
Efficient multicasting for delay tolerant networks
using graph indexing

Misael Mongiovı̀, Ambuj K. Singh,
Xifeng Yan and Bo Zong

Department of Computer Science
University of California

Santa Barbara, CA 93106, US
Email: {misael,ambuj,xyan,bzong}@cs.ucsb.edu

Konstantinos Psounis
Department of Electrical Engineering and

Computer Science
University of Southern California

Los Angeles, CA 90089 US
Email: kpsounis@usc.edu

Abstract—In Delay Tolerant Networks (DTN), end-to-end con-
nectivity between nodes does not always occur, due to limited
radio coverage, nodes mobility and other factors. Long-range
communication may assist in guaranteeing delivery. Since long-
range communication has a considerable cost, minimizing it is an
important task. For multicast routing, this problem is NP-hard,
and naive approaches are infeasible on large instances.

In this paper we define the problem of minimizing the long-
range communication cost for multicast in DTNs. Our formu-
lation handles the realistic scenario in which a data source is
continuously updated and nodes need to receive recent versions of
data. We analyze the problem in the case of scheduled trajectories
and known traffic demand, and propose a solution based on a
novel graph indexing system. We also give an adaptive extension
that handles limited knowledge in node mobility. Our method
significantly reduces the search space and finds an optimal
solution in reasonable time. An extensive experimental analysis
on large real and synthetic datasets shows that the proposed
method responds in less than 10 seconds on datasets with millions
of encounters and thousands of messages, with an improvement
of up to 100 times compared to a naive approach.

I. INTRODUCTION

Delay Tolerant Networks (DTN) are communication net-
works that lacks continuous connectivity due to node mobility,
failures or other factors. They experience frequent partitioning,
and end-to-end paths between two nodes may even never exist.
Routing in DTNs uses a store-carry-forward approach [11],
where intermediate nodes delay the transmission of messages
until new links are available and the message is “eventually”
delivered with some delay. When the lack of connectivity is
due to node mobility, the movement of nodes can be exploited
to carry the messages.

In recent years, routing protocols for multicast in DTNs
have received considerable attention [28], [13], [8]. Multicast
protocols optimize the transmission cost by sharing routing
paths among multiple destinations. Recent advances allow us
to achieve a good tradeoff between minimization of the trans-
mission cost and maximization of the delivery rate. However,
due to the nature of DTN networks, proper delivery cannot
always be guaranteed.

To guarantee the connectivity, nodes can be equipped with a
long-range communication device [27] to be used when end-
to-end communication cannot be otherwise achieved. Since

long-range communication is expensive, its utilization should
be limited as much as possible. Providing an extra long-
range communication to guarantee delivery introduces the new
challenging problem of minimizing its cost.

In this paper we formulate the problem of optimizing the
long-range communication cost in a network of moving nodes
and call it the demand cover problem. Our model considers
a set of moving nodes (e.g. people or vehicles) that are
equipped with a device providing two kinds of communication.
A short-range communication (e.g. radio), considered non-
costly, can occur between two nodes when they are close to
each other. A remote (long-range) communication (e.g. cellular
or satellite), which involves a cost, can occur at any time
independently of the node positions. In our model, a set of
continuously-updated data objects need to be shared among
nodes. Each data object needs to be received by a subset of
destinations. For each destination, its deadline (time instant at
which the object is needed) is specified. To avoid receiving
non-recent copies of objects, a latency is also specified. We
aim to find the set of remote transmissions that minimizes
the communication cost subject to the aforementioned delay
constraints. To our knowledge, we are the first to analyze the
problem of optimizing the long-range communication cost for
multicast in a DTN.

The described problem has several practical applications.
For instance, consider a network of city buses, in which
the transportation agency wants to provide passengers with
personalized news that depends on their position, traveling
plan etc. Each bus can obtain the updates by the cellular
network (costly). However, it is more convenient to share the
information among various buses via radio communication
(non-costly). Another example considers soldiers or military
vehicles that move following a specific strategy. They need
to access certain information related to their location (e.g.
satellite images). In this case, the only options available
are satellite communication (highly costly) and node-to-node
communication. The proposed approach also has applications
in data ferrying [27], [21]. A set of moving nodes (ferries) is
charged for gathering data. Depending on time constraints on
data delivery, the ferries may decide whether to use short-range
or long-range communication. Note that in these examples, the

2

node trajectories and the traffic demand are known in advance.
Solving the demand cover problem introduces new chal-

lenges due to the temporal constraints. A data object may need
to be transmitted remotely more than once, due to either lack
of connectivity or the need of satisfying a latency constraint.
For instance, consider the four nodes in Fig. 1(a) that move
following certain trajectories. Initially, nodes 2 and 3 are in
contact. At time t1, nodes 2 and 4 enter in each other’s
radio range and a new contact begins. At time t2, the contact
between nodes 2 and 3 ends since they move away from
each other. Three of these nodes (shown with triangles) need
to receive the same data object. Each of them has a given
deadline (ta, tb and tc respectively) and a latency (δa, δb and
δc respectively). A remote transmission to node 3 at time t1
covers the data needs ra and rb. Although rc can be reached
by transmitting the object to node 4 at any time after t1, the
latency δc cannot be satisfied. Therefore, an updated copy of
the object needs to be transmitted after tc − δc.

In this paper, we prove that the demand cover problem is
NP-hard and present a baseline graph-based approach for it.
In order to make this problem feasible on large datasets, we
formulate it as a query processing problem and develop a novel
graph-indexing-based solution. Due to the index, we are able
to handle thousands of destinations on a network with millions
of encounters in less than 10 seconds, with an improvement
of up to 100 times compared to a naive approach.

