gApprox: Mining Frequent Approximate Patterns from a Massive Network

Chen Chen’ Xifeng Yan!

TUniversity of Illinois at Urbana-Champaign
{cchen37, feidazhu, hanj} @cs.uiuc.edu

Abstract

Recently, there arise a large number of graphs with mas-
sive sizes and complex structures in many new applications,
such as biological networks, social networks, and the Web,
demanding powerful data mining methods. Due to inherent
noise or data diversity, it is crucial to address the issue of
approximation, if one wants to mine patterns that are po-
tentially interesting with tolerable variations.

In this paper, we investigate the problem of mining fre-
quent approximate patterns from a massive network and
propose a method called gApprox. gApprox not only finds
approximate network patterns, which is the key for many
knowledge discovery applications on structural data, but
also enriches the library of graph mining methodologies by
introducing several novel techniques such as: (1) a com-
plete and redundancy-free strategy to explore the new pat-
tern space faced by gApprox; and (2) transform “frequent
in an approximate sense” into an anti-monotonic constraint
so that it can be pushed deep into the mining process. Sys-
tematic empirical studies on both real and synthetic data
sets show that frequent approximate patterns mined from
the worm protein-protein interaction network are biologi-
cally interesting and gApprox is both effective and efficient.

1 Introduction

In the past, there have been a set of interesting algorithms
[4, 10, 6] that mine frequent patterns in a set of graphs.
Recently, there arise a large number of graphs with mas-
sive sizes and complex structures in many new applications,
such as biological networks, social networks, and the Web,
demanding powerful data mining methods. Because of their
characteristics, we are now interested in patterns that fre-
quently appear at many different places of a single network.

Example 1 Let us consider a Protein-Protein Interaction
(PPI) network in Biology. A PPI network is a huge graph
whose vertices are individual proteins, where an edge ex-
ists between two vertices if and only if there is a significant
protein-protein interaction. Due to some underlying bio-
logical process, occasionally we may observe two subnets

Feida Zhut Jiawei Han'

fIBM T. J. Watson Research Center
xifengyan @us.ibm.com

P, and Py, which are quite similar in the sense that, af-
ter proper correspondence, discernable resemblance exists
between individual proteins, e.g., with regard to their amino
acids, secondary structures, etc., and the interactions within
P, and P, are nearly identical to each other L

ube-18 pqn-57 ube-1 abu-1

M02G9.1 F46F11.7 unc-97 F30H53 Y65B4A7

abu-11

Iys-1 abu-8 pan-71 Iys-2 M195.2 F35A5.4

() ()

Figure 1. Two subnets extracted from the worm PPI net-
work, where proteins at the corresponding positions of (a)
and (b) are biologically quite similar, and 2 PPI deletions
plus 3 PPl insertions transform (a) into (b).

There are in general two major complications to mine
such massive and highly complex networks:

First, compared to algorithms targeting a set of graphs,
mining frequent patterns in a single network needs to par-
tition the network into regions, where each region contains
one occurrence of the pattern. This partition changes from
one pattern to another; whereas for any given partition, re-
gions may overlap with each other as well. All these prob-
lems are not solved by existing technologies for mining a
set of graphs.

Second, due to various inherent noise or data diversity,
it is crucial to account for approximations so that all poten-
tially interesting patterns can be captured. Cast to the PPI
network we described in Example 1 (see Fig.1), as long as
their similarity is above some threshold, it is ideal to detect
P, as a place where P, approximately appears.

In retrospect, compared to the rich literature on mining
frequent patterns in a set of graphs, single network based
algorithms have been examined to a minor extent. [5, 7, 1]

'In Biology, this might represent a mechanism to backup a set of pro-
teins whose mutual interactions support a vital function of the network, so
that in case of any unexpected events, the “copy” can switch in.

took an initial step toward this direction; however, they only
considered the first issue and did not pay enough attention to
the second, i.e., none of them mined approximate patterns.
As will be manifested later, the above two issues are actu-
ally intertwined when approximation comes into play; and
thus, our major challenge is to lay out a new mining para-
digm that does consider approximate matching in its search
space.
To summarize, we made the following contributions:

1. We investigate the problem of mining frequent ap-
proximate patterns from a massive network: We give an ap-
proximation measure and show its impact on mining, i.e.,
how a pattern’s support should be counted based on its ap-
proximate occurrences in the network.

