
Cloud Service Placement via Subgraph Matching

Bo Zong†, Ramya Raghavendra*, Mudhakar Srivatsa*, Xifeng Yan†, Ambuj K. Singh†, Kang-Won Lee*

†Dept. of Computer Science, University of California at Santa Barbara, CA, USA
{bzong, xyan, ambuj}@cs.ucsb.edu

*IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
{rraghav, msrivats, kangwon}@us.ibm.com

Abstract—Fast service placement, finding a set of nodes with
enough free capacity of computation, storage, and network
connectivity, is a routine task in daily cloud administration. In
this work, we formulate this as a subgraph matching problem.
Different from the traditional setting, including approximate and
probabilistic graphs, subgraph matching on data-center networks
has two unique properties. (1) Node/edge labels representing
vacant CPU cycles and network bandwidth change rapidly,
while the network topology varies little. (2) There is a partial
order on node/edge labels. Basically, one needs to place service
in nodes with enough free capacity. Existing graph indexing
techniques have not considered very frequent label updates,
and none of them supports partial order on numeric labels.
Therefore, we resort to a new graph index framework, Gradin,
to address both challenges. Gradin encodes subgraphs into multi-
dimensional vectors and organizes them with indices such that
it can efficiently search the matches of a query’s subgraphs and
combine them to form a full match. In particular, we analyze
how the index parameters affect update and search performance
with theoretical results. Moreover, a revised pruning algorithm is
introduced to reduce unnecessary search during the combination
of partial matches. Using both real and synthetic datasets, we
demonstrate that Gradin outperforms the baseline approaches
up to 10 times.

I. INTRODUCTION

Dynamic graphs have been applied to model frequently
updated data-center networks [24]. Node/edge on these graphs
contain numerical values describing network states, such as
machines’ CPU/memory usage and links’ available bandwidth.
These numerical values are frequently updated to reflect net-
work dynamics [24].

Given a cloud residing in a data-center network, it is
important to place services into the cloud so that users’
requirements are satisfied [2], [14]. Cloud service placement
can be naturally formulated as dynamic subgraph matching

queries: Given a large dynamic graph G with numerical
node/edge labels and a smaller query graph Q with user-
specified numerical node/edge labels (e.g., required computa-
tion and communication resources), the goal is to return a set
of subgraphs of G, each of which is structurally isomorphic to
Q, and whose node/edge labels are compatible with Q (i.e., the
corresponding nodes/edges can provide enough computation
and network resources). Consider the following example.

Example 1: In Fig. 1, an accounting service is defined as a
query graph. Numerical labels on nodes represent the amount
of memory required for diverse types of servers, while labels
on edges represent the amount of bandwidth required among
servers. Given such a query graph, a cloud administrator is
obliged to find a subgraph from a dynamic cloud graph to
place the service. A qualifying subgraph should be structurally

DPI BL1

BL3

BL2

PC

DBS2

DBS1

v0 v1

v2

v3

v4

v5

v6

8G

1M

1M

1M

1M 2M

2M

1G

v0
v1
v2
v3

v4
v5

v6

Memory

requirements

2.5G

10M

2G

2G

12G

20G

32G

DPI - Deep Package Inspector BL - Business Logic

PC- Package classifier DBS - DB Server

Fig. 1. A user-defined accounting service with diverse memory and
bandwidth requirements on nodes and edges

isomorphic to the query graph, and its nodes/edges should have
enough resources to satisfy the specified requirements.

The aforementioned subgraph matching problem not only
brings a new, critical graph query application, but also new
challenges to existing techniques. First, existing graph index-
ing techniques, e.g., [9], [17], [32], [40], [45], [46], are focused
more on graph structure and fixed node/edge labels, while
data-center networks usually have quite stable structure, but
more frequent label updates. Although some incremental graph
indexing algorithms are available [40], they are not designed to
accommodate frequent label updates (e.g., 10−50% node/edge
labels are updated every 10 seconds [24]). Second, exist-
ing techniques supporting approximate or probabilistic graph
matching can hardly handle partially ordered numerical labels
in service placement. For example, a server with 32G free
memory can accommodate a service requiring 1G memory,
even when these two values are very different from each other.
These challenges motivate us to develop a new graph indexing
mechanism that is specific for data-center networks and service
placement.

In this work, we propose a graph index framework Gradin
(Graph index for dynamic graphs with numerical labels) to
address the above challenges. Gradin encodes subgraphs into
multi-dimensional vectors and organizes them such that it can
efficiently search the matches of a query’s subgraphs and
combine them into full matches of the query graph. First,
we propose a multi-dimensional index that supports vector
search and is able to handle frequent updates. Different from
existing indices that are efficient for index updates but suffer
from low pruning power, we develop a search algorithm
that preserves the pruning power. Moreover, we present a
theoretical analysis of how index parameters affect update and
search performance. Second, we propose pruning techniques
to enable a fast combination of partial matches of a query
graph. A naı̈ve solution is costly, when the number of matches

for a query’s subgraphs is large. Using a minimum cover of
subgraphs in a query and subgraphs’ fingerprints, our method
is able to significantly improve query response time.

Our main contribution is the identification of a key applica-
tion of graph query in cloud computing, and the formulation
of a new graph index framework that accelerates subgraph
matching on dynamic graphs of numerical labels. To the best
of our knowledge, this is the first study on this topic. Using
both real and synthetic datasets, we demonstrate that Gradin
outperforms the baseline approaches up to 10 times.

II. PROBLEM DEFINITION

For the sake of simplicity, we examine undirected graphs
where only nodes have single labels, and assume that labels
are normalized [2], [25]. Our work can be extended to general
graphs where both nodes and edges have multiple labels.

Data graph. A data graph G is represented by a tuple
(V,E,A), where (1) V is a finite set of nodes; (2) E ⊆ V ×V
is a set of edges; and (3) A : V → [0, 1] is a function that
assigns a numerical label to each node u ∈ V .

Query graph. A query graph is defined as Q =
(V ′, E′, A′, p), where (1) V ′ and E′ are a node set and an edge
set, respectively; (2) A′ : V ′ → [0, 1] is a labeling function;
and (3) p is a predicate function that assigns a predicate
for each node u′ ∈ V ′. In other words, p specifies search
conditions: p(u′, u) defines a predicate A′(u′) op A(u), where
(1) u′ is a node in a query graph; (2) u is a matched node
of u′ in a data graph; and (3) op is a comparison operator
drawn from the set {<, ≤, =, 6=, ≥, >}. Here, we focus on
the predicate A′(u′) ≤ A(u).

Compatibility. Given two graphs H1 = (V1, E1, A1) and
H2 = (V2, E2, A2), H2 is compatible with H1, if (1) H1

is structurally graph isomorphic to H2 by a bijective function
f : V1 → V2; and (2) ∀u ∈ V1, A1(u) ≤ A2(f(u)).

Graph update in data centers. In data-center networks, the
most frequent updates come from numerical values on nodes
and edges. (1) Update frequency is close to, or even higher
than query frequency, and (2) a large portion (10 − 50%) of
nodes/edges in a data graph are frequently updated. In contrast,
the physical connections of nodes are relatively stable. Thus,
topological update is not the focus of this study.

Definition 1 (Dynamic subgraph matching): Given a data
graph G with its node/edge labels frequently updated, a query
graph Q, and an integer r, Dynamic subgraph matching
for cloud service placement is to find up to r compatible
subgraphs of Q from G.

The number of returned subgraphs r is decided by ap-
plications. To place a service into a cloud, we might need
more than one compatible subgraphs in order to optimize the
performance of the whole cloud [20]: (1) some compatible
subgraphs might not be available due to the network dynamics
and the query processing delay; and (2) cloud administrators
might be interested in optimizing other performance metrics,
such as network congestion [1] and transmission cost [20].

Dynamic subgraph matching is a hard problem. By a
reduction from the well-known subgraph isomorphism prob-
lem [12], the problem can be shown to be NP-complete. On

the other hand, for small query graphs and sparse data-center
networks, it is possible to build indices to solve the matching
problem in a practical manner. In the following sections, we
investigate the feasibility and principles of building a graph
index on networks with partially ordered numerical labels, and
study how to speed up index update while preserving search
speed. We will also discuss how to optimize query processing.

III. AN OVERVIEW OF GRADIN

Fragment. A fragment h = (Vh, Eh, Ah) is a connected
subgraph from a graph H = (V,E,A), where (1) Vh ⊂ V
and Eh ⊂ E are a node set and an edge set, respectively; and
(2) ∀u ∈ Vh, Ah(u) = A(u).

In particular, we use g to denote a fragment extracted from
a data graph G, referred as a graph fragment, and use q to
denote a fragment extracted from a query graph Q, referred as
a query fragment. To facilitate index building and searching,
we represent fragments by fragment coordinates.

