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ABSTRACT

Motivation: A major challenge in studying gene regulation is

to systematically reconstruct transcription regulatory modules,

which are defined as sets of genes that are regulated by a

common set of transcription factors. A commonly used approach

for transcription module reconstruction is to derive coexpression

clusters from a microarray dataset. However, such results often

contain false positives because genes from many transcription

modules may be simultaneously perturbed upon a given type

of conditions. In this study, we propose and validate that

genes, which form a coexpression cluster in multiple microarray

datasets across diverse conditions, are more likely to form a

transcription module. However, identifying genes coexpressed in

a subset of many microarray datasets is not a trivial computational

problem.

Results: We propose a graph-based data-mining approach to

efficiently and systematically identify frequent coexpression clusters.

Given m microarray datasets, we model each microarray dataset as

a coexpression graph, and search for vertex sets which are

frequently densely connected across d�me datasets (0 � � � 1). For

this novel graph-mining problem, we designed two techniques to

narrow down the search space: (1) partition the input graphs into

(overlapping) groups sharing common properties; (2) summarize

the vertex neighbor information from the partitioned datasets

onto the ‘Neighbor Association Summary Graph’s for effective

mining. We applied our method to 105 human microarray datasets,

and identified a large number of potential transcription

modules, activated under different subsets of conditions.

Validation by ChIP-chip data demonstrated that the likelihood of a

coexpression cluster being a transcription module increases

significantly with its recurrence. Our method opens a new way to

exploit the vast amount of existing microarray data accumulation

for gene regulation study. Furthermore, the algorithm is

applicable to other biological networks for approximate network

module mining.

Availability: http://zhoulab.usc.edu/NeMo/

Contact: xjzhou@usc.edu

1 INTRODUCTION

Reverse-engineering transcriptional regulatory networks is one

of the key challenges for computational biology (Conlon et al.,

2003; Luscombe et al., 2004; Pilpel et al., 2001; Segal et al.,

2003; Wang et al., 2005). Microarray technology, with its

ability to simultaneously measure the expression of thousands

of genes, has revolutionized the way of studying gene

transcription. A commonly used analytical approach is to

derive coexpression clusters, which are presumably likely to be

controlled by the same transcription factors (Banerjee and

Zhang, 2002; Liu et al., 2001; Roth et al., 1998; Zhou et al.,

2003). However, this assumption is not always true, because (1)

one type of experimental condition may simultaneously

perturb multiple regulatory programs, such that genes

from these different regulatory programs may show similar

and indistinguishable expression patterns; (2) even if the

regulation of those genes can be traced to the same transcrip-

tion factors, they may be located in different positions of

transcription cascades, and thus not share the same direct

regulators and (3) experimental noise and outliers may lead

to biased and erroneously high estimates of coexpression

similarity.
The rapid accumulation of microarray data has offered new

promises in addressing the above problems; however, the

potential is so far not well recognized and vastly under-utilized.

Intuitively, if a set of genes form a coexpression cluster in

multiple datasets generated under different conditions, they are

more likely to represent a transcription module than a single-

occurrence cluster does (Zhou et al., 2005). Here, we define a

transcription module to be a set of genes regulated by the same

transcription factor(s). The challenge is how to efficiently

identify such gene sets. Although a variety of approaches have

been developed to cluster a microarray dataset (Eisen et al.,

1998; Tamayo et al., 1999; Tavazoie and Church, 1998) they

cannot be easily extended to identify gene sets coexpressed

across a subset of given microarray datasets. The difficulty is

that two factors must be simultaneously determined: first,

which set of genes can recurrently form a cluster; second, in

which subset of microarrays does this set of genes form clusters.

It is even harder if (1) we consider that not all genes within a

coexpression cluster will strictly exhibit high expression

correlation due to measurement noise; and (2) both the

number of genes and the number of datasets are large. Since

a set of genes may form coexpression clusters only under a

small subset of conditions due to the highly dynamic nature of

yThe authors wish it to be known that, in this opinion, the first two
authors should be regarded as joint first authors.

*To whom correspondence should be addressed.

� 2007 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



human transcriptome, randomly selecting a subset of micro-

array datasets to search might miss many modules.