(a) (b)

Fig. 1. An example of DTN among moving nodes. (a) The four solid lines
represent four trajectories. To simplicity we use the x-axis for indicating the
time. The big dashed circles represents the radio range of nodes. Nodes that are
involved in a transition (contact beginning or contact end) are filled. Three data
needs (r1, r2 and r3) are represented with filled triangles. Their deadlines are
ta, t2 and t3 respectively while their latencies are δa, δ2 and δ3 respectively.
(b) The corresponding space-time graph. Snapshots of the connectivity graph
at three different times are depicted within big ovals. Temporal links joining
contiguous snapshots are represented with dotted lines.

Our contribution can be summarized as follows: (i) We
define a novel problem (named demand cover) that formalizes
the problem of optimizing the long-range communication cost
in a network of moving nodes. (ii) We prove that demand
cover is NP-hard. (iii) We develop a compact graph-based
representation of a demand cover instance and give a baseline
algorithm for it. (iv) We propose a novel indexing system for
quickly solving demand cover on graphs optimally. Our system
further compresses the compact graph and uses an efficient
filtering approach to retrieve a small portion of vertices that
are relevant for achieving an optimal solution. (v) We evaluate
the proposed approach on two real and one synthetic datasets

and show that an exact solution can be found in reasonable
time in datasets with millions of encounters.

The paper is structured as follows: Sect. II describes related
work. Sect. III introduces some basic concepts in DTNs.
Sect. IV defines the problem, provides a graph representation
and gives a simple solution. Sect. V describes our indexing
system for demand cover. Sect. VI presents an extensive
experimental analysis on real and synthetic datasets. Finally,
Sect. VII concludes the paper with some future directions.

II. RELATED WORK

Previous works on DTNs focus on three types of contacts
including scheduled, predicted and opportunistic contacts.
Scheduled contacts result from applications of known trajec-
tories, such as deep-space communication and data service
in developing regions [11], [2], [21], [15]. Predicted contacts
are considered when there exist mobility patterns in appli-
cations [26], [14], [16], [3], [9], [23], [22]. Opportunistic
contacts deal with completely uncertain circumstances where
mobile nodes meet each other by random chance. Our work
falls into the category of scheduled contacts [21], [11].

Graph representations are widely applied in studying routing
strategies. In [17], [5], [21], evolving graphs are employed
to model topological mutations in DTNs. In our work, we
use compression and indexing techniques to efficiently explore
evolving graphs with the purpose of minimizing the commu-
nication cost.

Multicast for DTN has recently drawn considerable atten-
tion. In [28], semantic models are proposed to unambiguously
describe multicast in the context of DTNs. The throughput of
multicast is discussed in [13] and mobility-assisted routing is
used to improve the throughput bound of wireless multicast.
In [8], multicast problems in DTNs are considered in a social
network setting where centrality and community in DTNs
are employed to help determine the appropriate selection
of relays, with the objective of minimizing the delay of
multicast message transmissions. In this paper, we study a
novel optimization problem which is similar to the traditional
multicast problems. However, instead of minimizing the delay
of message transmissions, we are interested in minimizing the
communication cost subject to some time constraints. To this
end, the question of whether a node is reachable from another
node is more important than the question of how a message
flows in the network. In our problem setting, the DTN is a
medium to propagate information, and our goal is to maximize
the role it plays in information sharing.

Graph indexing systems have been widely studied by the
database community. The most common approaches aim to
efficiently solve problems as graph matching [19], [25] or
reachability test [6], [12]. The closest to our work are systems
for reachability tests, which aim to efficiently check if two
vertices are reachable from each other (a path that connects
them exists) in a directed graph. Some systems use chains [10]
(generalization of paths) decomposition or path-tree [12] de-
composition. The underlying idea is that if a vertex u of a
chain (or a tree-of-paths) is reachable from another vertex v, all

3

the vertices downstream in that chain are reachable from v. We
use a similar idea, but our system is designed to fast identify
the regions of the graph that can reach a given destination
instead of verifying the reachability between pairs. Moreover,
we give a method for quickly identifying a small subset of
representative vertices that allows us to solve the demand
cover problem optimally and with reasonable efficiency on
large datasets.

III. PRELIMINARIES

In this section we describe some basic concepts concerning
DTNs that introduce our approach. We consider a network
of moving nodes whose trajectories are known in advance or
can be predicted. When two nodes enter each other’s radio
coverage area, a link between them is formed and a contact
(or encounter) begins. A contact between two nodes terminates
when they lose radio connectivity as they move away from
each other. Contact beginnings and contact ends are also called
transitions. The status of the network at a certain time instant
can be described by a connectivity graph, whose vertices
represent moving nodes and a link is placed between two
nodes if their distance is within a given threshold d, called
radio range. The network dynamics can be described by a
series of snapshots of the connectivity graph over the time
horizon [5], [11]. All the snapshot graphs are aggregated in
a unique composite graph (named space-time graph) where
vertices corresponding to the same moving node in two
consecutive connectivity graphs are joined by a temporal link.
In contrast to spatial links, temporal links are directed. A
message can travel across a so called space-time path. If
some spatial links toward the destination are available, the
message is forwarded, otherwise the message is carried by
the moving node (a temporal link is traversed) and forwarded
when another suitable node is encountered. In the following,
we refer to route for indicating the space-time path that a
message traverses.

Fig. 1(b) shows the space-time graph corresponding to
Fig. 1(a). Three snapshot graphs are represented, each of them
describing the connectivity of the network at the time inter-
vals [t0, t1), [t1, t2) and [t2, tMAX) respectively. Contiguous
snapshots are joined by temporal links (in dotted line). Each
snapshot is associated with its lifetime, i.e. the extent in time
that it refers to. Message routes travel across paths of the
space-time graph that can include both spatial and temporal
links.

