in G.
whether a target graph has a superposition with a dis-]
tance less than the threshold. This solution is not scal-Definition 4 (Structural Equivalence Class) Labeled _
able. A better solution, which we cabpoPrunegetsridof ~ 9raphsG and G’ belong to the same equivalence class if
graphs that do not contain the query structure first, and ther@nd only ifG = G'. The structural equivalence class Gf
checks the remaining candidates to find the qualified graphs/S Written [G].
topoPrune is more efficient than the naive approach. HOW- v tormulate the framework of PIS (partition-based

ever, it still suffers huge (_:(_)mputatlonal costs since itioas ?raph index and search) in the following three steps.
enumerate the superpositions of a query graph in a large se

of candidate graphs. If most of the candidate graphs are not 1. Fragment-based Index We select a set of structures
qualified, topoPrune could be very inefficient. as indexing features according to the criteria proposed

in GraphGrep [12] or gindex [16]. For each structyire
(f is a bare structure without any label), we enumerate
all of the fragments in the database that belongfto
and build an index in which arange quety, ¢') < o

can be evaluated efficiently, wheyeandg’ are labeled
graphs and their skeleton fs

2. Partition-based Search For a given query grapy,
we partition it into a set of indexed non-overlapping
fragments,gi, g2, ..., 9,. FoOr each fragmeng;, we
find its equivalence class in the index and submit a
range queryl(g;,¢’) < o to find all of the fragments

¢’ in the database that meet the superimposed distance

threshold. We then sum up their distance to obtain
the lower bound ofi(Q, G) for each graphG in the
database,

n

. — 1 .
; d(g;, G) ; i dlgig). (4)

If G does not have any subgraphsuch thaty’ = ¢;,

we dropG from the answer set (structure violation).
If the lower bound in Eq. (4) is greater than we
also dropG from the answer set (superimposed dis-
tance violation). The resultingandidate answer set
Cg, will include all of the graphs that pass the filter-
ing: Cq = {GIG € DAY, d(gi,G) < o}

3. Candidate Verification: We calculate the real super-
imposed distance betweéhand the candidate graphs

[seleot a set of structures (T) j

v

scan the database, for each
fragment g, if the structure
ofgisinT

insert s(g) to H

create an index
of [g]

Figure 4. Index Construction

of canonical representation available. A naive one is te con
catenate rows or columns of the adjacency matrix of a graph
into an integer sequence and use the minimum sequence as
the canonical representation for this graph. There are more
sophisticated canonical representations such as DFSgodin
[15]. Overall, we can always find a representation function

s : G — S such thatifG = @, s(G) = s(G') and if

G # G, s(G) # s(G'), whereS is a sequence space.

returned in the second step, and then remove graphs sing a canonical representation system, we can quickly

that do not satisfy the distance threshold.

4 Fragment-based Index

identify the class of a graph by checking its canonical rep-
resentation. The canonical representations are indexad in
hash tabled, as shown in Figure 5.

In this section, we present the details of constructing a
fragment-based index, the first step in the framework of PIS.
The index construction has two steps. In the first step, we
select structures as features. These structures do notlencl
label information. In the second step, any fragment in the
database that has the selected structure is identified and in
dexed. That is, for each selected structfireve enumerate
all of the fragments in the graph database that belonjto

Figure 4 illustrates the procedure of inserting a selected
fragmentg into the index. The structure gfis first trans-
formed into a sequencdg), which is indexed in a hash ta-
ble. We use a canonical representatiop tifat can translate
a graph into a unique sequence. If two graphs belong to the
same class, they will share the same canonical representa-
tion. When the hashing is performed grwe only consider
the canonical representation of its structure, not itslfabe