Fragment coordinate. Given the canonical labeling [39] of
a fragment h of k nodes, the fragment coordinate, denoted
by x(h), is a k-dimensional vector, where the i-th dimension
contains the information about the i-th visited node in its
canonical labeling. In particular, the i-th dimension of a
fragment coordinate could either be the id or the label of the
i-th visited node in the canonical labeling.

id visited order

1

2

3

4

1-2 2-3 3-4 4-2

(v1,v2,v3,v4) (0.1, 0.7, 0.6, 0.3)

v1

v2

0.1

0.7

0.6 0.3
fragment coordinate

id label

canonical labeling

v3 v4 v4

v1

v3

v2

Fig. 2. A fragment with its canonical labeling (top right) and fragment
coordinates (bottom right)

Fig. 2 shows an example of fragment coordinates. (1) The
canonical labeling of the fragment is shown in the top-right
corner, where i denotes the i-th visited node, and i−j denotes
a visit from the i-th visited node to the j-th visited node. (2)
The coordinate (v1, v2, v3, v4) stores node id information, and
the coordinate (0.1, 0.7, 0.6, 0.3) stores node label informa-
tion. Note that each graph has a unique canonical labeling,
and the fragment coordinates specify how to assign ids and
labels to nodes and edges.

In addition, we refer to the coordinate of node id in-
formation as an id coordinate, and the coordinate of label
information as a label coordinate. When the context is clear,
the term fragment coordinate is used without ambiguity.

Let Q be a query graph. A region in a data graph is worth
searching, if for any query fragment q, the region contains
graph fragments that are compatible with q; otherwise, we can
safely exclude that region from search. Gradin implements this
idea in two components: offline index construction and online

query processing.

Offline index construction. Let G be a data graph and S
be a graph structure set that is decided by existing structure
selection algorithms [40]. For each structure s ∈ S , we use
subgraph mining technique [39] to search Ds, which contains

Ds3

Ds4

x (g2,1), x (g2,2), ...

x (g3,1), x (g3,2), ...

..
.

..
.

s1 s2 s3

s4
s5

labeling(s1)

x (g4,1), x (g4,2), ...

x (g5,1), x (g5,2), ...

x (g1,1), x (g1,2), ...

G S

Ds5

Ds1

Ds2labeling(s2)

labeling(s3)

labeling(s4)

labeling(s5)

(a) Offline index building

Query graphQ

Query fragments

Inverted index

Candidate sets

Fragment join

OutputCompatible subgraphs

...

...

q1 q2 qk

Cq1 Cq2 Cqk

+

Gradin filtering

(b) Online query processing

Fig. 3. Gradin consists of two parts: (1) offline index building and (2) online
query processing

all the graph fragments in G of the structure s. Using the
canonical labeling of structures as keywords, graph fragments
are organized by inverted indices. To further optimize search
and storage, graph fragments in the inverted indices are
denoted by their fragment coordinates.

Fig. 3(a) illustrates an example of the offline index con-
struction. G is a data graph at the top-left corner, and S at
the top-right corner is a set of structures we aim to index.
First, Dsi – all graph fragments corresponding to structure si
– are mined from the data graph. Using an inverted index,
the canonical labeling of si points to Dsi . In particular, the
inverted index stores fragment coordinates.

Online query processing. As shown in Fig. 3(b), given a
query graph Q, Gradin searches the compatible subgraphs of
Q in three steps. (1) Decomposition. Gradin decomposes Q
into query fragments, whose structures have been indexed. (2)
Filter. For each query fragment q, Gradin first finds the set of
graph fragments sharing the same structure, and only returns
those fragments that are compatible with q. The returned set
of graph fragments is also referred to as candidate set Cq .
(3) Join. Gradin conducts fragment join among candidate
sets. By stitching fragments in candidate sets, Gradin returns
compatible subgraphs for Q.

To provide a good query processing performance, Gradin
needs to enable fast search and join at the filter and the join
phase. We need to address two challenges: (1) frequent updates
and (2) the large search space for fragment join.

Frequent updates. It is preferable to build a search index
for Ds (the graph fragments of structure s), especially when
the size of Ds is very large (e.g., the number of 3-star, a
star structure with three branches, in a medium-size data-
center network reaches 10M). However, when node labels are
frequently updated, it is non-trivial to build the desired search
index. On the one hand, a sophisticated search index (e.g., R-
tree [16]) offers strong pruning power; however, it is costly to
perform updates [29]. On the other hand, a simple search index
(e.g., an inverted index) provides faster index update speed;
however, the index’s pruning power decreases and longer time
is needed for filtering the remaining candidates. In Sect. IV,
we discuss how we address this challenge.

The large search space for fragment join. This challenge
includes two aspects. First, since the size of a candidate set can

be very large, a naı̈ve join algorithm will be extremely slow.
Second, since a query graph might be decomposed into dozens
of query fragments (e.g., a 10-star query graph contains 110
query fragments of no more than 2 edges), it is preferable to
select a subset of query fragments that covers the query graph
and minimizes the amount of redundant intermediate results.
In Sect. V, we propose a two-step algorithm that prunes the
large search space for fragment join.

IV. FRAGMENT INDEX

In this section, we present an index FracFilter that efficiently
processes frequent updates, and preserves search speed.

A. Naı̈ve solutions

Let Ds be the set of graph fragments of structure s. There
are three basic options to build a search index for Ds: (1)
R-tree variant, (2) inverted index, or (3) grid index.

R-tree variant. One might build R-tree variants [5], [16]
based on fragment label coordinates to offer good pruning
power. However, when node labels are frequently updated, the
search trees will process a massive number of update opera-
tions. Update operations on R-tree variants are costly [29].
Even though with sophisticated insertion strategies R-tree-
like search structures can process around 16, 000 updates per
second [29], they will spend a considerable amount of time
in processing index updates. For example, in a data-center
network of 3, 000 nodes, when 30% node labels are updated,
in the case of graph fragments of the structure 3-star, more
than 5M label coordinates need to be updated. Therefore, the
state-of-the-art R-tree variant might take more than 5 minutes
to update the index. As queries need to wait on index update,
the throughput of the whole system will suffer.

Inverted index. One might consider fragment id coordinates,
and build inverted indices on id coordinates with the canonical
labeling as keywords. To prune unpromising graph fragments
for a query fragment qs, we have to verify all graph fragments
in Ds. Since updates on node labels never change id coordi-
nates, these indices take little index update cost; however, the
size of Ds is usually large (e.g., tens of millions), so a thorough
scan will slow down query processing.

Grid index. One might apply grid indices to allow affordable
update operations [3], [28]. The general idea is as follows.
(1) The multi-dimensional space of label coordinates are
partitioned into grids. (2) The fragments in the same grid are
managed with a light-weight data structure (e.g., list). (3) If
a fragment label coordinate is updated, update operations will
be conducted only when the updated coordinate moves out of
the original grid. (4) When a query fragment arrives, we issue
a range query based on its label coordinate: (a) mark those
fragments in the grids that are fully covered by the range query
as candidates; and (b) verify those fragments in the grids that
are partially covered by the range query. Note that the search
speed depends on the amount of time taken by verification.
If we apply a naı̈ve method that compares the targeted graph
fragments with the query fragments, it will take a considerable
amount of time. Consider the following example.

Example 2: 10M graph fragments of the structure 3-star
(i.e., 4D coordinates) are managed by a grid index with 10,000

grids. Suppose graph fragments are uniformly distributed, each
grid covers 1,000 fragments. A 10-star query has 720 query
fragments of the structure 3-star. Suppose a query fragment
is uniformly distributed, it will partially cover 505 grids in
average. Therefore, a query fragment needs up to 4 ∗ 505 ∗
1000 = 2.02M comparisons to complete verification, and in
total we need up to 720 ∗ 2.02M = 1454.4M comparisons for
one indexed structure.

In Example 2, we consider the case of node labels and
single label per node. In a general case of edge labels and
multiple labels per node/edge, the number of comparisons will
proportionally increase. Therefore, the verification phase will
slow down by a large amount of comparisons.

In the following discussion, we introduce an index
FracFilter that addresses both update and search issues.
FracFilter is a grid-based index that inherits the merit of update
efficiency; moreover, we propose a verification algorithm that
accelerates search by avoiding redundant comparisons.

B. FracFilter construction

We start with the construction of FracFilter. For an indexed
structure, a FracFilter is constructed by two steps: (1) it
partitions the label coordinate space into grids, and (2) maps
graph fragments into the corresponding grids.

s

0 1.0

1.0

dim2

dim1

Ds

2 3

0 1

(a) λ = 2

0 1.0

1.0

dim2

dim1

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

s

Ds

(b) λ = 4

Fig. 4. FracFilters of density 2 (left) and 4 (right): s in the top right corner
is the structure of Ds, points are label coordinates, and the integer in each
grid is the grid id.

