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Traditional graph matching is too restrictive to
identify “hidden matches”. Ontologies enables
subgraph querying to identify semantically
related matches effectively.

 Ontology-based subgraph querying

« An ontology graph represents ontologies
and their relationships

» A similarity function sim(.) calculates
ontology similarities

» Ontology-based subgraph querying is to
find subgraphs isomorphic to query
graphs, where nodes are matched w.r.t
ontology similarity sim(.)

* Our ontology-based querying framework is
efficient, scale well with the graph size and query
size, and can be efficiently maintained.

* A good source of future work includes: (1)
extending the techniques for various queries and
similarity measurements; and (2) ontology-based
query suggestion and interpretation.
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