H
°®
o0
9\)5(9”/ [94]
PR L
g, Slg)f— /®
[92]
Hash Table Trie , R-tree or

Metric-based Index

Figure 5. The Index Components of PIS

For each equivalence class (every hash table entry), we

By doing so, we can group different fragments according to build an index structure to facilitate range queriég, g') <
their structural equivalence class. There are severalform o. There are various kinds of indexing structures available

for this task. The selection of index structure is determine whereP = {g1, g2, ..., g, } iS a partition ofQ.
by the type of distance function. For the mutation distance, = However, when we are given a large graph database, it is
we can use a trie to accommodate the sequential represersimply unaffordable to find an optimal partition between the
tations of the labeled graphs. For linear mutation distance query graph and each graph in the database. As a tradeoff,
we can use an R-tree to do the range query. we need to find a partition in the query graph that is gener-
In summary, for a fragmentin the database, when hash- ally good for all of the graphs in the database, in the sense
ing is performed, the label information ¢fis ignored, i.e, that it can simultaneously prune away most invalid graphs
only the skeleton structure is considered. Whésinserted and quickly give us a small candidate set for further verifi-
into the index oflg], its label information is included. cation. In other words, we need a partition whose fragments
have the greatest pruning power, which we measure by the

Example 3 Let D be a graph database where graphs have notion ofselectivitydefined as follows.

weighted edges. A user applies a linear mutation distance,
LD(G,G") = X o jen lw(e) — w'(e')|, to measure the
superimposed distance iR. Assume we index all of the
fragments having the same structure wjthshown in Fig-

ure 5. For any fragmeng’ in D, if ¢’ = g9, we can trans-
form ¢’ into a feature vector in a three dimensional space,
where each dimension records the weight of one of its edgesf"‘sw
We construct an R-tree to indek If a query fragmeny is
isomorphic tog,, we submit a range query to that R-tree to
find all of the vectorg’ such thatLD(g,¢') < o.

Definition 5 (Selectivity) Given a graph databas® =
{G1,Ga,...,G,} and a fragmeny, if [¢] is indexed, the
selectivity ofg is defined by its average minimum dis-
tance betweery and the graphs in the database, written
_ 21 d(9,Gi)
(9) = e
The selectivity can roughly measure the distance be-
tween a fragment and an average graph in the database.
Wheng ¢ G, d(g,G) = oo. In order to avoid the sin-
gularity of w(g), we set the cutoff value af(g, G) to the
maximum distance threshotd The closenw(g) to o, the

more selective the fragmegt Using the selectivity as a

Using the fragment_—based index_, we develop a searchyeight function, we are able to define an optimal parti-
strategy to prune candidates for a given query graph. In or-4ion of a query grapl@ for a large graph database with a
der to apply the lower bound in Eqg. (2), we need to partition fragment-based indek

the query graph into several non-overlapping indexed frag-

5 Partition-based Search

ments. Since the index is built beforehand, a query graph n
may be partitioned in more than one way. Thus, we have to Popt(q.1) = arg m}ngw(gj) (6)
select an optimal partition that can achieve the best pgunin i=1
performance. Let us first check an example. whereP = {g1, g, ..., gn} is a partition ofQ. We call this

Example 4 Suppose we index all of the edges in the Samp|eoptimization problenthe index-based partition problem

database (Figure 1) and want to find the graphs whose mu-

tation distance with the query graph (Figure 2) is less than Wy W7
2. If we partition the query graph into single edges, we will

not be able to filter any graph sincg,", d(g:,G) = 0,

whereg; is an edge in the query graph (the query graph has Wo

10 edges). In contrast, if we select a six-carbon ring frag-

ment, we may successfully prune the graph in Figure 1(b)

since its mutation distance with this fragmenBjgyreater Ws

than the threshold. Wy

As shown in the above example, different partitions may))]

have different pruning power. The question is how to find Figure 6. Overlapping-Relation Graph
an optimal partition. Intuitively, a partition is optimdlit N)
generates the highest lower bound d6€), G) such that, if The Ipdex—basgd partition problem has a connection to
the lower bound is greater than the thresheld> can be theé Maximum Weighted Independent Set problem (MWIS
immediately discarded from the candidate set. The optimal[l]) - L€t g1,92,...,gm be the indexed fragments 1.
partition of a query grapl) for SSSD on a single graphi We construct averlapping-relation graplt) to model the
is given by: overlapping relation amonfy; }: each fragmeny; is rep-

N resented as a nodgin Q; and ifg; andg; overlap, we con-

Poo.c) = arg mgxzd(gi, e) (5) necty; andv;. Each vertex; is associated with a weight