Partition the space into grids. Let λ be a positive integer,
called grid density, ns be the number of fragments with struc-
ture s, and d be the number of dimensions for fragments’ label
coordinates. One partition strategy is to uniformly slice label
coordinate space into λ parts for each dimension; however,
this strategy might result in unacceptable index searching and
updating performance when label coordinate distribution is
skew. Therefore, we consider to use the empirical distribution
of label coordinates in each dimension to partition the space:
(1) slice each dimension into λ parts, and each part contains
ns

λ
fragments; and (2) independently repeat this procedure

in each dimension. In this way, we obtain λd d-dimensional
grids in total. Moreover, each grid is associated with a grid id
represented by a base-λ integer. Suppose the i-th dimension
of a grid falls into the j-th partition, then the i-th bit of the
grid id is j. The advantages of using the above way to assign
a grid id include (1) the ease of designing fragment mapping
functions, and (2) the ease of avoiding redundant comparisons
(discussed in Sect. IV-C).

Fig. 4 demonstrates two FracFilters of density 2 and 4,
respectively, on a 2-dimensional space: (1) grids are disjoint,

(2) a point (fragment) is covered by one and only one grid,
and (3) the whole space is covered.

Map fragments into grids. Let g be a graph fragment, x(g) =
(x1, x2, ..., xk) be g’s fragment coordinate, and gid be the id of
the grid to which g should be mapped. The mapping function
is designed as follows. (1) Starting with x1, if x1 falls into
the j1-th partition, we set the first bit of gid to be j1. (2) At
the i-th dimension, if xi falls into the ji-th partition, we set
the i-th bit of gid to be ji. (3) Repeat this process for all
dimensions. we use lists to manage fragments in grids.

The pseudo code of the construction algorithm is shown in
Fig. 5 for reference. The above construction algorithm shows
that a FracFilter can be constructed in linear time, and the
following result indicates the computation complexity.

Input: (1) grid density λ;
(2) the number of dimensions d;
(3) a list of label coordinates of Ds, frag;

Output: a FracFilter, filter.

1. grid.resize(λd)
2. locX .resize(len(frag)), locY .resize(len(frag))
3. for i in range(0, len(frag))
4. gid = gridID(frag[i])
5. grid[gid].append(frag[i])
6. locX[i] = gid
7. locY [i] = len(grid[gid])− 1
8. return filter (grid, locX , locY , d, λ)

Fig. 5. The Algorithm sketch for constructing a FracFilter

Proposition 1: Let λ be the grid density, ns be the num-
ber of fragments, and d be the number of dimensions of
a label coordinate space. We can construct a FracFilter in
O(max (λd, dns)).

Remark. (1) The construction algorithm will be executed once
for each indexed structure. In other words, if we index 5 struc-
tures and obtain 5 sets of graph fragments, the construction
algorithm will be executed for 5 times, and each run builds a
FracFilter for the corresponding structure. (2) We define the
grid density λ and divide each dimension into λ partitions
for the ease of discussion. Indeed, with little modification, the
construction algorithm along with its theoretical results works
in the cases where each dimension is divided into a variable
number of partitions.

C. Searching in FracFilter

In this section, we present how a FracFilter avoids unneces-
sary comparisons and accelerates search for a query fragment.
When a query fragment arrives, we formulate a range query
that is a multi-dimensional box with the query fragment’s label
coordinate as the bottom corner and (1.0, 1.0, ..., 1.0) as the
top corner. The range query divides the label coordinate space
into three regions R1, R2, and R3: (1) R1 contains the grids
that are fully covered by the range query; (2) R2 contains the
grids that are partially covered by the range query; and (3) R3

contains rest of the grids. Fig. 6 gives examples of R1, R2,
and R3. In particular, we mark fragments in R1 as candidates,
discard fragments in R3, and verify fragments in R2.

0 1.0

1.0

dim2

dim1

2

0 1

1

2

s

Ds

(a) λ = 2

0 1.0

1.0

dim2

dim1

5 6 7

9

13

R1

R2

R3

s

Ds

(b) λ = 4

Fig. 6. The same query fragment (the red dot) requests fragment searching
on two FracFilters of density 2 (left) and 4 (right).

For graph fragments in R2, a naı̈ve verification algorithm
blindly makes comparisons in every dimension; however, for
some dimensions, comparisons are unnecessary. Consider an
example in Fig. 6(b). A query fragment falls into grid 5 (114
in base-4 form), and grid 5(114), 6(124), 7(134), 9(214),
and 13(314) are in R2. For fragments in grid 5(114), we
have to take all dimensions into consideration for verification.
However, for fragments in grid 6(124) and 7(134), we only
need to consider dim2 since their label values in dim1 is
surely greater; and similarly, for fragments in grid 9(214) and
13(314), we only need to consider dim1.

Let cq be the grid where a query fragment falls, and c be a
grid in R2. We obtain the following pruning rule.

Lemma 1: Comparisons at the i-th dimension are necessary,
only if the i-th bit of cq’s id equals the i-th bit of c’s id.

A natural question is how many comparisons we can avoid
from this rule. Suppose that (1) label coordinates of graph
fragments are uniformly distributed in grids and (2) a query
fragment’s label coordinate is uniformly distributed in grids
as well, the following result shows the expected number of
comparisons a FracFilter makes for verification.

Theorem 1: Given λ, grid density, d, the number of dimen-
sions, and ns, the number of graph fragments, the expected
number of extra comparisons for an arbitrary query fragment

is dns

λd

(

λ+1
2

)d−1
.

Proof: We show the expected number of comparisons a
FracFilter requires for an arbitrary query fragment. (1) The
probability that a query fragment falls into grid cq with a base-
λ id adad−1 · · · a1 is 1

λd . (2) The number of grids in R2 that
need d more comparisons for each graph fragment is 1 (cq
itself), the number of grids that need d− 1 more comparisons

is
∑d

j=1(λ − aj − 1), and in general, the number of grids
that need d− k more comparisons for each graph fragment is
∑

(j1,j2,··· ,jk)

∏k

i=1(λ − aji − 1) where (j1, j2, · · · , jk) enu-

merates all k-combinations of (1, 2, · · · , d). Taking summation
over all possible cq , the number of grids that need d−k more

comparisons is
(

d

k

)

λd−k
[

λ(λ−1)
2

]k
. Thus, the expected number

of comparisons is derived by

EX =
ns

λd

1

λd

d
∑

k=1

k ·

(

d

k

)

λ
k
[λ(λ− 1)

2

]

d−k

= −
ns

λd

(λ− 1)d+1

2d

[

(
2

λ− 1
+ 1)

d
]

′

=
dns

λd

(λ+ 1

2

)

d−1

.

Therefore, Theorem 1 is proved.

Consider an inverted index that scans the whole set of graph
fragments taking dns comparisons, and a naı̈ve verification

algorithm on a grid index that scans dns

λd

[(

λ+1
2

)d
−

(

λ−1
2

)d]

in average (the derivation is similar to the proof of Theo-
rem 1). The ratio from the number of comparisons made by a

FracFilter to the number by the inverted index is d
λd

(

λ+1
2

)d−1
;

similarly, the ratio from a FracFilter to the naı̈ve verification

algorithm is
2(λ+1)d−1

(λ+1)d−(λ−1)d
. In other words, when d = 7 (a 3-

star fragment with single node and edge labels), and λ = 25,
this ratio is lower than 0.005 for the inverted index, and lower
than 0.18 for the naı̈ve verification algorithm.

Remark. (1) Theorem 1 demonstrates that a FracFilter of a
larger grid density has a faster pruning speed in average. In
particular, when λd ≤ ns

2 , the first derivatives of the above
ratios will be negative so that the efficiency will increase if
λ increases; moreover, when λd ≤ ns

2 , the second derivatives
of the above ratios will be positive so that the efficiency gain

will diminish if λ increases. (2) Although in practice graph
fragments might not strictly uniformly distributed in grids, our
experimental results show that FracFilter performs well with
both real and synthetic fragment distributions in Sect. VI.

D. Index update in FracFilter

In this section, we discuss the update operations in
FracFilter. When a graph fragment is updated, it triggers one
of the two events in FracFilter: bounded or migration. (1) If
an update triggers bounded, the fragment stays in the same
grid. (2) If an update triggers migration, the fragment moves
out of the old grid, and moves into another one.

Given a fragment update, FracFilter is updated in two steps:
(1) find which grid should accommodate the updated fragment;
and (2) decide which event this update triggers and take
the corresponding action to update FracFilter. In the second
step, if the update triggers event bounded, it takes no update
operation; if the update triggers event migration, it takes two
operations: (a) delete the fragment from the old grid’s fragment
list, and (b) insert the updated fragment into the right grid.