2. We propose a graph mining method called gApprox to
tackle this problem: We design a novel strategy that is both
complete and redundancy-free to explore the new pattern
space faced by gApprox, and transform “frequent in an ap-
proximate sense” into an anti-monotonic constraint so that
it can be pushed deep into the mining process.

3. We present systematic empirical studies on both real
and synthetic data sets: The results show that frequent ap-
proximate patterns mined from the worm protein-protein in-
teraction network are biologically interesting and gApprox
is both effective and efficient.

4. The techniques we developed for gApprox are gen-
eral, which can be applied to networks from other domains,
e.g., social networks.

The rest of this paper is organized as follows. Section 2
presents the general model of mining frequent approximate
patterns from a massive network. The mining algorithm is
developed in Section 3. We report empirical studies, and
give related work and discussions in Sections 4 and 5, re-
spectively. Section 6 concludes the paper.

2 Problem Formulation

Definition 1 (Network) A network G is an edge-weighted
graph, ie, G is a 3-tuple (Vg, Eg,wg), where wg
Eg — RT is a weighting function mapping each edge
euww = (u,v) € Eg to a real number wg|u, v] > 0.

This setting is well-defined for many real applications,
where vertices represent different entities, edges denote mu-
tual relationship between entities, and weights indicate the
tightness of such relationship (the tighter the relationship,
the closer the two entities, and thus the smaller the weight).

Definition 2 (Pattern) A pattern P is a connected and in-
duced subgraph of the network G, which can be represented
by a connected vertex set Vp C V.

2.1 Approximate Pattern Occurrences

The scenario we are interested in is: P, as a fragment
extracted from a particular region of G, may also appear in
some other regions approximately. This is associated with

an injective function m : V,, — Vi mapping each vertex
v € Vp to m(v) € Vg. Now, to quantify the degree of
approximation m incurs, we want to take into account: (1)
approximation on vertices, and (2) approximation on edges.

Vertex Penalties: For a vertex v € Vp, a list of match-
able vertices matchable(v) C Vi is provided. Let

< oo if m(v) € matchable(v)
oo otherwise

dis_sim[v, m(v)] = {

i.e., approximations can only happen within the matchable
list. Usually, this is a reasonable assumption in real appli-
cations. For example, in a PPI network, though we do not
want to require that two vertices are only matchable if they
represent the same protein, it is also aimless to match two
proteins that are very dissimilar or even irrelevant to each
other. Finally, we can obtain the matchable lists by assum-
ing a similarity cut-off § among all pairs of vertices.

Edge Penalties: For a relationship (v;,v;) of P and its
image (m(v;), m(v;)) under mapping m, an intuitive way
to define a measure penalizing approximation is to compare
the relationship tightness associated with each of them. One
way of quantifying the tightness here is to plug in a short-
est path based distance, which in essence treats the short-
est path u ~» v as a pseudo edge between v and v, with
its weight equalling the total weight summed over u ~~ v.
Now, having a (pseudo) weighted edge between each pair
of vertices, we can simply take an absolute difference and
present the penalty function as:

|dist[v;, v;] — dist[m(v;), m(v;)]] (1)

There could be other alternatives (e.g., max flow based)
to define a distance between two vertices. Or, if the spe-
cific application provides us with full tightness information
among all pairs of vertices, we can directly take them as
input. For instance, in the case of Example 1, in order to
reflect the number of PPIs that are different (i.e., present in
one but missing in the other) after the pattern is embedded,
we may adopt the following dist function for any two pro-
teins pr; and pr; in the PPI network,