— w; = d(g;, G) equal to the selectivity af;. Figure 6 depicts

an overlapping-relation graph that has seven verticesg€or set of solutions to MWIS and the set of solutions to Index-
sponding to seven fragments in a query graph. The Index-based Partition, because every maximum weight indepen-
based Partition is equivalent to finding an independent setdent set induces a unique partition of maximum weight and

with maximum weights irQ). every partition of maximum weight uniquely corresponds to
a maximum weight independent set.
Definition 6 (Maximum Weighted Independent Set)A Since MWIS is NP-hard and Index-based Partition is at

finite Graph G=(V, E) and a function w — R*. A max- least as hard as MWIS, Index-based Partition is also NP-
imum weighted independent set is a sulisgt C V' such hard.m

that Figure 6 illustrates the connection between an optimal
Sopt = arg max Z w(v), (7) partition and MWIS. In our problem setting, we often have
S s knowledge about the size of a partition, i.e., the maximum

where S is an independent set af, i.e. Vv,w,€ S, independent set size .

(v,w) € E. Lemma 1 Given aquery graply, Iet@ be the correspond-
ing overlapping-relation graph. Le$,,; be the maximum
A general MWIS problem is NP-hard, as can be shown weighted independent set ©f then|S,,:| < |Q|/I, where
by an immediate reduction from MIS (Maximum Indepen- is the minimum indexed fragment size.
dent Set), which is a well-known NP-hard problem [3]. Un-) ~ ~ ~]
fortunately, the Index-based Partition problem has theesam ASSume the weighted graggh = (V, E) is given in a stan-

hardness. dard adjacency list representation andilgtbe the linked
list of V. Algorithm 1 shows a greedy algorithm to solve
Theorem 1 Index-based Partition is NP-hard. MWIS. At each iterationGreedy() selects a vertex with

the maximum weight ir’.,, and removes all of its adjacent

Proof. We prove the theorem by showing that Index-based Vertices fromZ,,. This process is repeated until becomes
Partition is at least as hard as MWIS. We give polynomial- €MPL-
time reduction from an instance of MWIS to an instance
of Index-based Partition. Let an instan¢é, @), of index- et _
based partition be an index structurand a query grap®. Input: A graph@ = (V, E) and a functionv : V — R.
Let an instance(G, w), of MWIS be a graphG = (V, E) Output: An independent sét
with a weight functiorw : V — RT.

Given an instancéG, w) of MWIS, we construct an in- 1: letS «— &,
stance(/, Q) of Index-based Partition as follows:(assuming 2: while L, # @ do

Algorithm 1 Greedy

G contains no self-loops, aritls easy to extend the argu- 3: scanL,, and findv with maximumuw(v);
ment to cases containing self-loops) For each vertex 4: S — Su{v};

V(G),1 < i < |V(G)|, let all the neighbors ob; be 5: removev and all neighbors of from L,;
{v},v2,... 0"}, Replacev; with a ring of n; vertices 6:return S,

Ring(v;) = {u1, ug, ..., uy, }, addi self-loops to each ver-

tex on this ring, and replace each edge] with a new edge
ujv?, 1 < j < n;. Do this to all vertices o7 and we thus
obtain our query graply). Each ring,Ring(v;), together
with all its adjacent edges now forms a subgraph(v;) of
unique topology inR. We then construct the indeixwith
eachsub(v;) as a key[sub(v;)] and setw(sub(v;)), the se- " We Ws Wy W, W, Ws
lectivity of sub(v;), equal tow(v;), the weight of vertex;,

in the original MWIS instance. Run an algorithm for Index-
based Partition on this constructed instaQ£gy) and let
the solution beP. Observe that, constrained by the index
P must be a set of subgraphs as described, i.e. eachis aringxample 5 Figure 7 shows a running example of
whose vertices all have the same number of self-loops andGreedy()_ Suppose the weights of vertices have the fol-
each vertex has one "dangling” adjacent edge. GWewe lowing order,ws > wg > ws > wy > wr > we > ws.
obtain a solutionS to the original MWIS problem as fol- Greedy() choosew,, ws, andw, as a solution.

lows: S is initially empty. For each subgraph i, if each

vertex on the ring has self-loops, add; to S. It's easy The result returned b§ireedy() may not be optimal. We
to verify that this is by construction a bijection betweea th use the optimality ratio, defined bly% to measure the

Figure 7. Greedy Selection

6

quality of a returned independent set in comparison with an Algorithm 2 Partition-based Graph Search

optimal solution.