Suppose the label coordinate of an updated fragment is
uniformly distributed in the space, we obtain the following
complexity result for index update in FracFilter.

Theorem 2: Given d is the number of dimensions and λ
is the grid density, FracFilter takes 2(1 − 1

λd) operations per
update in average.

Proof: For an arbitrary update, the probability of staying
in the original grid is 1

λd . Thus, the expected number of

operations an update takes is 0 · 1
λd + 2 · (1− 1

λd).

Remark. Theorem 2 suggests that a FracFilter of smaller grid
density λ is more likely to take fewer update operations. In
Fig. 7, we make the same update to the fragment in the bottom-
left corner: (1) the update in the FracFilter of λ = 2 triggers a
bounded event, and requires no operation (Fig. 7(a)); however,
(2) the update in the FracFilter of λ = 4 triggers a migration

event requiring a deletion and an insertion on lists (Fig. 7(b)).
Indeed, if an update triggers a migration event in a FracFilter
of smaller grid density, it must triggers a migration event in a
FracFilter of larger grid density; on the other hand, if an update
triggers a migration event in a FracFilter of larger grid density,
it might only trigger a bounded event in a FracFilter of smaller

0 1.0

1.0

dim2

dim1

2 3

0 1

s

Ds

(a) λ = 2

0 1.0

1.0

dim2

dim1

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

s

Ds

(b) λ = 4

Fig. 7. An update on FracFilter of density 2 (left) and 4 (right), respectively.
When a fragment in bottom left corner is updated, it triggers a bounded event
on the left, but a migration event on the right.

grid density. Note that a larger grid density λ brings better
search performance at the cost of higher memory usage and
slower update performance. In practice, one can try different
λ, and use the one that best fit the application.

V. OPTIMIZE QUERY PROCESSING

In this section, we discuss how to accelerate subgraph
matching at the fragment join phase. Various heuristics have
been proposed to join paths or two-level trees in a selected
order such that the amount of redundant intermediate results
is reduced [31], [46]. Different from these studies, we deal
with general subgraphs in this work. In particular, we need
to address two critical issues. First, we need to define the
join selectivity of general subgraphs, and propose an algorithm
to find a set of query fragments that minimizes redundancy.
Second, in a considerable number of cases, no matter which
join order we apply, a naı̈ve join will take a long time.
Consider the following example.

Example 3: Cq1 , Cq2 , and Cq3 are the candidate sets of
query fragment q1, q2, and q3, and the size of these candidate
sets is uniformly 106. In the data graph, there is no matched
subgraph, but we do not know it when we conduct the join. In
this case, no matter how we place the join order, a naı̈ve join
for the first two candidate sets will take 1012 comparisons.

In this paper, we propose a two-step method to address the
above issue: (1) we use minimum fragment cover to find a set
of query fragments whose candidate sets potentially involve
the minimum amount of redundant intermediate results; and
(2) fingerprint based pruning is applied to prune redundant
comparisons between a pair of candidate sets.

A. Minimum fragment cover

Minimum fragment cover finds a small set of selective query
fragments with small candidate sets to reduce computation cost
at the join phase, with the constraint that the result of fragment
join over this small set of query fragments is equivalent to
that over the whole set of query fragments. There are two
intuitions behind minimum fragment cover. (1) We only need
a subset of query fragments that jointly cover all nodes and
edges in the query graph, and we refer to such a subset as
a fragment cover. (2) As there are multiple ways to select
fragment covers, one might prefer to take the one of a smaller
search space for fragment join. In the following, we define an
optimization problem that implements the above intuition.

Given a fragment cover {q1, q2, ..., qk} and their corre-
sponding candidate sets {Cq1 , Cq2 , ..., Cqk}, the joint search

space size is bounded by exp (J),

J = log(
k
∏

i=1

|Cqi |) =
k

∑

i=1

log(|Cqi |).

Indeed, one may prefer a fragment cover that optimizes the
upper bound J . Therefore, with J as the objective function,
we define the minimum fragment cover problem as follows.

Definition 2 (Minimum fragment cover): Given a query
graph Q with its whole set of query fragments {q1, q2, ...,
ql} and their candidate sets {Cq1 , Cq2 , ..., Cql}, a minimum

fragment cover is a subset of query fragments {qi1 , qi2 , ...,
qik} such that (1) this subset is a fragment cover, and (2) its
corresponding J is minimum.

However, the following result indicates that it is difficult to
find the minimum fragment cover in polynomial time. Instead,
one can obtain an approximated solution in polynomial time
with approximation guarantee.

Theorem 3: The minimum fragment cover problem is NP-
complete; however, there exist greedy algorithms with an
approximation ratio O(lnn), where n is the sum of the number
of nodes and the number of edges.

Proof: To prove the NP-completeness of the minimum
fragment cover problem, one could reduce an arbitrary set
cover instance [12] to a minimum fragment cover instance
by (1) constructing a depth-1 tree where each leaf maps to an
element in the ground set and (2) constructing a smaller depth-
1 tree for each set where a leaf maps to an element contained
by the set. One can verify that this transformation runs in
polynomial time, and a solution to the transformed instance
is a solution to the original set cover instance. Since the
minimum fragment cover problem is NP, the NP-completeness
of the problem follows. Moreover, an arbitrary minimum
fragment cover instance can be easily transformed into a
set cover instance. Therefore, the approximation guarantee
O(lnn) for set cover [12] can be applied to minimum fragment
cover. In sum, the correctness of Theorem 3 is proved.

B. Fingerprint based pruning

The intuition of fingerprint based pruning includes two as-
pects. (1) Given a fragment cover, it is preferable to join frag-
ments in an order such that it results in connected subgraphs
at every intermediate step. Indeed, disconnected subgraphs
at intermediate step will lead to an explosion of the search
space. To obtain a connected intermediate subgraph, two query
fragments at any intermediate step have to share a set of nodes.
In other words, these overlapping and non-overlapping nodes
form the join conditions for graph fragments. (2) Suppose join
operations are conducted between two candidate sets Cq1 and
Cq2 where q1 and q2 share several common nodes. Let gi be
a graph fragment from Cq1 . It is very likely that only a small
portion of graph fragments in Cq2 share the required common
nodes with gi; meanwhile, only this small portion of graph
fragments are worth checking. Therefore, instead of linearly
scanning Cq2 , it is preferable for gi to only check those graph
fragments of the required common nodes. With this spirit, we
propose fingerprint based pruning that (1) extracts the required
common nodes for fragment join, (2) makes fingerprints based
on these common nodes, and (3) prunes redundant search if
two fragments have different fingerprints.

v1

v2
v5v3

v4

v1

v2

v2

v5
v3

v5v3

v4

(v1,v2) (v2, v3, v5) (v3, v5, v4)

v1

v2

F1: dim(2): v2

2

53

F2� dim(1)� �
2

1

2

53

53

4

�4� di��3�+di��4�� �
3
+�

5

�3� di��1�+di��2���3+�5

1
2

4 4

3

1

2

4

3

i d 1

1 2

3

2
4

3

1 2 3 5

Fig. 8. An example of fingerprint based pruning

To illustrate how we perform fingerprint based pruning, an
example is presented in Fig. 8.

First, for a query graph Q, three query fragments q1, q2,
and q3 form a fragment cover, and their id coordinates are
(v1, v2), (v2, v3, v5), and (v3, v5, v4), respectively.

Second, the order of fragment join is as follows. (a) Join
the candidate sets of q1 and q2; and (b) join the intermediate
subgraphs from (a) with the candidate set of q3.

Third, starting with q1 and q2, they share v2 that is the
second dimension of q1’s id coordinate, and the first dimension
of q2’s id coordinate. Thus, for each graph fragment gi in the
candidate set of q2, the fingerprint of gi is constructed by
the node id at the first dimension of its id coordinate. Using
fingerprints as keys, graph fragments from q2’s candidate set
are organized by an inverted index. Given a graph fragment gj
from Cq1 , we first extract its fingerprint by the node id at the
second dimension of its id coordinate. With its fingerprint,
we search q2’s inverted index, and only check those graph
fragments sharing gj’s fingerprint.

Fourth, at intermediate steps, a similar procedure is con-
ducted. As shown in Fig. 8, the intermediate query graph q4
is obtained by joining q1 and q2, and we next join q4 with q3.
The common nodes of q4 and q3 are node v3 and node v5. v3
and v5 are the nodes at the third and the fourth dimension
of q4’s id coordinate; meanwhile, they are at the first and
second dimension of q3’s id coordinate. Similarly, we obtain
the fingerprints of q3’s candidate fragments, and organize them
by an inverted index. For a graph fragment gi of q4, we first
extract gi’s fingerprint, locate those graph fragments sharing
its fingerprint by q3’s inverted index, and only check those
promising graph fragments.