. | 1 if pr; and pr; interact
distlpri, prj] = { 2 otherwise @
since |1 — 2| = 1. In this perspective, Eq.1 and our dis-

cussions below will be built on an abstract symbol of dist.
Definition 3 (Degree of Approximation) Given a pattern
P and a network G, an injective mapping m embeds P in
some region of G by matching a vertex v € Vp to a vertex
m(v) € Vig. This embedding is associated with a degree of
approximation approz(P % G), which is defined as:

Z dis_sim[v,m(v)] +

veEVP

Z |dist[vi, v;] — dist[m(v;), m(v;)]] (3)

v;,v;€Vp

Definition 4 (Approximate Occurrence) Given error tol-
erance A, the vertex set {m(v)|v € Vp} for an embedding
m is said to be an approximate occurrence of P if and only
if approz(P 2 G) < A.

2.2 Pattern Support with Approximation

Downward-closure is an important requirement to per-
form efficient mining [9], i.e., if P is a subpattern of P’
(Vp C Vpr), then sup(P) > sup(P’) must hold. If this
requirement is violated, for a task that asks for all patterns
with support higher than min_sup, there is no way we can
stop searching for even bigger patterns at any stage during
the mining process, because it is always possible for a pat-
tern to qualify min_sup after growing. This will make any
algorithm suffer from wuncontrollable explosions. Looking
at Fig.2, as sup(Pj23) = 2 > sup(P12) = 1 if overlap-
ping occurrences are counted, we have to follow a support
definition in which overlaps are prohibited.

Definition 5 (Pattern Support with Approximation)

Two occurrences of P are said to be disjoint if and only
if they do not share any vertices in common. Then, P’s
pattern support with approximation is defined to be the
maximal number of disjoint ones that can be chosen from

the set of its approximate occurrences.
Lemma 1 sup(P) > sup(P’), if P is a sub-pattern of

P!, i.e., pattern support with approximation is an anti-

monotonic mining constraint.
Definition 6 (Frequent Approximate Pattern Mining)

Given a network G and two thresholds: (1) maximal degree
of approximation A, (2) minimum support min_sup, find
the pattern set P such that VP € P, sup(P) > min_sup.
Here, any P € P is called a frequent approximate pattern.

O
Pus 0 @
O—O
®
(a) (b)

Figure 2. Embedding patterns P23 and Pi» of (a) in (b),
where 1 can match 1°, 2 can match 2’, 3 can match 3°/3”.

3 Algorithm

As a mining problem targeting all frequent approximate
patterns in a network, there are two major issues we need to
tackle, each of them will be discussed below.

1. Pattern Space Exploration: What is the problem’s
full pattern space, and how can we search through it? As
we indicated in the introduction, this search space must take
approximation into account.

2. Support Counting: For patterns in the search space,
how can we count their support and report those frequent
ones with regard to a predetermined threshold min_sup?
Based on Section 2, for each pattern, we should enumerate
its approximate occurrences in the network at first, and then
decide the maximal number of disjoint occurrences.

3.1 Pattern Space Exploration

As influenced by approximation, the pattern space we
face here is different from that in an exact mining paradigm.
Previous algorithms like [5] and [7] assume a network with
vertex/edge labels, while a pattern is nothing but a labeled
subgraph. By exact matching, in order to embed a pattern in
some region of the network, vertices/edges at corresponding
positions must have identical labels. In this sense, the pat-
tern space there consists of “all labeled graphs”, which can
be organized on a lattice and explored by search strategies
such as breadth-first search [4] and depth-first search with
right-most extensions [10].

In our setting, the network is not a labeled one; to accom-
modate approximations, what we have is a matchable list
for each vertex indicating all vertices that are highly similar,
treated as its “copies”. Keeping this in mind, it seems nec-
essary for us to treat every vertex as unique, which means
that each induced subgraph of the network may potentially
be a different pattern, i.e., “all connected vertex sets in a
given network™ is our new pattern space here.