Theorem 2 Given a graphQ = (V, E), Greedy() runs
in O(en) time and has an optimality ratio of/c, where
n = |V]andc = arg maxg |S|, S is an independent set of

Q,

_ InTheorem 2¢ is the maximum independent set size of
Q, which is also the maximum partition size @f Accord-
ing to Lemma 1¢ < |Q|/I, where|Q)| is the query graph
size and is the minimum indexed fragment size. In prac-
tice, we always find to be a small constant.

We can further imprové&reedy() so that a¢/k] opti-

mality ratio can be guaranteed. Instead of selecting a ver-9:

Input: Graph database = {G1, ..

) Gn}1
Query graph,
Maximum distance threshold

Output: Candidate answer Sg.

. CQ — D;

P — @

: for eachfragmentg C @ and[g] is indexeddo
F—FU{g}

: remove fragmentg from F' if w(g) < ¢;

: for eachfragmentg € F do

: calculatey’s canonical labels(g);

locate the index structudepointed bys(g);
submit a range querf(g, ¢') < o to I;

tex with the maximum weight, we selectraaximum in- 100 T « &;
dependeni:-set a set ofk vertices that are not adjacent 11: for eachpair(g¢’,G) s.t.d(g,g') < o do
and whose sum of weights is maximum among all indepen-12: if G € T then
dentk-sets. The maximum independénsset is allowed 13 d(g,G) < min(d(g, G),d(g,9'));
to have less thak vertices. In each iteration, we select a 14: else
maximum independerit-set and remove all the neighbors 15: d(g,G) < d(g.9');
of its vertices inQ. Since we have to enumerate all in- 16: T —Tu{G}
dependent:-sets inn vertices, the new algorithm, called 17: Cq < CoNT;
EnhancedGreedy(k), runs inO(ckn®). 18: w(g) « ZGETnd(g’G) + ”_anl X o)
19: construct an overlapping relation graph ¢gr
Theorem 3 Given a graphQ = (V,E), Enhanced 20: selecta partitiod® according toGreedy();
Greedy(k) achieves a guaranteed optimality ratio[ef/ k| 21:foreachG € Cg do
in O(ckn*) time, wheren = |V|, ¢ = argmaxg|S|, S is an 22 if 3o cpd(g,G) > othen
independent set @, and1 < k < |V|. 23: Cq — Co \ {G};
24:return;
Theoretically, EnhancedGreedy(k) has a better opti-
mality ratio thanGreedy() in the worst case, though it
is very slow whenk is large. However, we found that . .
EnhancedGreedy(k) (k is set a) has comparable perfor- 9raph@ (Lines 3-4). On Line 5, we drop all of the frag-

mance withGreedy() in real datasets, indicatingreedy()

ments whose selectivity is less thanSince they are con-

actually works well on average. Theorems 2 and 3 also in-tained nearly by all graphs in the database, these fragments

dicate that if we can increase the size of the smallest in-9

o not have pruning capability. We may tune the value of

dexed fragments, we can improve the optimality ratio in the {0 maximize the performance.

worst case. Therefore, we prefer indexing larger fragments

For each fragment i, we submit a range query to find

Furthermore, larger fragments are usually more selective@ll of the graphs whose distance with that fragment is less
than small ones. Unfortunately, the number of fragments than or equal to the maximum distance threshold (Lines 7—-

increases exponentially with their size. In practice, wesha 1

to make a tradeoff. |

7). The range query will be answered by the corresponding

index structure such as trie, R-tree, or metric-based index

ine 17 eliminates the graphs that do not contain a fragment

in @ or the graphs whose superimposed distance with that

6 Implementation

L
In this section, we outline our partition-based graph
search method in Algorithm 2.
We denote the candidate graph set@y for a given
query graphy) and the set of indexed fragments@nby F'.
F may contain many overlapping fragments¢n In the

n

fragment is greater tham. The intersection operation in

ine 17 will retain those qualified graphs.
Line 18 computes the selectivity of each fragment. We
ote that there arén — |T'|) graphs that do not contain