In addition, given a fragment cover, the join order is
determined by a heuristic algorithm. We start with the query
fragment of the smallest candidate set in the fragment cover.
At each step, we select the query fragment that shares common
nodes with the query fragments that have been joined. If there
exist multiple such query fragments, we select the one with
the smallest candidate set. We repeat this process until all the
query fragments in a fragment cover are joined.

VI. EXPERIMENTS

Using real and synthetic data, we conducted three sets of
experiments to evaluate the performance Gradin. Both real and
synthetic data are used to evaluate Gradin’s performance on
query processing and index construction/update. The synthetic
data is used to study its scalability.

Gradin is implemented in C++. All experiments were ex-
ecuted on a machine powered by an Intel Core i7-2620M
2.7GHz CPU and 8GB of RAM, using Ubuntu 12.10 with
GCC 4.7.2. Each experiment was run 10 times. In particular,
for query processing, each run includes 100 query graphs. For
all experiments, their average results are presented.

A. Experiment setup

Data graphs. We used the following network topologies as
data graphs. (1) BCUBE is a network architecture for data
centers [15]. We generated BCUBE networks as follows. (a)
The number of nodes in the networks ranges from 3, 000
to 15, 000 with step 2, 000; and (b) the average degree of
a network is between 18 and 20. In particular, a BCUBE
network of 3, 000 nodes was used to compare Gradin with its
baselines, and the rest networks were used to evaluate Gradin’s
scalability. (2) CAIDA1 dataset contains 122 Autonomous
System (AS) graphs, from January 2004 to November 2007.
In particular, we used the largest AS graph of 26, 475 nodes
and 106, 762 edges to compare query processing and indexing
performance between Gradin and its baselines.

Numerical labels and updates. We obtained the numerical
labels and their updates from the ClusterData2. It contains the
trace data from about 11k machines over about a month-long
period in May 2011 [25]. For each machine, we extracted its
CPU and memory usage traces, and each trace is represented
as a sequence of normalized numerical values between 0
and 1. Moreover, we randomly mapped a cluster machine
to a node in a data graph, and obtained numerical labels
on nodes along with their updates. In particular, we applied
the node labels/updates from ClusterData to the evaluation
for query processing (Sect. VI-B) and indexing performance

(Sect. VI-C).
In order to explore how our technique performs on different

numerical label distributions, we generated labels and updates
from statistical distributions of estimated parameters (using
ClusterData as sample data). The generated labels are applied
to the evaluation for scalability in Sect. VI-D.

Query graphs. As query graphs are usually small [36], [46],
we consider all possible connected graphs of 3 to 10 edges
as possible queries, and the numerical labels on nodes are
randomly drawn from 0 to 1.

Baselines. Five baselines are considered: VF2, UpdAll,
NaiveGrid, NaiveJoin, and UpdNo. (1) VF2 [8] is a state-
of-the-art subgraph search algorithm without any index.
(2) UpdAll indexes fragment label coordinates with multi-
dimensional search trees. This index enables fast candidate
search; however, update operations are costly on the search
tree. In particular, we implemented two versions of search
trees: (a) a multi-dimensional binary tree of better update pro-
cessing performance is used to compare indexing performance
in Sect. VI-C; and (b) an R-tree [16] of faster query processing
performance is used to compare query processing performance
in Sections VI-B and VI-D. (3) NaiveGrid is a grid index with

1http://snap.stanford.edu/data/as-caida.html
2http://code.google.com/p/googleclusterdata/

wiki/ClusterData2011 1

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 3 4 5 6 7 8 9 10

C
o
m

p
a
ri
s
o
n
 c

o
s
t

ra
ti
o

Query size (#edges)

Gradin-5
Gradin-15
Gradin-25

(a) Comparison cost ratio@B3000

 0.001

 0.01

 0.1

 1

 10

 3 4 5 6 7 8 9 10

F
ilt

e
ri
n
g
 t

im
e
 (

s
e
c
)

Query size (#edges)

UpdNo
NaiveGrid

Gradin
UpdAll

(b) Filtering time@B3000

 0.001

 0.01

 0.1

 1

 10

 100

 3 4 5 6 7 8 9 10

Q
u
e
ry

 p
ro

c
e
s
s
in

g
 t

im
e
 (

s
e
c
)

Query size (#edges)

VF2
UpdNo

NaiveGrid
Gradin
UpdAll

(c) Query processing time@B3000

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 3 4 5 6 7 8 9 10

C
o
m

p
a
ri
s
o
n
 c

o
s
t

ra
ti
o

Query size (#edges)

Gradin-5
Gradin-15
Gradin-25

(d) Comparison cost ratio@CAIDA

 0.01

 0.1

 1

 10

 3 4 5 6 7 8 9 10

F
ilt

e
ri
n
g
 t

im
e
 (

s
e
c
)

Query size (#edges)

UpdNo
NaiveGrid

Gradin
UpdAll

(e) Filtering time@CAIDA

 0.1

 1

 10

 3 4 5 6 7 8 9 10

Q
u
e
ry

 p
ro

c
e
s
s
in

g
 t

im
e
 (

s
e
c
)

Query size (#edges)

UpdNo
NaiveGrid

Gradin
UpdAll

(f) Query processing time@CAIDA

Fig. 9. Query processing performance on B3000 and CAIDA with 100 compatible subgraphs returned

a naı̈ve verification algorithm. (4) NaiveJoin uses FracFilter
at the filtering phase, but a naı̈ve join is applied for fragment
join. (5) UpdNo is an inverted index where each entry points
to a list of fragments of the same structure. It never updates
index; however, it requires a large amount of comparisons for
searching candidate fragments.

B. Query processing

In the first set of experiments, we investigated the query
processing performance of Gradin on the BCUBE graph of
3,000 nodes (B3000) and the largest CAIDA graph (CAIDA).

Since a service placement task might require multiple com-
patible subgraphs to be returned [1], [20], in the experiments,
the number of returned compatible subgraphs r is set to be 5,
10, or 100. Formally, given a graph G, taking a query graph
Q as input, we find up to r compatible subgraphs.

Pruning power. We evaluate the pruning power of Gradin,
UpdAll, NaiveGrid, and UpdNo, by measuring comparison

cost ratio and filtering time. (1) Comparison cost ratio defines
the ratio from the amount of label comparisons executed
by Gradin to the amount by NaiveGrid. In particular, the
comparison cost ratio is 100% for NaiveGrid. (2) Filtering

time defines the total amount of time spent in searching
candidate fragments. All the evaluations are conducted by
varying query graph size (the number of edges).

On B3000, Fig. 9(a) and Fig. 9(b) present the pruning power
of UpdAll, UpdNo, NaiveGrid, and Gradin: Fig. 9(a) presents
the comparison cost ratio of Gradin with grid density 5, 15,
and 25 (referred to as Gradin-5, Gradin-15, and Gradin-25),
respectively, while Fig. 9(b) only presents the filtering time
of the Gradin with grid density 25 (it always outperforms
the other two variants). On the one hand, when query size
increases, the Gradin variant of a greater grid density receives
better pruning power; however, the power gain is diminishing

when grid density grows. On the other hand, the filtering time
of all algorithms increases, when graph query size increases.
In particular, (1) as query size increases from 3 to 10, the
filtering time of Gradin increases from 0.046 to 1.387 seconds,
which is close to the performance of UpdAll (later, we will
show that UpdAll is 4-10 times slower in index construction
and update.); and (2) in terms of filtering time, Gradin is up
to 10 times faster than UpdNo, and is around 5 times faster
than NaiveGrid.

On CAIDA, Fig. 9(d) and Fig. 9(e) present consistent
results: (1) Gradin with grid density 25 has the best pruning
power, but the power gain is diminishing when grid density
grows; and (2) in terms of filtering time, Gradin is close to
UpdAll, is 10 times faster than UpdNo, and is up to 5 times
faster than NaiveGrid.

In sum, the above results verify our theoretical analysis in
Theorem 1.

Query processing time. We evaluate the total query pro-

cessing time of Gradin, UpdAll, UpdNo, NaiveGrid, and VF2.
The total query processing time includes query decomposition
time, filtering time, and fragment join time. In addition, all
the evaluations are conducted by varying query graph size (the
number of edges).