In this article, we develop a graph-based approach to

efficiently and systematically identify gene sets which form

coexpression clusters across multiple datasets. Given m micro-

array datasets, we model each dataset with a coexpression

graph, where each node represents one gene. If two genes show

high and significant correlation in their expression profiles, they

are connected with an edge. We then search for a set of genes

which form dense subgraphs in at least �m out of the m datasets

(0 � � � 1). Since edges indicate coexpression, a dense sub-

graph represents a coexpression cluster. Importantly, instead of

requiring the recurrence of the exact dense subgraph, here we

only require the connectivity among the gene set to be higher

than a threshold. That is, as long as a large percentage

(e.g. � 60%) of gene pairs in a gene set are coexpressed, we

consider the gene set to be coregulated (see an example in

Fig. 1A). We relax the criteria based on our experiences that

pursuing exact match would overlook some coexpressed

clusters due to the noisy data and the unavoidable cutoff

selection for edge construction.
Our problem can be formulated as mining frequent dense

vertexset (FDVS) across multiple graphs. This is a previously

unaddressed problem, of which the frequent dense subgraph-

mining problem can be regarded as a special case where

the same edge set must recur. We have recently designed two

algorithms to identify frequent dense subgraphs, SPLAT

(Yan et al., 2005) and CODENSE (Hu et al., 2005).

The former algorithm searches for exact recurrences of dense

subgraphs, and the latter allows approximation of edge

recurrence but requires coherency of edge recurrence, i.e. the

edge set shall show highly correlated recurrence across the given

graph set. The requirements in both algorithms are too

stringent to identify many potential transcription modules.

On the other hand, to relax the requirement, one may take a

summary-graph-based approach, i.e. aggregating the input

graphs together and identifying dense subgraphs in the

aggregated graph, as proposed by Lee et al. 2004. However, it

could result in false FDVS’s that may not be dense in any of the

original graphs (see an example in Figure 1B). Other network

motif discovery tools such as Kelley et al. 2004 are designed for

sparse biological networks, not appropriate for large-scale

coexpression graphs.

The essential problems with the summary graph approach

are: (1) noise may aggregate and become indistinguishable with

the signals that occur only in a small subset of the graphs; and

(2) the edges in a dense summary graph may never occur

together in individual original graphs. Guided by our biological

understanding, we devised the following two techniques to

overcome these problems: (1) since similar biological conditions

are likely to activate similar sets of transcription modules, we

partition the input graphs (can be regarded as transcriptomes

under different conditions) into subsets of graphs sharing

certain topological properties, thus are more likely to contain

frequent dense vertex sets. In such a subset of graphs, the

aggregation of signal shall be greater than that of noise, thus

improving signal/noise ratio; (2) for each subset of graphs, we

construct a neighbor association summary graph, which

measures the association of two vertices based on their

connection strength with their neighbors across multiple

graphs. For example, given two vertices u and v, if many

small frequent dense vertex sets include them, they are more

likely from the same FDVS. Biologically speaking, such two

genes are more likely to be in the same transcription module.

Thus, if we increase their edge weight in the summary graph, it

may help separating subtle clusters from dominant clusters in a

summary graph. Figure 2 depicts the pipeline of this graph-

mining methodology.
We applied our algorithm to 105 human microarray datasets,

and identified a large number of potential transcription

modules. We demonstrated the power of our approach based

on ChIP-chip data of 20 transcription factors and genome-wide

evolutionarily conserved transcription factor binding sites. We

show that the likelihood for a coexpression cluster to form a

transcription module increases significantly with the cluster

recurrence, validating the principle of this integrative approach.

In addition, we demonstrate the potential of our approach in

revealing condition-specific regulatory activation.

2 PROBLEM FORMULATION

Given a graph G¼(V,E) and a subgraph induced by vertex set

V0 � V, written G½V0�, the density of V0 is defined as

�ðG½V0�Þ ¼ 2jE0 j
jV0 jðjV0 j�1Þ, where E0 is the edge set of G½V0�.
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Fig. 1. (A) Schematic illustration of a frequent dense vertexset. Four

graphs with the same nodes but different edges are shown. The vertex

set fd, e, f, gg is a frequent dense vertexset because >80% of the vertex

pairs are connected in at least 2 out of the 4 graphs (thick lines).