In the following presentation, we are going to introduce
a strategy that is both complete and redundancy-free to tra-
verse the above search space. Fig.3 is taken as a running
example. To begin with, we losslessly decompose the pat-
tern space as follows:

1. Find all connected vertex sets in G that contain 1.

2. Remove 1 from G, and find all connected vertex sets
in the new graph G that contain 2.

3. And so on so forth ...

where step ¢ explores all patterns that contain vertex ¢ but
do not contain vertices 1,2, ...,7— 1. Now, we discuss step
1, i.e., generating all connected vertex sets starting from 1;
all other steps follow the same routine.

Stage 1: After the decomposition shown in Fig.3(b), start
from 1 and mark 1.

Stage 2: Expand from I to reach 2, 5, 6. Mark 2, 5, 6.
There are totally seven connected vertex sets in this stage:
{1,2},{1,5},{1,6},{1,2,5},{1,2,6},{1,5,6},{1,2,5,6}. In-
deed, as 2, 5, 6 are all adjacent to 1, {1} union any combi-
nation of 2, 5, 6 should be connected. Here, we can assume
an order of 6>5>2, unrepeatedly traverse the powerset of
{2,5,6} (as we do for itemsets), and finally union with {1}.
The whole procedure of stage 2 is depicted in Fig.3(c).

Stage 3: Taking each of the seven connected vertex sets
in stage 2 as a starting point, continue expansion. In
Fig.3(d), we pick {1,5,6} as an example and reach 4, 7.
Mark 4, 7. Explore {1,5,6} union anything in the powerset
of {4,7} in the same manner as we did in stage 2. Note that,
though there is an edge between 5 and 2, we prohibit the
expansion to 2, because 2 has already been marked in pre-
vious stages, in which case {1,5,6}|J{2}={1,2,5,6} is just
another starting point among the seven in stage 2. More

generally, only those vertices that are both adjacent and un-
marked can be absorbed during expansion.

Figure 3. Exploring the Pattern Space: (a) the original
graph, (b) decomposition of the problem and stage 1, (c)
stage 2, (d) stage 3, (e) stage 4, where each stage is enclosed
respectively within a loop. We darken marked vertices
along the way, while edges are correspondingly changed
from dotted to thickened as new vertices are absorbed.

Stage 4: Finally, in Fig.3(e), we pick {1,5,6,4,7} as an
example from the three connected vertex sets expanded in
stage 3, for which only an unmarked 3 can be absorbed.
Generate {1,5,6,4,7,3} and stop expansion, because there
are no more unmarked vertices now.

Algorithm 1 gives pseudo-code for the above process.

Theorem 1 Explore() in Algorithm 1 is both complete and
redundancy-free, i.e., given a network G, (1) it only gener-
ates connected vertex sets in G; (2) it can generate all con-
nected vertex sets in G; (3) it does not generate the same
connected vertex set more than once.

3.2 Support Counting

Now we are ready to look at support counting, in which
our first task is to enumerate the approximate occurrences of
any pattern encountered during Section 3.1’s pattern space
exploration. Since Explore() follows a depth-first fashion,
which continuously absorbs new vertices and expands the
current pattern P to P’ until backtracking, we can incre-
mentally obtain the occurrences of P’ based on those of P,
i.e., whenever we expand P to P’ = P|J{v}, the occur-
rences of P are also expanded by adding another vertex that
is matchable with v. Occurrences with degree of approx-
imation more than A and patterns with support less than
min_sup are dropped immediately.

A pattern P’s support is defined to be the maximal num-
ber of “disjoint” ones that can be chosen from P’s approx-
imate occurrences in the network. However, deciding this
maximum turns out to be a very hard problem, which is re-
lated to the NP-Complete maximal independent set, as some
previous works have shown [5]. If it is crucial to report the
“accurate frequency” of patterns, we can always calculate
it by brute-force; otherwise, an upperbound, like the one
developed in Algorithm 2, is enough, which will be used to
stop growing patterns based on the downward-closure prop-
erty.