First, we studied the total query processing time of dif-
ferent techniques, and set the number of returned compatible
subgraphs to be 100. Fig. 9(c) and 9(f) present the total query
processing time on B3000 and CAIDA, respectively. Since
Gradin with grid density 25 always outperforms Gradin with
density 5 or 15, we only present the query processing time of
Gradin with grid density 25. On both data graphs, we observe
two common trends: (1) Gradin processes queries as fast as
UpdAll does; (2) Gradin outperforms UpdNo up to 10 times;
and (3) Gradin is up to 5 times faster than NaiveGrid. In
particular, on B3000, as the query size grows from 3 to 10,

the query processing time of Gradin increases from 0.046 to
1.62 seconds, while UpdNo’s query processing time increases
from 0.40 to 15.2 seconds, and NaiveGrid’s query processing
time increases from 0.27 to 6.12 seconds, which achieves up
to 10 times and 5 times speedup, respectively; meanwhile, on
CAIDA, as the query size grows, the query processing time of
Gradin increases from 0.29 to 1.98 seconds, while UpdNo’s
query processing time increases from 2.44 to 17.5 seconds,
and NaiveGrid’s query processing time increases from 1.46 to
9.98 seconds, which is around 8 times and 5 times speedup,
respectively. Moreover, VF2 cannot scale on both B3000 and
CAIDA: (1) on B3000, when the query size is more than 8,
VF2 cannot process 100 queries within 12 hours; and (2) on
CAIDA, even when the query size is 3, VF2 cannot process
100 queries within 6 hours. In the case of NaiveJoin, within 6
hours, it cannot process 100 queries of size 4 on B3000, and
cannot process 100 queries of size 3 on CAIDA (not shown).

 0.001

 0.01

 0.1

 1

 10

 100

 3 4 5 6 7 8 9 10

Q
u

e
ry

 p
ro

c
e

s
s
in

g
 t

im
e

 (
s
e

c
)

Query size (#edges)

VF2
Gradin

(a) 5 subgraphs returned

 0.001

 0.01

 0.1

 1

 10

 100

 3 4 5 6 7 8 9 10

Q
u

e
ry

 p
ro

c
e

s
s
in

g
 t

im
e

 (
s
e

c
)

Query size (#edges)

VF2
Gradin

(b) 10 subgraphs returned

Fig. 10. Query processing on B3000 returning 5 or 10 matches

Second, we investigated how VF2, NaiveJoin, and Gradin
perform when the number of returned subgraphs is smaller by
setting the number of returned subgraphs to be 5 or 10. The
query processing time on B3000 is presented in Fig. 10(a)
and Fig. 10(b). Two observations are made: (1) VF2 is faster
when the query size is small; and (2) Gradin performs better
when the query size is relatively large (e.g., ≥ 8 edges). When
a query graph is smaller, the number of matched subgraphs
in a data graph is larger in general, and the amount of
redundant search for VF2 is smaller as well. Since VF2 does
not conduct a global pruning as Gradin does, VF2 earns a
better performance when the query size is small. However,
when a query graph is relatively large, the number of matched
subgraphs decreases, and VF2 cannot successfully skip the
redundant search. Meanwhile, the pruning power of Gradin
is pronounced, especially when the query size gets larger. In
particular, when the query size is 10, Gradin performs around
50 times better than VF2 if 5 subgraphs are returned, and
around 100 times better if the number of returned subgraphs is
10. On CAIDA, even when the number of returned subgraphs
is 5, VF2 cannot process 100 queries of size 3 within 6 hours
(not shown); however, Gradin is able to process 100 queries
of size 10 within 6 minutes (i.e., 3.6 seconds per query). In
the case of NaiveJoin, even when the number of returned
subgraphs is 5, within 6 hours, it cannot process 100 queries
of size 4 on B3000, and cannot process 100 queries of size 3
on CAIDA (not shown).

Remarks. (1) When a query graph’s structure is indexed,
Gradin can directly answer the query without fragment join.
For example, we can answer query graph of size 3 on B3000
after the filtering phase. (2) We indexed fragments of no
more than 3 edges on B3000, while the indexed fragments on

TABLE I
INDEX CONSTRUCTION TIME (SEC)

Data graph UpdAll Gradin-5 Gradin-15 Gradin-25

B3000 85.3 18.5 19.6 21.1
CAIDA 61.6 17.1 17.4 17.5

TABLE II
INDEX SIZE (MB)

Data graph UpdAll Gradin-5 Gradin-15 Gradin-25

B3000 1644 607 610 615
CAIDA 1486 583 585 589

CAIDA have no more than 2 edges. On B3000, as the query
size increases from 4 to 10, the fragment join time increases
from 0.004 to 0.20; meanwhile, on CAIDA, the fragment join
time increases from 0.011 to 1.72, when the query size grows
from 3 to 10. This shows that our fragment join algorithms
effectively prune redundant search. The experiments also show
that as less sophisticated structures are indexed, it usually
takes more time on fragment join, since we need more query
fragments to cover a query graph, which results in a larger
number of join operations. (3) As the fragment join time is
largely reduced by our optimization techniques, the importance
of reducing filtering time is highlighted. Using FracFilter,
Gradin successfully reduces filtering time.

C. Indexing performance

In the second set of experiments, we investigated the in-
dexing performance of Gradin on the BCUBE of 3000 nodes
(B3000) and the largest CAIDA graph (CAIDA). In particular,
we built Gradin variants of grid density 5, 15, and 25, referred
to as Gradin-5, Gradin-15, and Gradin-25.

Index construction. We evaluate index construction time and
index size of UpdAll and Gradin variants. Index construction

time measures the amount of time spent in building index
after graph fragments are mined, and we separately report the
amount of time for mining graph fragments.

On B3000, we built Gradin variants and UpdAll based on
fragments of no more than 3 edges. It took us 370 seconds
to mine fragments from B3000, obtaining fragments of 5
different structures. Index construction time and index size
of UpdAll and Gradin variants are shown in Tables I and II,
respectively. All Gradin variants take less time and space to
build indices on B3000.

On CAIDA, we built Gradin variants and UpdAll based on
fragments of no more than 2 edges, and mined fragments of 2
different structures including one-edge and two-edge paths in
268 seconds. The performance results are reported in Tables I
and II, respectively. All Gradin variants take less time and
space to build indices on CAIDA as well.

Index update. We evaluate index update performance of
Gradin and UpdAll by measuring their update processing time

while varying the percent of updated nodes. Given a data
graph, the percent of updated nodes is the percentage of
nodes whose labels are updated. Since a node might appear in
multiple fragments, if the label of a node is updated, multiple
fragments might be simultaneously updated as well. Given a
set of updated nodes, we first find the corresponding updated
fragments, and then apply those fragment updates to a graph

index. The time spent in updating a graph index is referred to
as update processing time.

 0.1

 1

 10

 100

 10 15 20 25 30 35 40 45 50U
p

d
a

te
 p

ro
c
e

s
s
in

g
 t

im
e

 (
s
e

c
)

Percent of updated nodes (%)

UpdAll
Gradin-25
Gradin-15

Gradin-5

(a) Index update@B3000

 0.1

 1

 10

 100

 10 15 20 25 30 35 40 45 50U
p

d
a

te
 p

ro
c
e

s
s
in

g
 t

im
e

 (
s
e

c
)

Percent of updated nodes (%)

UpdAll
Gradin-25
Gradin-15

Gradin-5

(b) Index update@CAIDA

Fig. 11. Update processing time on B3000 and CAIDA

Fig. 11(a) presents the update processing time of UpdAll,
Gradin-5, Gradin-10, and Gradin-25 on B3000: (1) Gradin
variants outperform UpdAll, and (2) when the percent of
updated nodes increases, the update processing time of all
algorithms increases. In sum, Gradin variants are about 10-
20 times faster than UpdAll on B3000.

Fig. 11(b) shows update processing time on CAIDA. The
trends are consistent with those shown in Fig. 11(a), and
Gradin variants are 13-20 times faster than UpdAll on CAIDA.

Remarks. (1) As we consider more complex structures to
build graph indices, it usually takes more time on index
update. For both UpdAll and Gradin, a more complex structure
increases the number of dimensions of the corresponding
search index, which in turn increases update complexity. (2)
When Gradin-5 processes updates, about 40% of updates
trigger bounded events, which requires no update operations
on Gradin. However, this ratio drops from 40% to 15%, as we
apply Gradin-25. Even though Gradin-25 takes more time to
process updates that trigger migration events, it is still efficient
since update operations are merely insertions and deletions
on lists. In contrary, UpdAll processes all updates with costly
insertions and deletions on multi-dimensional search trees. It is
Gradin’s partial update strategy and inherent low-cost update
operations that make Gradin more efficient on index update.

D. Scalability

In the third set of experiments, we investigated the scala-
bility of Gradin by varying the size of a BCUBE graph.

Constrained by security policies and communication la-
tency, a service placement usually considers a few racks in
a data center3 [14], [20]. Suppose there are 40 machines in
each rack4, we ranged the number of racks in a data center
from 125 to 3754, and generated six BCUBE graphs of 5, 000,
7, 000, 9, 000, 11, 000, 13, 000, and 15, 000 nodes.