(B) We construct a summary graph by adding these four graphs

together and by deleting edges that occur less than two times in the

graphs. One of the two dense subgraphs in the summary graph,

fa, b, c, dg, is not dense in any original graph.
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Fig. 2. The pipeline of our frequent dense vertexset mining algorithm

(called NeMo). Step 1: extract coexpression graphs from multiple

microarray datasets with insignificant edges removed. Step 2: partition

coexpression graphs into groups and construct a (neighbor association)

summary graph for each group. Step 3: cluster each summary graph for

dense subgraphs and Step 4: refine/extract frequent dense vertexsets

from the dense subgraphs discovered in Step 3.
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DEFINITION 1 (Frequent Dense Vertexset). Consider a set of

undirected unweighted graphs, D ¼ fGi ¼ ðV,EiÞg, where a

common vertex set V is shared by Gi. Given a density threshold

� and a frequency threshold �, a set of vertices, V0 � V, is a

frequent dense vertexset if, among all induced graphs fGi½V
0�g,

at least �jDj graphs have density ��.

Let D�ðV
0Þ be the graphs in D where the density of V0 is

at least �. We call D�ðV
0Þ the supporting graphs of a dense

vertexset V0. The number of graphs in D�ðV
0Þ is called the

support of V0. According to the above definition, a frequent

dense vertexset is a set of vertices, rather than a classical graph

with vertices and edges. This definition is able to support the

concept of approximate graph patterns, which do not always

have the same edge set in the supporting dataset. In addition to

density, we could also add other constraint such as minimum

degree ratio, minv2V0 ðdegreeðvÞ =ðjV0j � 1ÞÞ, to avoid small

degree vertices.
From a computational point of view, given a graph dataset,

it could be hard to enumerate all of the frequent graphs that

satisfy the density constraint. For the complexity of mining

FDVS’s, observe that mining all maximal dense subgraphs

of D implies finding the largest ones, the maximum dense

subgraphs, which is NP-hard. Therefore, we resort to an

approximate solution that aggregates the graphs together to

form a summary graph and then identifies dense subgraphs

from it in a top–down manner. In the next section, we are going

to examine this solution in detail.

DEFINITION 2 (Summary Graph). Given a set of graphs,

D ¼ fGi ¼ ðV,EiÞg, the summary graph S is a weighted graph

with vertex set V and each edge ðu, vÞ assigned a weight equal to

the number of graphs that contain (u, v).

3 MINING FREQUENT DENSE VERTEXSETS

Given m graphs, a frequent dense vertexset with density � and

frequency � must form a subgraph with density � ��m in the

summary graph. According to this observation, we can start

from the summary graph and mine its dense subgraphs

first. Once it is done, those dense subgraphs are post-processed

for extraction of true frequent dense vertexsets. The overview of

this summary-graph-based method is outlined as follows:

1. Construct a summary graph: Given m graphs, remove

infrequent edges, aggregate all of m graphs to form a

summary graph S.

2. Mine dense subgraphs from the summary graph: Apply

overlapping clustering algorithms such as MODES

(Hu et al., 2005) to decompose the summary graph S to

a set of dense subgraphs bM, such that bM satisfies the

density constraint, e.g. � ��m.

3. Refine: extract true frequent dense vertexsets from the

vertex set of bM.

For dense subgraph mining, we apply MODES (Hu et al.,

2005) to cluster the summary graph. MODES is an overlapping

hierarchical clustering method, which is built on HCS (mining

highly connected subgraphs) (Hartuv and Shamir, 2000).

Given a graph, MODES first selects the minimum normalized

cut, (Shi and Malik, 2000), to break the summary graph into

two subgraphs. Such a decomposition process continues until

the resulting subgraph either satisfies the density constraint or

reaches a minimum size threshold set by users. After that, all of

discovered dense subgraphs are condensed into a node to form

a new graph. The decomposition is applied again to the newly

formed graph. For detailed information, the readers are

referred to our previous work (Hu et al., 2005).
For the refinement step, we adopt a heuristic refinement

process. Given a dense summary subgraph bM with n0 vertices,

we first calculate the weight sum of adjacent edges of each

vertex and sort these n0 vertices in increasing order of edge

weight sum. Then the vertices are dropped in that order one by

one until the rest of vertices in bM form a frequent dense

vertexset. More advanced search methods using simulated

annealing are in development.

Figure 1 shows an example of the summary graph-based

approach for mining frequent dense vertexsets

ð� ¼ 0:5, � ¼ 0:8Þ. All of the graphs in Figure 1A are first

aggregated to form a summary-graph, shown in Figure 1B.

Through clustering, two clusters fa, b, c, dg and fd, e, f, gg are

found. Each cluster is then examined for their density and

frequency. The vertextset fd, e, f, gg satisfies the requirement,

while fa, b, c, dg does not.
As one can see, the dense subgraphs discovered in a summary

graph could significantly shrink the search space and provide a

good starting point for the refinement process. Unfortunately,

the above framework might create three kinds of artifacts.