the structure ofy (or whose superimposed distance wjth
is greater tharr), and each of them will contribute /n
to w(g) according to Definition 5. Lines 19-20 construct

first step, it enumerates the indexed fragments in a queryan overlapping relation graph and find a partition through

the Greedy() algorithm. The resulting partition is used example, if the graphs in a query set have 20 edges each, the
to prune graphs that do not satisfy the minimum distance query set is writterQoo. Different from the experimental
threshold (Lines 21-23). setting in [16], the edges in our dataset are assigned with
In our implementation, we do not store real graphs in edge labels, such as single bond, double bond, and so on.
the index. Instead, we assign a unique graph identifier (anWe ignore vertex labels in this test in order to make the
integer) to each graph in the database. ThysG) (Line problem hard. The queries under examination are “finding
11) actually is a pair of a fragment identifier and a graph graphs in the database that contain the query structure and
identifier. Algorithm 2 will return an identifier list. Ovelta have at most mismatched edge labels”.
Algorithm 2 does not directly access the original graphs in

the database. ., 10*
=
7 Experimental Results S 10° 1
g
In this section, we perform an empirical study to evaluate = 107 |]
the efficiency of PIS. The performance of PIS is compared § topoPrune
with topoPrune, the structure pruning algorithm introdiice 5 10+ X PISO=4 —--x--- A
in Section 2. We demonstrate that PIS can substantially im- ~ #* PISG=2 --x---
prove search efficiency in real graph databases. [‘ ‘ PISo=1 —a-
The real dataset is from an AIDS antiviral screen QR0 QS0 sk 3k ¥k sk

%uery Sl%set Q

Figure 8. Structure Query with 16 edges

database containing the structures of chemical compounds.
This dataset is available on the website of the Develop-
mental Therapeutics Program (NCI/NfH)n this dataset,
thousands of compounds have been checked for evidence
of anti-HIV activity. The dataset has around 44,000 struc-
tures.

We build topoPrune and PIS based on the gindex al-
gorithm [16]. gIndex first mines frequent structures and
then retains discriminative ones as indexing featureseOth
kinds of features can also be used in PIS. For example, PISYt < 750, 750 < Y <d1’500’ 1<’500 <V < 3’?]00’
can take paths [12] as features to build the index. topoPruneSi’)?OOrogu }2 z:r:’v?/(r)i(t)t'ein aggggo —Qggo SQ}'%’,CO%)?;,CTQ;S €
and PIS are implemented in C++ with standard template li- 9 >5]E) ’ ’ A,
brary. All of the experiments are done on a 2.5GHZ, 1GB- and@="". In eac.h group, we ayeragé anld Its counter-
memory, Intel Xeon PC running Fedora 2.0. partYp. The X axis shows the six groups in an order. Thg

The test dataset consists i, 000 graphs that are ran- Y axis shows the average number of candidate graphs in

domly drawn from the AIDS screen database. These graphseach group. A better algorlthm should f”ter as many graphs
. as possible before performing real superimposed distance

have 25 nodes and 27 edges on average. The maximun . e
. . computation. We plot the performance of PIS with different

one has 214 nodes and 217 edges in total. Note that in . ;
superimposed distance threshold}. (The performance of

this dataset most of the atoms are cgrbons and mqst of th?opoPrune will not change with the distance threshold since
edges are carbon-carbon bonds. This characteristic makeﬁ only applies structure pruning

the substructure search very challenging. We use the edge ~_.
mutation distance to define the superimposed distance be- I?gli(r)eO?_ demo\r;itrztes_ tth'?r: PIS (()jg(;p?rformshtongrtl_J ne
tween two isomorphic graphs. The distance is the number P 10 imes. WWe depict the candidate graph reduction

. L . - - _
of edges whose labels are mismatched when we superim-rat'o_ Y; _|n Figure 9. We can §ee that there is a huge re
uction in the number of candidate graphs returned by PIS

pose the query graph to a target graph. We select around’ ;
2,000 fragments in this dataset as indexing features, which When topoPrune returns less than00 candidates. The re-
are grouped together according to their structural equiva_ductlon ratio gradually decreases when more graphs contain

5k 7
lence class. Fragments belonging to the same class are pJf'® Auery structure. In the query £¢t*", the reduction ra-
in a trie after they are sequentialized. tio is down t0300% wheno = 1 and150% wheno = 4.
The query graphs are directly sampled from the database Figure 10 depicts the candidate graph reduction ratio of

and are grouped together according to their size. We denotd S for the query se€,,. Similar performance patterns
a query set by),., wherem is the query graph size. For show in this query set. The pruning process in PIS takes
less than 1 second per query, which is negligible compared

Lhttp://dtpsearch.ncifcrf.gov/FTP/AIDO99SD.BIN to the result verification cost.