IV. PROBLEM DESCRIPTION

In this section we define formally the demand cover prob-
lem and give some baseline approach for it. We consider a
set of n nodes (numbered 1, 2, . . . , n) that move following
certain trajectories (T1, T2, . . . , Tn respectively). A trajectory
associates each time instant t in the range [t0, tMAX) with the
position in the space (typically a plane) that the corresponding
node occupies at time t. At a specific time, two nodes can
communicate with each other through a so called contact

transmission (short-range, typically radio) if they are in con-
tact, i.e. their Euclidean distance is within a fixed threshold d.
The contact transmission (between nodes) does not involve any
cost. Each node can also communicate at any time with a data
source (Internet or a central server) through a costly remote
transmission (cellular or satellite), with a certain cost. Our
approach can be extended to a decentralized scenario where a
central server is not available and data are distributed among
nodes.

We consider the problem of delivering data objects to
multiple destinations. In contrast to other multicast approaches
in which static messages are sent to multiple destinations,
we consider the problem of sharing data objects that are
continuously updated over time. The dynamic character of data
objects introduces new constraints: each destination needs to
receive the object before a given deadline and with a delay
that is limited by a given latency. We define the data demand
I of a data object as a set of data needs, i.e. triples of the
form (i, t, δ), where i, t and δ represent the destination, the
deadline and the latency respectively. We call the instant t− δ
release time. It represents the earliest time instant in which an
object can leave the data source.

The data flow is modeled by two kind of transmissions: a
remote transmission is denoted by a pair (i, t), where i repre-
sents the node that receives the object and t is the time instant
in which the transmission occurs; a contact transmission, is
represented by a triple (i1, i2, t) where i1, i2, t represent
the node that transmits the object, the node that receives
the object and the time instant at which the transmission
occurs respectively. For simplicity, all the transmissions are
considered instantaneous. Although it may not be true in
all cases, the movement between nodes is usually very slow
compared to the speed of transmission. Therefore, in most
cases all the necessary objects can be transmitted before the
contact terminates. We say that a remote transmission (is, ts)
covers a data need (id, td, δ) if there exists a sequence of
contact transmissions (i0, i1, t1), (i1, i2, t2), . . ., (ik−1, ik, tk)
with i0 = is and ik = id, such as ts ≤ t1 ≤ t2 ≤ . . . ≤
tk ≤ td and td − ts ≤ δ. The set of data needs covered by
a remote transmission is also called coverage of the remote
transmission. The demand cover problem is defined as follows:

Problem definition: Given a set of trajectories and a data
object with demand I , detect the minimum set of remote
transmissions that covers all the data needs in I .

The formulated problem can be shown to be NP-hard (even
in the 2D plane) by reduction from the well known Set-cover
problem. Given a family of sets S = {S1, S2, ..., Sm} of
elements taken from a set C, Set-cover calls for finding the
minimum sub-family of S that covers all the elements of C.
A proof is given in our extended technical report [18].

A. ILP formulation

The demand cover problem can be formulated in ILP
(Integer Linear Programming) and solved by a standard solver.
Here we give an ILP formulation and show that solving it on
large datasets is infeasible.

4

We consider a set of n moving nodes numbered 1 through n
and a special node that represents the central server, numbered
0. We write i →t j if node i can communicate with node j
at time t (i.e. they are within distance d or i = 0). We also
consider a discrete set T of time instants that correspond to
transitions or deadlines of data needs. This restriction does not
compromise the result. In fact, given an optimal solution for
demand cover, it is always possible to modify this solution
in such a way that each transmission between two nodes is
delayed until the contact between them ends (right before the
link breaks) or a data need that involves one of the nodes
expires, without increasing the cost. Since communication
is assumed to be instantaneous, the contact length is not
important.

We employ two classes of boolean variables. The first class
contains variables of the kind xi,j,t,r, where i and j represent
nodes, t represents a time instant and r = (ir, tr, δr) ∈ I
represents a data need, that models the flow of data objects.
The variable xi,j,t,r has value 1 if i send a message to j at time
t to satisfy the data need r. Variable of this kind are considered
for i →t j and tr−δr ≤ t ≤ tr. The second class of variables,
of the kind yi,t, counts the number of remote transmissions.
Each variable says whether a remote transmission between the
central server and a particular node occurs at a certain time
or not. The complete formulation follows.

min
∑
t∈T

n∑
i=1

yi,t

s.t.
∑
t∈T

t≥tr−δr
t≤tr

∑
i=0...n
i→tir

xi,ir,t,r ≥ 1 ∀r = (ir, tr, δr) ∈ I (1)

∑
t′∈T

tr−δr≤t′≤t

∑
i=0...n
i→t′ j1

xi,j1,t′,r − xj1,j2,t,r ≥ 0 (2)

∀r = (ir, tr, δr) ∈ I, ∀j1, j2, t | j1 →t j2

yi,t ≥ x0,i,t,r ∀r ∈ I, i = 1 . . . n, t ∈ T (3)
xi,j,t,r, yi,t ∈ {0, 1}

Constraint 1 models the fact that for each data need, the data
object must be sent to the destination at a time instant between
the release time and the deadline. Constraint 2 models the
propagation of data objects. It says that if a data object is
transmitted from a source j1 to j2 at time t for satisfying a
data need r, then j1 must receive the object before t and after
the release time. Finally, constraint 3 assigns value 1 to each
variable of the kind yi,t if a message is transmitted from the
central server to node i at time t in order to satisfy some data
need.

Solving this formulation with standard solvers is infeasible
on large instances. The main problem concerns the number of
variables and constraints. Even considering a sparse network
with 100 nodes, 100 encounters per node and 100 data needs,
we have hundreds of millions of variables and constraints. In
our experiments we obtained hundreds of billions of variables
and constraints, therefore executing it was not possible.