Algorithm 1 Complete and Non-redundant Exploration

Function: Explore(G)

Input: a network G.

Output: all connected vertex sets in G.

1: for each v € G do mark(v) = false;

2: pick a vertex u with smallest ID, mark(u) = true, output {u};
3: DFS_vertical(G, {u});

4: remove v from G, and let the resulting graph be G;

5: Explore(é);

Function: DFS_horizontal(G, P, Vezpand)
Input: a network G, a set P of connected vertices in G, a vertex
set Vegpana Whose powerset is to be unioned with P.

Output: all connected vertex sets in G that consist of P, a proper
subset of Ve;pand, and some currently unmarked vertices.

1: Order the vertices in Vegpang as v1 < -+ < g3

2:fori=1tok do

: P’ = P J{v;}, output P’;

‘/prand = {Ui"rl’ s ’U’f};

DFS horizontal(G, P, V., .na)

DFS_vertical(G, P’);

AN AN

Function: DFS_vertical(G, P)

Input: a network G, a set P of connected vertices in G.
Output: all connected vertex sets in G that consist of P
and some currently unmarked vertices.

1: Vegpana={vlv € G,v ¢ P,mark(v) = false,
and P |J{v} is connected in G};

2: for each v € V404 do mark(v) = true;

3: DFS_horizontal(G, P, Vezpand);

4: for each v € Vypang do mark(v) = false;

Algorithm 2’s idea in providing an upperbound on the
maximal number of disjoint ones that can be chosen from
a pattern’s occurrences is explained by the following exam-
ple. Think each occurrence as a vertex set and assume there
are 4 of them: {v1,vo}, {v1,v3}, {v1,v4}, {ve,vs5}, then vy
acts like a “bottleneck” — because it is contained in 3 sets:
{v1,v2}, {v1,v3}, {v1,v4}, which is the most among all 5
vertices. Obviously, at most 1 set can be chosen from these

Algorithm 2 Providing a Support Upperbound

Function: Upperbound(Mp)

Input: the set of occurrences M p for a pattern P.

Output: an upperbound on the maximal number of disjoint

vertex sets that can be chosen from Mp.

1: sup_bound= 0;

2: while Mp # @ do

3: let v be the one that appears in the greatest number
of vertex sets in M p;

4: sup_bound=sup_bound+1;

5: for each m € Mp do

6: if m contains v then remove m from Mp;

3 in order to ensure disjointness. Keep iterating the same
procedure, we go on to consider the remaining set {vs, vs }
after all sets containing v, are removed: As we can get only
1 disjoint set here, the total number of disjoint occurrences
that can be chosen is at most 1 + 1 = 2.
Lemma 2 Given a pattern P, its support must be less than
or equal to the Upperbound(Mp) provided by Algorithm 2.
Now we are ready to combine all above together and de-
liver gApprox. The main skeleton of gApprox is Algorithm
I’s pattern space exploration: When examining each pat-
tern encountered, i.e., on the 3rd line of DFS_horizontal(),
we expand the occurrences of P (i.e., Mp) to obtain those
of P’ (let them be Mp.), and then based on Mp,, Upper-
bound() is called to decide whether P’ should be grown
further: If not, we terminate early. In summary, gApprox
is formed by simply inserting occurrence enumeration, sup-
port upperbound calculation, and a conditional branch on
the 3rd line of Algorithm 1°s DFS _horizontal() function.

4 Experiments

We performed empirical study on both real and synthetic
graph data sets. The real graph dataset is a worm PPI net-
work, obtained from the DIP database (Database of Inter-
acting Proteins: http://dip.doe-mbi.ucla.edu).
The synthetic data generator is provided by Kuramochi et
al. [4]. All experiments are done on a Windows machine
with 3GHz Pentium IV CPU and 1GB MEM; programs are
written in C++.