Node labels and updates were generated from beta distri-
butions B(a, b) of estimated parameters. The reasons why we
employed beta distributions include (1) per machine attributes
(i.e., available CPU time/memory) in ClusterData are normal-
ized between 0 and 1, while beta distribution is one of the
widely-used distributions that could generate random numbers
in such an interval; and (2) there exist efficient algorithms to
estimate parameters a and b from sample data5. In particular,

3http://msdn.microsoft.com/en-us/library/windowsazure/jj717232.aspx
4http://news.cnet.com/8301-10784 3-9955184-7.html
5http://en.wikipedia.org/wiki/Beta distribution

TABLE III
CONSTRUCTION TIME AND INDEX SIZE OF Gradin

Graph size 5K 7K 9K 11K 13K 15K

Tmine (sec) 49 89 142 227 357 513
Tindex (sec) 2.8 4.0 4.3 6.2 7.0 7.8
Size (MB) 65 100 111 176 202 229

 0.1

 1

 10

 100

 6000 8000 10000 12000 14000U
p

d
a

te
 p

ro
c
e

s
s
in

g
 t

im
e

 (
s
e

c
)

Data graph size (#nodes)

UpdAll
Gradin

(a) Index update@SYNCPU

 0.1

 1

 10

 6000 8000 10000 12000 14000

Q
u

e
ry

 p
ro

c
e

s
s
in

g
 t

im
e

 (
s
e

c
)

Data graph size (#nodes)

UpdNo
NaiveGrid

Gradin
UpdAll

(b) Query processing@SYNCPU

 0.1

 1

 10

 100

 6000 8000 10000 12000 14000U
p

d
a

te
 p

ro
c
e

s
s
in

g
 t

im
e

 (
s
e

c
)

Data graph size (#nodes)

UpdAll
Gradin

(c) Index update@SYNMEM

 0.1

 1

 10

 6000 8000 10000 12000 14000

Q
u

e
ry

 p
ro

c
e

s
s
in

g
 t

im
e

 (
s
e

c
)

Data graph size (#nodes)

UpdNo
NaiveGrid

Gradin
UpdAll

(d) Query processing@SYNMEM

Fig. 12. Scalability on BCUBE graphs of 5K - 15K nodes

the estimated parameters based on machine CPU time are
a ≈ 7.91 and b ≈ 7.03, and the estimated parameters based on
machine memory are a ≈ 2.42 and b ≈ 2.73. Moreover, the
corresponding distributions are referred to as SYNCPU and
SYNMEM, respectively.

In addition, the grid density of Gradin is set to 25, and the
indexed structures have no more than 2 edges.

Index construction. We evaluated index construction time
and index size of Gradin by varying data graph size. As
shown in Table III, When the graph size increases, for a data
graph of 15, 000 nodes with more than 150, 000 edges, Gradin
is constructed in less than 10 minutes (including fragment
mining), taking 229MB memory.

Index update. We evaluated the index update performance of
Gradin by varying data graph size. In particular, the percent of
updated nodes is fixed to 30%. As seen in Fig. 12(a) and 12(c),
Gradin takes less than 2 seconds to process more than 9M
updates, outperforms UpdAll in all cases, and the resulting
speedup is up to 20 times. Indeed, when data graph size gets
larger, Gradin can efficiently process updates.

Query processing. We evaluated the query processing perfor-
mance of Gradin by varying data graph size. In particular, the
query size (the number of edges) is fixed to 7, and Gradin
returns the first 100 distinct compatible subgraphs. Since VF2
and NaiveJoin cannot scale on the query graphs of size 7 (they
cannot process 100 query graphs within 6 hours), Fig. 12(b)
and 12(d) only reports the query processing time of Gradin,
UpdAll, NaiveGrid, and UpdNo. When a data graph has 15K
nodes with more than 150K edges, Gradin can process a query
graph of size 7 within 3 seconds in average. In terms of query
processing time, Gradin is close to UpdAll, and outperforms

UpdNo and NaiveGrid in all cases, with up to 8 times speedup.

E. Summary

We summarize the experimental results as follows. (1)
Gradin is efficient for index updates. Gradin outperforms the
baseline algorithm UpdAll, and the speedup is up to 10 times
on our datasets. (2) The search algorithm and fragment join
algorithms in Gradin accelerate query processing. Gradin out-
performs the baseline algorithms VF2, NaiveGrid, NaiveJoin,
and UpdNo. While VF2 cannot scale on larger query graphs,
Gradin processes all query graphs in 4 seconds, matches the
query processing speed of UpdAll, and is up to 10 times and
5 times faster than UpdNo and NaiveGrid, respectively.

VII. RELATED WORK

Subgraph matching. Subgraph matching is one of the
most critical primitives in many graph applications, such as
pattern search in protein-protein interaction networks [42],
[47], chemical compounds [17], [40], program invocation
graphs [45], [46], and communication networks [14], [36].
In these applications, subgraph matching queries have been
defined in their own ways, and a variety of techniques have
been proposed to resolve the corresponding challenges.

Subgraph matching queries are usually defined by the
NP-hard subgraph isomorphism [12]. Although branch-and-
bound based algorithms, such as Ullmann’s algorithm [34] and
VF2 [8], were proposed to improve the search efficiency, these
algorithms still cannot scale on large graphs [9], [40].

To accelerate subgraph-isomorphism based subgraph match-
ing, a variety of graph indices have been proposed. Among
them, substructure based indexing is the most widely adopted
framework. Although the indexed substructures could be di-
verse, such as paths [13], [46], trees [26], [42], or general
subgraphs [6], [18], [31], [38], [40], they follow a common
spirit: a small data graph, or a small region in a large data
graph, is worth searching, if it contains a query graph’s
substructures. In addition, He et al. [17] proposed closure-tree,
an R-tree-like search index, which only checks the data graphs
that are similar to a query graph and prunes unpromising
search for dissimilar data graphs.

In addition to exact matches, an inexact subgraph matching
query is a more general and flexible graph primitive. Given a
query graph, it aims to find similar subgraphs in data graphs,
where similarity is usually defined by graph edit distance [41].
To speed up query processing, substructure based indices are
widely adopted, such as Grafil [41], SAPPER [45], and many
others [19], [22], [32], [37].

Note that all the graph indices discussed above are designed
for static data graphs with discrete node/edge labels; however,
in our problem setting, node/edge labels are dynamically
updated, and these labels are numerical values. The above
indices cannot efficiently process subgraph matching queries
on dynamic graphs with numerical labels: (1) frequent graph
updates result in serious index maintenance issues; and (2)
numerical node/edge labels cannot be naturally supported by
most of those indices. In this paper, we propose a graph index
addressing these issues.

Meanwhile, variants of subgraph matching queries have
been studied. Tong et al. [33] proposed a proximity-based

score function, and the top-k subgraphs of the highest score
are returned as output. Cheng et al. [7] relaxed matching
conditions: instead of an adjacent node pair, a pair of reachable
nodes in a data graph is also eligible to match an edge on a
query graph. Similarly, in [47], a pair of nodes that satisfy a
pre-defined distance constraint is eligible to match an edge on
a query graph as well. Moreover, Fan et al. [10], [11] defined
subgraph matching by graph simulation, and Yuan et al. [44]
studied the subgraph matching problem on uncertain graphs
with categorical labels. Different from them, our work focuses
subgraph-isomorphism based queries where data graphs have
dynamically changing numerical labels.

Closer to our work are the studies from Wang et al. [4],
Mondal et al. [21] and Fan et al. [9]. In [9], incremental
algorithms are proposed to answer a fixed set of queries on
dynamic graphs. In this paper, we consider a different setting
and aim to serve arbitrary subgraph matching queries on
dynamic graphs. Wang et al. [4] also considered the dynamic
nature of data graphs; however, our work is different from
theirs as follows: (1) in [4], the proposed technique aims to
answer approximate matching, while we propose a solution
for exact matching; and (2) although node/edge uncertainty
represented by numerical values are also considered, the
proposed indexing technique is still based on categorical
node/edge labels [35]; thus it cannot solve the challenge in
our problem setting. Mondal et al. [21] studied how to make
node replication decisions based on dynamically changing
workload to optimize the performance for queries such as
reading neighbors’ data. Instead, our work focuses on how
to improve the performance for more sophisticated subgraph
matching queries on dynamic graphs with numerical labels.