B. A naive approach for the demand cover problem

An improvement on executing the ILP program can be
obtained by reducing the problem to Set-cover. Each candidate
remote transmission can cover a set of data needs. The
minimum set of remote transmissions that covers all the data
needs corresponds to the minimum Set-cover in the family of
associated sets. Since remote transmissions can occur at any
time, the number of sets for the Set-cover family is huge.
However, not all time instants need to be considered. To
guarantee that all the data needs are covered, one can consider
only time instants that correspond to the release time of a data
need. We note that the release time is the earliest time instant
in which the data object needs to be sent for a data need to
be satisfied. Delaying a remote transmission after the release
time does not help with serving the data needs, unless some
other release times are overtaken.

Given a candidate remote transmission, the set of covered
data needs can be computed by exploring the space-time graph
(through depth-first search or breadth-first search).

C. A compact graph representation

The naive approach requires exploring a space-time graph,
whose size can be huge. However, this graph can be compacted
thanks to two observations. First, in each snapshot graph,
all the vertices that are in the same connected component
have the same reachability properties, so one vertex can be
taken as a representative of all the others. Second, when a
transition occurs, connected components of the snapshot graph
that do not contain any nodes involved in the transition are not
influential.

To generate the compressed graph, we focus on two class of
transitions. A split transition causes a connected component
to divide in two connected components. A merge transition
causes two components to merge in a unique connected
component. We generate a space-time graph considering only
this two kind of transitions. Then, for all snapshot graphs,
each connected component is collapsed in one single vertex.
At this point, all the edges of the graph are directed and can
be classified as follows: (i) split edges, that connect splitting
components with their partitions; (ii) merge edges, that connect
merging components with the resulting components and (iii)
non-influential edges, that connect components that do not
change. Finally, each non-influential edge is removed by
collapsing its endpoints and each vertex is labeled with its
lifetime (note that a vertex can span several snapshots), that
we call component lifetime.

One example of a compressed graph is shown in Fig. 2,
that refers to the example in Fig. 1. Boxes represent vertices
of the compressed graph. Edges of the connected graph are
represented by solid lines. The extent of a box in time
represents the component lifetime. For instance, the extent of
the component c1 is [t0, tMAX) (the whole time horizon) since
this component is never involved in any split or merge. The
naive approach can be executed on the compressed graph in
place of the cumbersome space-time graph. The family for
Set-cover is obtained by building a set for each vertex of the

5

compressed graph whose lifetime contains the release time of
some data needs. Each set can be computed by exploring the
compressed graph.

Fig. 2. The compressed graph representation of the example in Fig. 1. A
compressed graph is depicted over the space-time graph. Boxes and solid
lines represent vertices and edges of the compressed graph respectively. The
extent of a box in time represents the component lifetime. Three data needs
are represented (by filled triangles) with their extent in time. From left to
right: ra = (2, ta, δa), rb = (3, tb, δb), rc = (4, tc, δc).

V. AN INDEXING SYSTEM FOR THE DEMAND COVER
PROBLEM

Solving the demand cover problem efficiently raises several
challenges. First, for each vertex v of the compressed graph,
the set of data needs that can be covered by v needs to be
retrieved. This operation may be very expensive when the
size of the graph is large. Second, Set-cover is NP-hard,
therefore no polynomial-time solutions exist (unless P=NP)
in the general case. For small instances, Set-cover can be
solved optimally in acceptable time by pruning techniques
as branch-and-bound. In our case, however, the number of
sets generated is usually very high, since a data need can
potentially be covered by many vertices. Many of these sets
are redundant, i.e. they are fully contained in other sets. For
example in Fig. 2 the set of data needs covered by c6 contains
only rc. The vertex c4 covers the set {ra, rb, rc}, that contains
the data need covered by c6. Therefore, c6 can be excluded by
the computation since all the data needs that can be covered by
it can also be covered by c4. Removing redundant sets leads to
a considerable reduction of the Set-cover instance. However,
removing the redundancy by traditional methods is expensive,
since it requires one to find maximal sets [24]. Additionally,
in a typical application, a large number of data objects are
requested and each data object has its own set of data needs.
Solving the demand cover problem for each data object can
be extremely expensive.

We propose a novel approach, Path-wise indexing (PIE,
for short), that builds an index of the set of trajectories
with the purpose of efficiently performing queries of the
form: given a set of data needs, return the minimum set
of remote transmissions that covers all the data needs. We
use a preprocessing-filtering-optimization scheme to solve the
demand cover problem. Given a database of trajectories, a
preprocessing phase generates a compact data index. When a
query (represented by a set of data needs) has to be performed,

we use the data index to generate a lightweight instance of
Set-cover (filtering phase). Set-cover is then solved optimally
(optimization phase) and the solution is returned.

The proposed indexing system has several advantages. First,
the index is much more compact than the compressed graph,
and hence requires less memory and is much more efficiently
manageable. Second, the set of vertices in the compressed
graph from which the data needs are reachable can be iden-
tified fast. Note that current reachability indexes cannot be
efficiently applied to our problem since many reachability tests
need to be performed. Finally, we can efficiently prune nodes
of the compressed graph that are not promising and generate a
small instance for Set-cover. Next, we introduce the proposed
index and describe the three phases of our indexing system:
preprocessing, filtering and optimization.

A. Index structure

The key idea is that the set of data needs covered by a
node in a path p of the compressed graph includes the set of
data needs covered by other subsequent nodes p. Therefore,
a node can be taken as a representative of a portion of
the path. Moreover, a node of the compressed graph can
be uniquely determined by a path and a time instant. This
implies that we can use the coverage of a pair (p, t) in place
of the coverage of the corresponding compressed node. We
denote the coverage of (pi, t) as C(pi, t). Based on these
considerations, we partition the compressed graph into a set of
disjoint paths and build a compact graph, named a PIE graph,
whose vertices represent disjoint paths and edges preserve
the connectivity across paths. Each vertex of the PIE graph
is labeled with a time interval (named lifetime) that is the
union of the lifetimes of its composing vertices. Instead of
exploring all the nodes of a path, we can determine a set
of time instants that is representative of the whole path by
exploring the compact PIE graph.