4.1 Worm PPI Network

The worm PPI network contains 2,637 proteins and
4,030 PPIs. There are 12,902 pairs of matchable proteins
having BLAST similarity score higher than § = 10~". The
most “frequent” protein has 74 “copies”, while on average
a protein is similar to 122693072 ~ 4.9 counterparts, which sug-
gests that we must set mein_sup low in order to capture fre-
quent patterns.

We want to discover protein subnet patterns that approx-
imately occur in more than min_sup locations of the PPI

network. As introduced in Section 2.1, Eq.1 is used to
quantify the distance between any two vertices in the net-
work. In order to focus solely on the interactions of pro-
teins, within 4, we treat the “vertex (protein) mismatch”
penalty dis_sim as 0. Fig.1(a) is one of the patterns discov-
ered, while Fig.1(b) gives its occurrence whose degree of
approximation is 5 (2 edge deletions plus 3 edge insertions).
In addition to similar interconnecting topologies, the two
subnetworks are composed of proteins with similar func-
tions and are often from the same protein family. Pairs of
functionally similar proteins are located in similar locations
in the network, indicating that these two protein networks
may be responsible for similar biological mechanisms. For
example, proteins pqn-54 and pqn-5 have the highest de-
gree in each network and are both Prion-like-(Q/N-rich)-
domain-bearing proteins. The proteins adjacent to these two
proteins also share similar function such as lys-1 and lys-2
which are both lysozyme proteins.

Apart from pattern interestingness, we further examine
the computational characteristics of gApprox. Fig.4 and
Fig.5 illustrate the number of frequent approximate patterns
and performance (i.e., running time) with varying minimum
support (min_sup) and maximal approximation (A).

It can be seen that when A increases, both the running
time and the number of frequent approximate patterns in-
crease; while a reverse situation exists for min_sup. These
phenomena are well expected. Note that, in Fig.4 and Fig.5,
A = 4 is the maximal approximation marked on the plots;
although 4 seems to be a relatively small number, it is not
small indeed: From Fig.1, we can see that patterns here
are in general not very “dense” networks — approximation
on 4 PPIs means 50% error tolerance for a pattern with 8
PPIs, which is already a quite significant amount. Even
though, our algorithm can still finish in about 6 minutes,
which clearly demonstrates the efficiency of gApprox.

4.2 Synthetic Data

We then test gApprox on a series of synthetic data sets,
showing its efficiency.

The data set we take is D1T3kLL200I10V60E1 [4], i.e.,
1 (D) network with 3,000 (T) vertices (and 4,976 edges),
which is generated by 200 (L) seed patterns of size 10 (I);
the number of possible vertex and edge labels are set to 60
(V) and 1 (E), respectively. Here, two vertices are match-
able (with dis_sim = 0 since they are “identical”) if the
same label is assigned to them. Furthermore, we randomly
pick a real number from [0.5, 1] to be the weight on each
edge: Since we do not want two separate vertices to have a
distance close to 0, 0.5 is fixed as a lowerbound. We adopt
the shortest path based distance and make a connectivity
cut-off based on it. If the shortest path distance is less than
1.5, then the two vertices are considered to be connected,
i.e., during pattern exploration, they are “adjacent”, and the
pattern expansion from one vertex to the other is enabled.

10000
100000 |

1000 |

10000 £ 100 -

Number of Patterns

Running Time (seconds)

100

0 ‘Z ‘A ‘6 ‘8 1‘0 12 0 ‘2 Ll 6 8 1‘0 12
Minimum Support Minimum Support
Figure 4. Pattern Num-
ber w.r.t min_sup and
Maximal Approximation
A, the worm PPI network

Figure 5. Running Time
w.r.t min_sup and Maxi-
mal Approximation A, the
worm PPI network

Fig.6 shows the algorithm’s performance (i.e., running
time) w.r.t min_sup and maximal approximation A; the
trends are similar as those depicted in Fig.5. We then
change the size of the generated network, and show how
gApprox reacts (Fig.7 varies the number of vertices (T) in a
network from 1000 to 5000).