Multi-dimensional index. Multi-dimensional indices have
been studied for applications that monitor moving objects.
Early works [5] used variants of R-tree to index moving
objects and accelerate range/kNN queries; however, the update
operations in these techniques are usually costly, while data
points are frequently updated in the applications [28], [30].
To address the issue from frequent data updates, grid based
indices are proposed [3], [23], [27], [28], [43]. In particular,
Chakka et al. [3] used a grid based index to manage a large
number of trajectories, Mouratidis et al. [23] and Yu et al. [43]
discussed how to use grid based indices to accelerate kNN
queries, Šidlauskas et al. [28] conducted an experimental
study to compare grid based indices with variants of R-
tree in update-intensive applications, and the possibility of
incorporating parallelism into grid based indices is investigated
in [27]. Our grid based index shares this spirit. It differs in
the following aspects. (1) We show theoretical results on a
more general setting: instead of two-dimensional space widely
discussed in the above works, we focus on indexing points
in a general multi-dimensional space, and derive theoretical
bounds for update and search performance. (2) We discuss how
index parameters affect update and query performance with
both theoretical and experimental results. (3) We investigate
the feasibility and principles of applying multi-dimensional
indices to prune redundant search for dynamic subgraph
matching queries.

VIII. CONCLUSIONS

In this paper, we identified a new important application
of graph query in cloud computing and defined a general
subgraph matching problem on dynamic graphs of numerical
labels. We introduced a new method called Gradin to index
graphs of numerical labels. Gradin can efficiently process
frequent index updates and prune unpromising matches. In
particular, FracFilter, one important component of Gradin,
was proposed to keep the cost of update operations low and
enable fast search. Minimum fragment cover and fingerprint
based pruning were proposed for fast query processing. Our
experimental results have shown that Gradin has better index
update and query processing performance in comparison to
baseline algorithms.

ACKNOWLEDGMENT

This research was sponsored in part by the Defense Ad-
vanced Research Project Agency (DARPA) agreement number
W911NF-12-C-0028, NSF grants IIS-0917228, IIS-0954125,
IIS-1219254, and the Army Research Laboratory under Co-
operative Agreement Number W911NF-09-2-0053 (NS-CTA).
The first author, Bo Zong, spent the Summer of 2012 at
IBM T.J. Watson Research Center, where he conducted this
research. The views and conclusions contained herein are those
of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Army
Research Laboratory or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notice
herein.

REFERENCES

[1] N. Bansal, K. Lee, V. Nagarajan, and M. Zafer. Minimum congestion
mapping in a cloud. In PODC, 2011.

[2] T. Benson, A. Akella, A. Shaikh, and S. Sahu. Cloudnaas: a cloud
networking platform for enterprise applications. In SoCC, 2011.

[3] V. P. Chakka, A. Everspaugh, and J. M. Patel. Indexing large trajectory
data sets with seti. In CIDR, 2003.

[4] L. Chen and C. Wang. Continuous subgraph pattern search over certain
and uncertain graph streams. TKDE, pages 1093–1109, 2010.

[5] S. Chen, C. Jensen, and D. Lin. A benchmark for evaluating moving
object indexes. In VLDB, 2008.

[6] J. Cheng, Y. Ke, W. Ng, and A. Lu. Fg-index: towards verification-free
query processing on graph databases. In SIGMOD, 2007.

[7] J. Cheng, J. Yu, B. Ding, P. Yu, and H. Wang. Fast graph pattern
matching. In ICDE, 2008.

[8] L. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub) graph
isomorphism algorithm for matching large graphs. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 26(10):1367–1372, 2004.
[9] W. Fan, J. Li, J. Luo, Z. Tan, X. Wang, and Y. Wu. Incremental graph

pattern matching. In SIGMOD, 2011.
[10] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu. Graph pattern

matching: From intractable to polynomial time. In VLDB, 2010.
[11] W. Fan, J. Li, X. Wang, and Y. Wu. Query preserving graph compression.

In SIGMOD, 2012.
[12] M. Garey and D. Johnson. Computers and Intractability: A Guide to

the Theory of NP-completeness. WH Freeman and Company, 1979.
[13] R. Giugno and D. Shasha. Graphgrep: A fast and universal method for

querying graphs. In ICPR, 2002.
[14] I. Giurgiu, C. Castillo, A. Tantawi, and M. Steinder. Enabling placement

of virtual infrastructures in the cloud. In Middleware, 2012.
[15] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and

S. Lu. Bcube: a high performance, server-centric network architecture
for modular data centers. SIGCOMM Review, pages 63–74, 2009.

[16] A. Guttman. R-trees: a dynamic index structure for spatial searching,
volume 14. ACM, 1984.

[17] H. He and A. Singh. Closure-tree: An index structure for graph queries.
In ICDE, 2006.

[18] H. Jiang, H. Wang, P. Yu, and S. Zhou. Gstring: A novel approach for
efficient search in graph databases. In ICDE, 2007.

[19] A. Khan, N. Li, X. Yan, Z. Guan, S. Chakraborty, and S. Tao.
Neighborhood based fast graph search in large networks. In SIGMOD,
2011.

[20] X. Meng, V. Pappas, and L. Zhang. Improving the scalability of
data center networks with traffic-aware virtual machine placement. In
INFOCOM, 2010.

[21] J. Mondal and A. Deshpande. Managing large dynamic graphs effi-
ciently. In SIGMOD, 2012.

[22] M. Mongiovı̀, R. Di Natale, R. Giugno, A. Pulvirenti, A. Ferro, and
R. Sharan. Sigma: a set-cover-based inexact graph matching algorithm.
Journal of bioinformatics and computational biology, pages 199–218,
2010.

[23] K. Mouratidis, D. Papadias, and M. Hadjieleftheriou. Conceptual parti-
tioning: an efficient method for continuous nearest neighbor monitoring.
In SIGMOD, 2005.

[24] R. Raghavendra, J. Lobo, and K. Lee. Dynamic graph query primitives
for sdn-based cloudnetwork management. In HotSDN, 2012.

[25] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch.
Heterogeneity and dynamicity of clouds at scale: Google trace analysis.
In SoCC, 2012.

[26] H. Shang, Y. Zhang, X. Lin, and J. Yu. Taming verification hardness: an
efficient algorithm for testing subgraph isomorphism. In VLDB, 2008.

[27] D. Šidlauskas, K. Ross, C. Jensen, and S. Šaltenis. Thread-level parallel
indexing of update intensive moving-object workloads. Advances in

Spatial and Temporal Databases, pages 186–204, 2011.
[28] D. Šidlauskas, S. Šaltenis, C. Christiansen, J. Johansen, and D. Šaulys.

Trees or grids? indexing moving objects in main memory. In SIGSPA-

TIAL GIS, 2009.
[29] M. Song, H. Choo, and W. Kim. Spatial indexing for massively update

intensive applications. Information Sciences, pages 1 – 23, 2012.
[30] M. Song and H. Kitagawa. Managing frequent updates in r-trees for

update-intensive applications. IEEE Transactions on Knowledge and

Data Engineering, 21(11):1573–1589, 2009.
[31] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. Efficient subgraph

matching on billion node graphs. In VLDB, 2012.
[32] Y. Tian and J. Patel. Tale: A tool for approximate large graph matching.

In ICDE, 2008.
[33] H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rad. Fast best-effort

pattern matching in large attributed graphs. In SIGKDD, 2007.
[34] J. Ullmann. An algorithm for subgraph isomorphism. Journal of the

ACM (JACM), 23(1):31–42, 1976.
[35] C. Wang and L. Chen. Continuous subgraph pattern search over graph

streams. In ICDE, 2009.
[36] T. Wang, M. Srivatsa, D. Agrawal, and L. Liu. Learning, indexing, and

diagnosing network faults. In SIGKDD, 2009.
[37] X. Wang, A. Smalter, J. Huan, and G. Lushington. G-hash: towards fast

kernel-based similarity search in large graph databases. In EDBT, 2009.
[38] Y. Xie and P. Yu. CP-index: on the efficient indexing of large graphs.

In CIKM, 2011.
[39] X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In

ICDM, 2002.
[40] X. Yan, P. Yu, and J. Han. Graph indexing: A frequent structure-based

approach. In SIGMOD, 2004.
[41] X. Yan, P. Yu, and J. Han. Substructure similarity search in graph

databases. In SIGMOD, 2005.
[42] J. Yang, S. Zhang, and W. Jin. Delta: indexing and querying multi-

labeled graphs. In CIKM, 2011.
[43] X. Yu, K. Pu, and N. Koudas. Monitoring k-nearest neighbor queries

over moving objects. In ICDE, 2005.
[44] Y. Yuan, G. Wang, H. Wang, and L. Chen. Efficient subgraph search

over large uncertain graphs. In VLDB, 2011.
[45] S. Zhang, J. Yang, and W. Jin. Sapper: subgraph indexing and

approximate matching in large graphs. In VLDB, 2010.
[46] P. Zhao and J. Han. On graph query optimization in large networks. In

VLDB, 2010.
[47] L. Zou, L. Chen, and M. Özsu. Distance-join: Pattern match query in a

large graph database. In VLDB, 2009.