Figure 3(a) shows an example. The small circles and thin
edges form the compressed graph, while the big ovals rep-
resent disjoint paths. Consider the path p3. The set of data
needs covered by p3 at time ta is C(p3, ta) = {r1, r2}. Since
no other data needs (i, t, δ) have (t − δ) ∈ [ta, tb), (p3, ta)
is representative of the interval [ta, tb). tb coincides with the
release time of r3 (i.e. (tr3 − δ3)). Therefore, its coverage
(C(p3, tb) = {r3}) cannot be contained in C(p3, ta). The
pair (p3, tb) is instead representative of the remaining part
of the path. The path p3 produces only two sets (C(p3, ta)
and C(p3, tb)) for Set-cover. In general, up to 4 sets would
be produced without indexing, since we may have many other
non reachable data needs whose release times falls within all
vertices of p3. Next we describe in details the three steps of
our method: preprocessing, filtering and optimization.

B. Preprocessing

Given the set of trajectories, first a compressed graph (GC)
is generated. The graph is then decomposed into a disjoint
set of paths. There is a large number of possible ways to
partition the graph into disjoint paths. A suitable partition

6

Fig. 3. (a) An example of PIE graph. The small circles and thin arrows form
the compressed graph. Each path is circumscribed by an oval and its lifetime
is reported. Links between paths are represented by thick arrows. They are
labeled by the ends of the lifetimes of their source vertices. Solid triangles
within circles represent data needs. (b) Validity intervals of a set of data needs
in a path p3. Bars represent the extent of validity intervals of data needs. The
minimal family of sets for this path is {C(p3, ta), C(p3, tb)}.

strategy should satisfy the following properties: (i) the number
of disjoint paths is minimal and (ii) the number of edges
across two paths is minimal. In general, finding the minimum
set of disjoint paths that covers a graph is a non-trivial
problem [7]. However, since the compressed graph is a DAG
and is generated by a simple split-merge model, we can use
optimally the following simple strategy: pick one vertex a time
(proceeding in time order) and elongate it by random walk
until a vertex without outgoing edges is reached.

We can prove that across two paths no more than one edge
exists in each direction. Indeed, each edge of the compressed
graph comes from a merge or a split between two components.
In the case of merge, the source vertex cannot have other
outgoing edges, while in the case of split, the target vertex
cannot have other incoming edges. This implies that no edges
can exist between internal nodes of two different paths, and
hence each edge connecting two paths can be either outgoing
from the last vertex of the source path or incoming to the
first vertex of the target path. Since the compressed graph is a
DAG, and each path is elongated as much as possible, at most
two edges can connect two paths, one in each direction.

We associate each edge (pi, pj) of the PIE graph with the
end of the lifetime of the source vertex in pi. We denote this
time instant as ft(pi, pj). It represents the time in which a
data object can traverse the edge (pi, pj). Figure 3 depicts an
example of PIE graph. The small vertices and thin edges form
the compressed graph, while the big vertices and thick edges
represent the PIE graph.

C. Filtering

For each vertex p of the PIE graph, our filtering algorithm
finds a set of time instants TIp that are representative of the
whole path p, and the family S of corresponding sets. Our
strategy guarantees that the coverage of each vertex of the
compressed graph is fully contained in at least one set in S.
Since the PIE graph is much smaller than the compressed
graph, exploring the former is much more advantageous in
terms of elaboration time and memory consumption.

The filtering procedure considers two steps: backflow and
prune. Backflow propagates the data needs in reverse order
from the destination paths to all the possible source paths. For
each path, we compute the validity interval of a data need, that
defines the time interval in which the data object must reach
the path for the data need to be covered. At the end, each path
is associated with a set of data needs that it can cover with their
validity intervals. The coverage of a pair (p, t) can be identified
by the set of data needs such as their validity intervals in p
include t. After the validity intervals are generated, the prune
procedure computes the family of sets for Set-cover. It collects
the family of maximal coverage sets of each path, i.e. the set
of time instants whose coverage is not strictly contained in the
coverage of any other time instant in the path.

Before describing these two procedures in detail, we give
an example. Fig. 3(b) shows the path p3 of the example in
Fig. 3(a) and the validity interval of each data need in it. The
validity intervals of r1 and r2 start at the beginning of the path,
since their release time precede it. These intervals end at times
t1 and t2 respectively, times associated to outgoing edges (see
Fig. 3). Each of them represents the last time instant in which
the data object must leave the path to be able to reach the
respective data need. For the data need r1 (r2 resp.), if the
data object leaves the path after t1 (t2 resp.), the destination
cannot be reached. The validity interval of r3 starts at time
tb = tr3 − δ3, corresponding to the release time of r3, and
ends at time t3, time associated to the unique outgoing edge
that can reach r3. The representative time instants for this
path are ta and tb, corresponding to maximal sets of data
needs. Therefore, the minimal family of sets for this path is
S = {C(p3, ta), C(p3, tb)}. Note that no other time instants
have a coverage that is not included in at least one set of the
family.

1) Backflow: We define the validity interval of a data need
r = (i, t, δ) in a path p (named valid int(r, p)) recursively in
the following way:

If p has lifetime [b, e) and is the destination path of r (i.e.
t ∈ [b, e)), we have: valid int(r, p) = [max(b, t− δ), t).

If p is a non-destination path with lifetime [b, e) that links
to a set of paths p1, p2, . . . , pk with validity intervals [b1, e1),
[b2, e2), . . . , [bk, ek) respectively:

valid int(r, p) =

{
Φ if ft(p, pi) ̸∈ [bi, ei) ∀i = 1 . . . k
[t1, t2) otherwise

where t1 = max(b, t − δ) and t2 is the maximum t′ such as
t′ = ft(p, pi) for some i = 1 . . . k and t′ ∈ [bi, ei).