First, it could generate false patterns, e.g. fa, b, c, dg in

Figure 1B. Second, it could fail in splitting large infrequent

dense vertexsets (see Fig. 3). Third, a clustering algorithm might

even break a true dense vertexset in half. If this situation takes

place, it could become hard for the refinement process

to rediscover it.

One question is how to reduce false FDVS’s in summary

graph so that true FDVS’s can be easily recognized. It was

observed that when more and more graphs are integrated, the

summary graph will become denser and denser, eventually

saturated as a clique. In that case, the possibility of generating

false patterns will increase significantly.

g1

g2

g3

Fig. 3. A summary graph derived from a set of coexpression graphs,

where three FDVS’s exist, g1, g2 and g3. It is observed that two

subgraphs g1 and g2 might not be separated easily.
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Suppose an observed coexpression graph from a microarray

dataset is a real coexpression graph, which includes power-law,

transitivity, and all complex dependencies among genes, over-

laid with a random graph G0ðn, qÞ resulting from noise, where n

is the size of V and each noise edge occurs independently with

probability q. q is called noise edge ratio. (Koyuturk et al.,

2006) discussed a similar formulation in the context of protein

interaction networks.
Let G be the observed graph, G0 be the noise graph and G* be

the ‘real’ graph. G ¼ G0 þ G�. Multiple observed graphs {Gi}

are aggregated to formulate a summary graph S. In the

following discussion, we are going to examine the noise edge

ratio in the summary graph and the number of dense subgraphs

formed by noise edges.

Assume noise edge occurs independently with probability q

in an observed coexpression graph, the chance for a noise edge

to have weight � �m in a summary graph is as follows (light

weight edges are deleted directly),

bðm, �, qÞ ¼
Xm

l¼d�me

m

l

� �
qlð1� qÞm�l: ð1Þ

If m¼ 100, q ¼ 2%, � ¼ 5% (this setting will be explained in

Section 6), bðm, �, qÞ the noise edge ratio in summary graph,

is around 5%.

Then, what is the expected number of k-vertex dense

subgraphs that could be formed by noise edges? Let

p ¼ bðm, �, qÞ and s ¼ kðk� 1Þ=2. The expected number of

k-vertex subgraphs with minimum density � and minimum

degree d is given below,

N ¼
n

k

� �
�
Xs

l¼d�se

s

l

� �
plð1� pÞs�l � Pðk, l, dÞ, ð2Þ

where Pðk, l, dÞ is the probability that a k-vertex l-edge graph

has minimum degree d. For small k, Pðk, l, dÞ can be derived

through simulation. For example, Pð11, 28, 5Þ � 3:18E�5. For
a typical setting in human gene coexpression datasets, n¼ 9000,

�¼ 0.5, k¼ 11, d¼ 5, N << 1 when p ¼ 2%. When p ¼ 3%,

N >> 1. A slight growth of p might significantly increase the

chance of false dense subgraphs.

According to the above analysis, when the noise edge ratio is

high in individual coexpression graphs, many false dense

subgraphs might exist in summary graph, i.e. dense subgraphs

formed by noise edges. In addition to this problem, noise edges

in a summary graph might interfere with true patterns and fool

clustering algorithms.
There are two approaches to remedy the false dense subgraph

problem: (1) divide the coexpression graphs into small groups

and formulate summary graphs based on a subset of coexpres-

sion graphs [with �m fixed, when m decreases, bðm, �, qÞ will
decrease significantly according to Equation (1). (2) Re-weight

summary graph to reduce the weights of noise edges [reduce p

in Equation (2)].

4 UNSUPERVISED PARTITIONING

According to the previous discussion, it is useful to

group coexpression graphs into subsets so that the

summary-graph-based approach could be carried out effec-

tively on each subset. From a computational point of view, it is

infeasible to try all of combinations of m coexpression graphs

when m is large. On the other hand, random partitioning will

not work too since a frequent dense vertexset could be

infrequent in a random subset of graphs.
An optimal solution should group together graphs that likely

contain at least one FDVS. For example, apply known

functional categories to finding a set of seed FDVS’s and use

them to group coexpression graphs. However, this supervised

strategy might bias the partitioning to known modules, while

leaving unknown modules undiscovered forever. We found that

for any frequent dense vertexset, it must be a dense vertexset in

at least one graph. Therefore, one can actually mine dense

subgraphs in individual graphs separately, extract frequent ones

and take them as seed vertexsets to bootstrap the mining

process. This bootstrap process is outlined as follows (it is also

illustrated in Fig. 2).