Figure 8 depicts the performance of topoPrune and PIS
for the query se),¢. For a given query, we write the num-
ber of candidate graphs returned by topoPrun&jaand
that returned by PIS &5,. We divide the query graphs into
6 groups based on the value¥f 0 < Y; < 300, 300 <

X PISA=0.5 —+—
100 + 1 100 + \\\ PISA=1 ----x-—-]
2 2 PISA=2 %o
g g \,
S 5 e
S 10f 1 S 10t AN 1
° °
5 o
Il Il Il Il Il Il 1 Il Il Il Il Il Il
Q0 750 L5k %?)k o* Qo Q300 750 L5k %@k o* Qo
duery subset duery subset
Figure 9. Reduction: PIS over topoPrune Figure 11. Cutoff Value Sensitivity
% PIS size=4——
10° | i 10° x PIS size=5----x---]
8 £ PIS size=6---*---
< g :
S 10t 1 é’ 10 | ' 1
3 o
1 1 1 1 1 1 1 1 | X X ____,,._.:
<300 750 15k 3k Bk ~>5K <300 ~750 L5k 3k Bk ~>5k
Q Q Q Q" Q
Q Q %uery Sl%set Q Q query SL%Set
Figure 10. Structure Query with 24 edges Figure 12. Performance vs. Fragment Size
Next, we check the sensitivity of the cutoff setting inthe 8 Related Work
selectivity computation. In the previous experiments, we
setd(g,) = o, wheng G ord(g, G) > 0. This setting Structure search including similarity search has been
seems to be ad hoc. However, it can be justified through thestudied in several fields. Shasha et al. [12] proposed a path-
following experiments. Suppose the cutoff valueit§, &) based approach for the exact substructure search. Yan et
is set todo (0 <)). We vary the value of. If A > al. [16] devised discriminative frequent structures anetus

1, the selectivity ofg turns out to be proportional to the them as indexing features to improve search performance.
number of graphs that do not contgirFigure 11 showsthe Holder et al. [7] adopted the minimum description length
pruning performance for the query €@f¢ with the distance principle for the approximate search. Raymond et al. [10]
constraintg = 2. developed a three-tier algorithm for full structure simitia
According to Figure 11, we find that the pruning per- search, which became a commercial tool in Pfizer. Funk et
formance descends when < 1. In contrast, there is no al. studied how to build a 3D model search engine using
performance change when> 1. The two curves oA = 1 spherical harmonics [2]. For 3D structure comparison and
and\ = 2 are completely overlapping, indicating that the protein structure superposition, efficient algorithmshsas
pruning is not sensitive to the setting bivhen it is greater geometric hash [14], DALI [8], and LOCK [13] were de-
than 1. veloped. However, these methods mainly focus on align-
We then test the pruning performance with varying sizes ing 3D points along a sequential skeleton (protein primary
of maximum indexed fragments, fromedges te6 edges. structure), not the general SSSD problem that we examined
The results are depicted in Figure 12. As discussed in Sec4dn this paper.
tion 5, the pruning performance will improve if we index The initial work on substructure similarity search was
larger fragments, since larger fragments are not only moredone by Hagadone [5]. He applied vertex and edge labels to
selective, but also result in smaller partition sizes. lis th screening. Messmer and Bunke [9] studied the reverse sub-
case, the greedy partition algorithm has a better bound instructure similarity search problem in pattern recognitio
comparison with the optimal one. Our recent work [17] accessed the substructure similarity

problem based on the number of allowable missing edges, [7] L. Holder, D. Cook, and S. Djoko.

instead of the SSSD problem studied in this paper.