7

Intuitively the end of a validity interval in a path is given
by the last time instant in which the data object can flow in
another path that has a compatible validity interval, while the
beginning of a validity interval is limited by t − δ and the
starting time of the path.

The coverage of a pair (p, t) can be identified by the set
of data needs whose validity intervals include t. Intuitively,
if validity intervals are represented by horizontal bars (as in
Fig. 3(b)), the coverage of a pair (p, t) can be easily identified
by drawing a vertical line and taking all the data needs whose
validity intervals are intersected. For instance, in Fig. 3b) a
vertical line drawn at time ta intersects the validity intervals
of r1 and r2. Therefore, the coverage of (p, ta) is {r1, r2}.
This property is formally stated by the following lemma:

Lemma 1: Let (T, I) be an instance of demand cover,
where T is the set of trajectories and I is the set of data needs,
and GP be the corresponding PIE graph. Given a vertex p of
GP and a time instant t, the coverage of p at time t is:

C(p, t) = {r ∈ I | t ∈ valid int(r, p)}

valid int(r, p) can be computed for all paths in a breadth-
first search fashion, by starting from the path containing r and
exploring the PIE edges in reverse time order until the release
time is reached. When a new vertex is visited, the validity
interval of r in it is updated. The complexity is O(|EP |),
where EP is the set of edges in the PIE graph.

2) Prune: For each path p, we identify the minimum-size
set TIp of time instants that is representative of the whole
path, i.e. such that for all t ∈ lifetime(p) we have C(p, t)
contained in at least one set C(p, t′) with t′ ∈ TIp. This
problem corresponds to the problem of finding the maximal
sets in the family of all possible coverage sets of p (i.e.
{C(p, t)|t ∈ lifetime(p)}).

Figure 4 shows an example of path with the validity
intervals of five data needs. The coverage of a time instant
can be easily identified by drawing a vertical line and taking
all the validity intervals that it intersects. The representative
time instants for this path are t1, t2 and t3, corresponding to
the maximal sets of data needs. Note that no other time instants
have a coverage that is not included in the coverage of at least
one of the time instants t1, t2 or t3.

In general, the maximal sets can be found in time O(mn),
where m is the number of maximal sets and n is the size of
the input [24]. In our case, since each element corresponds
to a contiguous interval, we can find the maximal sets in
linear time. Our procedure slides a vertical line across the
path in reverse time order, and takes all the time instants
that correspond to maximal sets. Each position t of the line
corresponds to a coverage C(p, t). As the line is slid, the
coverage is modified, by either adding or deleting data needs.
Whenever a deletion follows an addition, the current coverage
is taken as a maximal set. Note that additions correspond to
the end of validity intervals, while deletions correspond to
the beginning of validity intervals. In Fig. 4, the coverage
associated with the sliding line is initially empty. When the

Fig. 4. An example of maximal coverage sets in a path. Bars represent the
extent of validity intervals of data needs. The coverage of the time instants
t1, t2 and t3 are maximal sets among all the coverage sets in the path. The
family of maximal sets can be found by sliding a vertical line in reverse
time order and taking each time instant that corresponds to the beginning of
a validity interval (indicated by the symbol “-” at the top) that occurs right
after the end of the same or another validity interval (indicated by the symbol
“+”). This family has minimum size.

line intersects the validity interval of r4, r4 is added to the
coverage (additions are indicated by the symbol “+” at the
top). The interval of r5 is then encountered and r5 is also
added to the coverage. When the beginning of the validity
interval of r4 is encountered (at time t3), the current coverage
is taken as maximal set and r4 is deleted (indicated by the
symbol “-”). Other two additions are then encountered (r2
and r3) followed by a deletion (r5). The coverage at time t2
(before deleting r5) is then taken as another maximal set. The
last maximal set is taken at time t1, after another addition and
another deletion are encountered. The following lemma states
that this procedure finds all and only the maximal sets in the
family of coverage sets.

Lemma 2: Let (T, I) be an instance of demand cover and
GP be the PIE graph built from (T, I). Given a path p
of GP , consider the sequence of time instants t1, t2, . . . , tk
corresponding to extremes (beginnings or ends) of valid-
ity intervals in reverse time order and the set TIp =
{ti | ti is a beginning time and ti−1 is an ending time}.

1) For each time instant t ∈ lifetime(p) we have: ∃t′ ∈
TIp | C(p, t) ⊆ C(p, t′);

2) For each time instant t′ ∈ TIp we have: @t ∈
lifetime(p) | C(p, t′) ⊂ C(p, t);

3) For each pair of distinct time instants t′, t′′ ∈ TIp we
have C(p, t′) ̸= C(p, t′′).

A clear consequence of this lemma is that the family of
maximal sets generated by our procedure has minimum size.
TIp can be built in time O(|I| · log(|I|)).

D. Optimization

After the filtering process, a post-pruning (in short PP)
phase is applied in order to remove sets that are fully contained
in other sets. Note that although the purpose of the filtering
procedure is to remove these sets, this procedure is not
guaranteed to be exhaustive, since redundant sets can occur
across different paths. The post-pruning phase can be applied
to the naive approach as well.

8

We use an Integer Linear Program to solve Set-cover
optimally. Finally, the optimal set of remote transmissions is
extracted from the optimal subfamily returned by Set-cover.

E. Adaptive extension

In real world, it is difficult for many applications to guar-
antee that moving objects travel with known trajectories over
a long time interval. However, it is reasonable to assume that
moving objects stick to known traveling plans in near future.
In this case, the time dimension is partitioned into discrete
time slots, where trajectories of moving objects are updated
after each time slot. PIE can adapt to this variation without
much modification. In the following, we briefly introduce two
possibilities: null-initial-state and adaptive extensions.