5 Related Work and Discussions

Quite a few algorithms have been developed to mine fre-
quent patterns over graph data [4, 10, 6]. Most of them
worked on a set of graphs, which do not apply to the single
graph mining scenario here. Only a few [5, 7, 1] studied the
pattern mining problem in a single network.

Some studies formulate the problem as a searching pro-
cedure: Given a query (), searching asks for those places
where () exactly/approximately appears in the network. Ex-
act search is often referred to as graph matching, which
has been actively pursued for decades [2]. Recently, a few
approximate search methods have also been developed to
align the query path/substructure with the subject network
[3, 8], with the help of pre-built indices. However, mining
is still quite different from searching in that we never know
what the patterns are before discovering them. Thus, there
are no pre-defined queries that can be leveraged as axles for
the algorithms to search around.

6 Conclusions

In this paper, we investigate the problem of mining fre-
quent approximate patterns from a massive network: We
give an approximation measure and show its impact on min-
ing, i.e., how a pattern’s support should be counted based on
its approximate occurrences in the network. An algorithm
called gApprox is presented. Empirical studies show that
patterns mined from real protein-protein interaction net-
works are biologically interesting and gApprox is both ef-
fective and efficient.

The techniques we developed for gApprox is general,
which can be applied to networks from other domains as
well. As a promising topic, it would be interesting to sys-
tematically study how gApprox can be modified to reach

Running Time (seconds)

100

1000 |

100 -

Running Time (seconds)

. . . .
2000 3000 4000 5000
T used in the generator

L L L L L L
0 2 4 6 8 10 12 0 1000

Minimum Support

6000

Figure 6. Running Time
w.r.t min_sup and Maxi-
mal Approximation A, the
synthetic dataset

Figure 7. Running Time
w.r.t the Number of Ver-
tices in the Network, the
synthetic dataset

bigger, thus more interesting patterns even faster, with some
sacrifice on the completeness of mining results.

Acknowledgements. The work was supported in part
by the U.S. National Science Foundation NSF IIS-05-
13678/06-42771, and NSF BDI-05-15813. The authors
thank Xianghong Jasmine Zhou and Michael R. Mehan for
providing the cleaned PPI data and their interpretation of
the patterns discovered by gApprox.

References

[1] J. Chen, W. Hsu, M.-L. Lee, and S.-K. Ng. Nemofinder:
dissecting genome-wide protein-protein interactions with
meso-scale network motifs. In KDD, pages 106-115, 2006.

[2] D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty
years of graph matching in pattern recognition. IJPRAI,
18(3):265-298, 2004.

[3] M. Koyutiirk, A. Grama, and W. Szpankowski. Pairwise

local alignment of protein interaction networks guided by
models of evolution. In RECOMB, pages 48-65, 2005.

M. Kuramochi and G. Karypis. Frequent subgraph discov-
ery. In ICDM, pages 313-320, 2001.

M. Kuramochi and G. Karypis. Finding frequent patterns in
a large sparse graph. Data Min. Knowl. Discov., 11(3):243—
271, 2005.

S. Nijssen and J. N. Kok. A quickstart in frequent structure
mining can make a difference. In KDD, pages 647-652,
2004.

F. Schreiber and H. Schwobbermeyer. Frequency concepts
and pattern detection for the analysis of motifs in networks.
Transactions on Computational Systems Biology, 3 (LNBI
3737):89-104, 2005.

Y. Tian, R. C. McEachin, C. Santos, D. J. States, and J. M.
Patel. SAGA: a subgraph matching tool for biological
graphs. Bioinformatics, pages 232-239, 2006.

N. Vanetik, S. E. Shimony, and E. Gudes. Support measures
for graph data. Data Min. Knowl. Discov., 13(2):243-260,
2006.

X. Yan and J. Han. gspan: Graph-based substructure pattern
mining. In ICDM, pages 721-724, 2002.

(4]

(]

(6]

(7]

(8]

(9]

(10]