9 Conclusions

[8]

In this paper, we proposed a new graph search problem
that has additional similarity requirements for the catego
ical or geometric attributes associated with graphs. Exist

ing algorithms are unable to process this new search re-
guest efficiently. Thus, we proposed a novel strategy that

selects “discriminative” fragments in a query graph ancguse

an index to find graphs that contain isomorphic subgraphs

[9]

to these fragments while the overall distance is retained|1q)
within a given threshold. We developed two components,
fragment-based index and partition-based search, to imple
ment this strategy. We also identified a criterion to dis-
tinguish the selectivity of different fragments and demon-
strated that a good partition should have a set of highly [11]
selective non-overlapping fragments. Surprisingly, we ca
transform this partition selection problem to the well-mo
maximum weighted independent set problem (MWIS). Al-
though MWIS does not have a polynomial-time solution,
we showed that a greedy solution works well for improving
search efficiency in real datasets.

References

(1]

C. Bron and J. Kerbosch. Algorithm 457: Finding all
cligues of an undirected grapfComm. of the ACM
16:575-577, 1973.

[12]

[13]

[2] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. Hal- [14]

(3]

(4]

[5] T. Hagadone.

(6]

derman, D. Dobkin, and D. Jacobs. A search engine
for 3d models.ACM Trans. on Graphi¢22:83-105,
2003.

M. Garey and D. Johnsoi©€omputers and Intractabil-
ity: A Guide to the Theory of NP-CompleteneSeee-
man & Co., New York, 1979.

A. Guttman. R-trees: a dynamic index structure for
spatial searching. I®roc. 1984 ACM Int. Conf. on
Management of Data (SIGMOD’84pages 47 — 57,
1984,

Molecular substructure similarity
searching: efficient retrieval in two-dimensional struc-
ture databasesJ. Chem. Inf. Comput. S¢i32:515—
521, 1992.

G. Hjaltason and H. Samet. Index-driven similarity
search in metric spaces. ACM Trans. on Database
Systems (TODSpages 517 — 580, 2003.

10

[15]

[16]

[17]

Substructure
discovery in the subdue system. Rroc. AAAI94
Workshop on Knowledge Discovery in Databases
(KDD94), page 169 180, 1994.

L. Holm and C. Sander. Protein structure comparison
by alignment of distance matrices]. of Molecular
Biology, 233:123-138, 1993.

B. Messmer and H. Bunke. A new algorithm for error-
tolerant subgraph isomorphism detectitifEE Trans.
on Pattern Analysis and Machine Intelligen@:493
—504, 1998.

J. Raymond, E. Gardiner, and P. Willett. Rascal: Cal-
culation of graph similarity using maximum common
edge subgraphsihe Computer Journgh5:631-644,
2002.

T. Sellis, N. Roussopoulos, and C. Faloutsos. The
R+-Tree: A dynamic index for multi-dimensional ob-
jects. InProc. 1987 Int. Conf. on Very Large Data
Bases (VLDB'87)pages 3-11, 1987.

D. Shasha, J. Wang, and R. Giugno. Algorithmics
and applications of tree and graph searchingProc.
21th ACM Symp. on Principles of Database Systems
(PODS’02) pages 39-52, 2002.

A. Singh and D. Brutlag. Hierarchical protein struc-
ture superposition using both secondary structure and
atomic representations. Proc. 5th Int. Conf. on In-
telligent Systems for Molecular Biology (ISMB’97)
pages 284 — 293, 1997.

H. Wolfson and I. Rigoutsos. Geometric hashing: An
introduction. IEEE Computational Science and Engi-
neering 4:10-21, 1997.

X. Yan and J. Han. gSpan: Graph-based substructure
pattern mining. IrProc. 2002 Int. Conf. on Data Min-
ing (ICDM’02), pages 721-724, 2002.

X.Yan, P. Yu, and J. Han. Graph indexing: A frequent
structure-based approach. Rroc. 2004 ACM Int.
Conf. on Management of Data (SIGMOD’Q4jages
335 — 346, 2004.

X. Yan, P. Yu, and J. Han. Substructure similarity
search in graph databases. Rroc. 2005 ACM Int.
Conf. on Management of Data (SIGMOD'0%ages
766 — 777, 2005.