The most straightforward way is to build an independent
index for each time slot. We call it null-initial-state extension
because this method simply ignores previous knowledge and
treats each time slot as a new start. One weakness of this
method is that it neglects information objects transmitted
during the prior time slots, producing more remote transmis-
sions. An alternative is to apply the adaptive extension. To
reuse data objects transmitted before, we keep track of the
distribution of the objects over the nodes, together with the
remote transmission time of each object, and use them as
initial state for the new time slot. Some data needs can be
satisfied without any additional remote transmissions and will
not be considered in the computation.

VI. EXPERIMENTAL ANALYSIS

A. Dataset

Cabs Mobility [20] (CAB, for short) contains mobility traces
of taxi cabs in San Francisco, USA. It consists of GPS
coordinates of 536 taxis collected over 23 days in the San
Francisco Bay Area. The average time interval between two
consecutive location updates is less than 10 seconds.

GeoLife GPS Trajectories [1] (GeoLife, for short) is a
GPS trajectory dataset collected in (Microsoft Research Asia)
GeoLife project by 165 users in a period of over two years.

Synthetic trajectories (SYN, for short) consists of 10K
nodes that move randomly on a 2-D plane with size 3600
km2 over 10 days. Starting from a uniformly random position,
the speed of each node is updated periodically with normal
distribution (µ = 1.2 m/s and σ = 1) as well as its direction
(µ = current direction and σ = 1 radiant). The updating rate
is generated with exponential distribution (µ = 60 sec).

For all datasets, the radio range is set to 100 meters. The
data needs are generated by the following process. First, for
each moving node, the number of data needs is generated
with a Poisson distribution. Then, each data need is generated
with a deadline uniformly distributed and a latency normally
distributed (µ = 15 min and σ = 1).

B. Implementation

We implemented the naive approach described in Sect. IV-B
on the space-time graph. We also implemented the naive
approach on the compressed graph (called naive-c for short)

and the PIE indexing system (Sect. V). All methods include the
post-pruning phase described in Sect. V-D. We tried a version
without the post-pruning phase, obtaining a slight degradation
of performances in each method. We also tried to run the
ILP program described in Sect. IV-A, but it did not terminate
due to the huge number of variables and constraints (hundreds
of billions) considered. All the approaches were implemented
in C++ (Dev C++ IDE ver. 4.9.9.2). The experiments were
performed on a DELL Intel core I7 CPU with 2 Gb of memory.
For the ILP solver we use lp solver 5.5.2.0 [4], an open source
tool based on branch-and-bound.

C. Results

Each dataset is first preprocessed and its PIE index is
generated. Fig. 5(a) reports the preprocessing time on CAB,
concerning a number of datasets spanning from 1 to 13 days.
Depending on the dataset size, the preprocessing phase take
tens through thousands of seconds. Although the preprocessing
phase is sometimes expensive, it is executed only once. The
rate of compression of the PIE graph and the compressed graph
with respect to the space-time graph is shown in Fig. 5(b). The
compressed graph is about four folds smaller than the space-
time graph and PIE further reduces the size of about three
times.

On CAB, the execution time for demand cover queries is
shown in Fig. 5(c) and 5(d). Fig. 5(c) shows the execution
time for a number of datasets spanning from 1 to 13 days.
The average number of data needs per cab per day is set to
2. The reported times represent an average over 10 queries.
PIE performs about one fold faster than naive-c and two folds
faster than naive in almost all cases. In order to evaluate the
scalability over the size of the query, we generate queries by
varying the expected number of data needs per cab per day
from 1 to 4. The results over 1 day are reported in Fig. 5(d).
For more than 4 expected data needs, the naive method is
unable to answer queries in acceptable time.

We also execute the adaptive extension (Sect.V-E) on CAB,
for one day with time slot 15 minutes. Over a total number of
1089 data needs, null-initial-states method returns 675 remote
transmissions, while the adaptive method returns 617 ones,
with approximately a 10% improvement. For reference, the
number of transmissions suggested by using full knowledge
is 480. All the results of the adaptive extension refer to an
average over 10 executions.

Fig. 5(e) show the execution time for demand cover queries
on GeoLife. The expected number of data needs per person
per day is set to 10. The results refer to a set of datasets,
each of them spanning a time interval ranging from 1 to 30
days. As for CAB, the reported times represent an average
over 10 queries. In this dataset, PIE scales better than naive
and naive-c with length of the spanning interval. For SYN,
the results are reported in Fig. 5(f). The naive approach here
is not able to terminate in acceptable time even for one day,
therefore we report only PIE and naive-c. PIE performs about
three folds faster then naive-c. Additional results are provided
in our extended technical report [18].

9

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14

P
re

pr
oc

es
si

ng
 T

im
e

(s
ec

on
ds

)

Spanning Time Interval (days)

CAB

(a) CAB - preprocessing

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 2 4 6 8 10 12 14

C
om

pr
es

si
on

 R
at

e
on

 N
od

es
 (

%
)

Spanning Time Interval (days)

Compressed
PIE

(b) CAB - compression

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12 14

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Spanning Time Interval (days)

PIE
Naive-c

Naive

(c) CAB - query time

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 1 2 3 4 5

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Expected Number (λ)

PIE
Naive-c

Naive

(d) CAB - query time

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Spanning Time Interval (days)

PIE
Naive-c

Naive

(e) GeoLife

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 1 2 3 4 5 6

R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Spanning Time Interval (days)

PIE
Naive-c

(f) SYN

Fig. 5. Evaluating the response time as a function of the size of the dataset
(number of days) and the number of data needs

VII. CONCLUSION

We presented a new approach that optimizes the long-range
communication cost for multicast in DTN. After formalizing
the demand cover problem and showing that it is NP-hard, we
provided a graph-indexing-based solution for it. Our system
can solve the demand cover problem optimally on large real
instances (dataset with million of events and queries with
thousands of nodes) in less than 10 seconds in most cases. We
plan to extend our work in two ways. First, we aim to take into
account the uncertainty in mobility and data needs. For this,
we need to fit stochastic mobility models in our framework
and optimize the expected communication cost. Finally, we
plan to consider the problem of scheduling new trajectories
with the purpose of guaranteeing the connectivity, in the case
when the communication with a central data source is not
always available.

ACKNOWLEDGEMENTS

Research was sponsored by the Army Research Laboratory
and was accomplished under Cooperative Agreement Number
W911NF-09-2-0053. The views and conclusions contained
in this document are those of the authors and should not
be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or
the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

REFERENCES

[1] GeoLife GPS Trajectories. http://research.microsoft.com/.
[2] I. F. Akyildiz, O. B. Akan, C. Chen, J. Fang, and W. Su. Interplanetary

internet: state-of-the-art and research challenges. Comput. Netw., 43:75–
112, October 2003.

[3] E. Altman, G. Neglia, F. De Pellegrini, and D. Miorandi. Decentralized
stochastic control of delay tolerant networks. In Proc. of INFOCOM,
pages 1134–1142, 2009.

[4] M. Berkelaar et. al. Mixed Integer Linear Programming (MILP) solver.
http://sourceforge.net/projects/lpsolve.

[5] V. Borrel, M. H. Ammar, and E. W. Zegura. Understanding the wireless
and mobile network space: a routing-centered classification. In Proc. of
ACM CHANTS, pages 11–18, 2007.

[6] S. Chen et. al. ST2B-tree: a self-tunable spatio-temporal B+-tree index
for moving objects. In SIGMOD, pages 29–42, 2008.

[7] R. Diestel. Graph theory. Graduate texts in mathematics. Springer,
2006.

[8] W. Gao, Q. Li, B. Zhao, and G. Cao. Multicasting in delay tolerant
networks: a social network perspective. In Proc. of MobiHoc, pages
299–308, 2009.

[9] R. Groenevelt, P. Nain, and G. Koole. Message delay in manet.
SIGMETRICS Perform. Eval. Rev., 33:412–413, June 2005.

[10] H. V. Jagadish. A compression technique to materialize transitive
closure. ACM Trans. Database Syst., 15:558–598, December 1990.

[11] S. Jain, K. Fall, and R. Patra. Routing in a delay tolerant network.
volume 34, pages 145–158, August 2004.

[12] R. Jin et. al. Efficiently answering reachability queries on very large
directed graphs. In SIGMOD, pages 595–608, 2008.

[13] U. Lee, S. Y. O., L. K., and M. Gerla. Relaycast: Scalable multicast
routing in delay tolerant networks. In IEEE ICNP, pages 218–227, 2008.

[14] J. Leguay, T. Friedman, and V. Conan. Dtn routing in a mobility pattern
space. In Proc. of WDTN, pages 276–283, 2005.

[15] Q. Li and D. Rus. Sending messages to mobile users in disconnected
ad-hoc wireless networks. In Proc. of MobiCom, pages 44–55, 2000.

[16] C. Liu and J. Wu. An optimal probabilistic forwarding protocol in delay
tolerant networks. In Proc. of MobiHoc, pages 105–114, 2009.

[17] S. Merugu, M. Ammar, and E. Zegura. Routing in space and time in
networks with predictable mobility. Technical report, 2004.

[18] M. Mongiovi, A. K. Singh, X. Yan, B. Zong, and K. Psounis. Efficient
multicasting for delay tolerant networks using graph indexing - Technical
report. http://www.box.net/shared/7xm4ptobu4, 2011.

[19] M. Mongiovi et. al. SIGMA: a set-cover-based inexact graph matching
algorithm. J Bioinform Comput Biol, 8(2):199–218, 2010.

[20] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Gross-
glauser. CRAWDAD data set epfl/mobility (v. 2009-02-24).
http://crawdad.cs.dartmouth.edu/epfl/mobility, Feb. 2009.

[21] B. K. Polat, P. Sachdeva, M. H. Ammar, and E. W. Zegura. Message
ferries as generalized dominating sets in intermittently connected mobile
networks. In Proc. of the MobiOpp, pages 22–31, 2010.

[22] T. Spyropoulos, K. Psounis, and C. S. Raghavendra. Efficient routing
in intermittently connected mobile networks: the multiple-copy case.
IEEE/ACM Trans. Netw., 16:77–90, February 2008.

[23] T. Spyropoulos, K. Psounis, and C. S. Raghavendra. Efficient routing
in intermittently connected mobile networks: the single-copy case.
IEEE/ACM Trans. Netw., 16:63–76, February 2008.

[24] D. M. Yellin. Algorithms for subset testing and finding maximal sets.
In SODA, pages 386–392, 1992.

[25] S. Zhang, J. Yang, and W. Jin. SAPPER: subgraph indexing and ap-
proximate matching in large graphs. PVLDB, 3:1185–1194, September
2010.

[26] X. Zhang, J. Kurose, B. N. Levine, D. Towsley, and H. Zhang. Study of
a bus-based disruption-tolerant network: mobility modeling and impact
on routing. In Proc. of MobiCom, pages 195–206, 2007.

[27] W. Zhao, M. Ammar, and E. Zegura. A message ferrying approach for
data delivery in sparse mobile ad hoc networks. In Proc. of MobiHoc,
pages 187–198, New York, NY, USA, 2004. ACM.

[28] W. Zhao, M. Ammar, and E. Zegura. Multicasting in delay tolerant
networks: semantic models and routing algorithms. In Proc. of WDTN,
pages 268–275, 2005.