1. Extract dense subgraphs bM from each individual graph;

refine these subgraphs for true frequent dense vertexset

M, using the greedy refinement process introduced in

Section 3.

2. For each frequent dense vertexset M, calculate its

supporting graph set D�ðMÞ. Take D�ðMÞ as one subset.

3. Remove duplicate subsets.

4. For each subset D�ðMÞ, call the summary-graph-based

approach (see Section 3) to find frequent dense vertexsets

in D�ðMÞ.

Furthermore, the discovered frequent dense vertexsets from

the above process could be taken as new seeds to repeat. An

interesting question is why we are not satisfied with the clusters

discovered in the first step. The reason is that some subtle

clusters can only be discovered from multiple graphs rather

than from single graphs. In the experimental section, we will

demonstrate that our method can find more frequent dense

vertexsets.
Partitioning is one way to reduce false dense vertexsets.

Starting from the next section, we are going to examine another

approach that re-weights edges in summary graph.

5 NEIGHBOR ASSOCIATION

Summary graph is a way to measure the association strength of

two vertices. For the traditional summary graph, it is measured

by the number of edges shared by the two vertices across m

graphs. We could adopt a stronger measure, for example, the

number of small frequent dense subgraphs that two vertices

belong to. Under this measure, if two vertices share many small

frequent dense subgraphs, likely these two vertices come from

the same dense vertexset. This idea leads to the discovery of

‘neighbor association’ summary graph.

Let us first examine the concept of neighbor association in a

single graph (Section 5.1) and then extend it to multiple graphs

(Section 5.2). Given two vertices u and v in a graph, if a lot of

small frequent dense subgraphs contain both u and v, it is likely

that u and v come from the same cluster. Figure 3 shows this
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intuition: the two clusters, black nodes and white nodes, share a

lot of triangles within clusters, but not many across clusters. If

the number of shared triangles is used to weigh the edges in a

graph, it could make clustering much easier. In the next

subsection, we are going to show that if a graph/cluster is dense,

its vertices will share many dense subgraphs.

5.1 Graphlets

DEFINITION 3 (Graphlet). Given a graph G, a k-graphlet is an

induced subgraph of G with k vertices.

Graphlets have been introduced to measure local structural

similarity between two networks (Pržulj et al., 2004). This study

is focused on the property of their density.

LEMMA 1. Given a graph G with density �, written G�, the

average density of a k-graphlet g of G� is �.

PROOF. see our Supplementary Material.

Lemma 1 is true for any graph, showing that there is a

connection between the density of a graph and its k-graphlets.

According to this lemma, it is concluded that there is at least

one k-graphlet in G� whose density is at least �. Consider a

dense random graph G0ðn, �Þ. What is the density distribution

of its k-graphlets? Let s ¼ nðn� 1Þ=2 and t ¼ kðk� 1Þ=2. The

probability that a k-graphlet has l edges follows binomial

distribution with parameter t and �.

t
l

� �
�lð1� �Þðt�lÞ: ð3Þ

Since the median of binomial distribution is around b�tc, it
implies that when a graph is dense, half of its k-graphlets are

likely dense. The above discussion suggests that if we randomly

draw a k-graphlet g from a dense graph G�, g could be dense

with a good chance, and the chance does not depend on the size

of graph G� very much.

In order to identify dense subgraphs in a large unweighted

graph, it could be beneficial to weight its edges based on the

number of dense graphlets shared by vertices. This kind of

weighted graphs, called neighbor association graphs, relies on

more than one neighbor to determine the weight between two

vertices. This weighting method could increase signal/noise

ratio for identifying subtle dense subgraphs.
For the graph shown in Figure 3, the two dense subgraphs g1

and g2 might not be separated accurately by a clustering

algorithm. However, it can be done easily in the neighbor

association graph since the dashed edges receive less weight

(Fig. 4). A neighbor association graph attempts to reduce the

weight of edges between different dense subgraphs, while

conserving edges within each dense subgraph.
There are two issues left. First, the larger dense subgraph the

two vertices belong to, the larger number of dense graphlets

they will have, which might be unfair for small dense

subgraphs. Hence, a normalization is needed. Second, since

we are mining frequent dense vertexsets in multiple graphs, the

weight of edge ðu, vÞ in a summary graph should be the number

of small frequent dense vertex subsets shared by u and v. We are

going to examine the first issue in this subsection, and the

second issue in the next subsection.

Let scoreðu, vÞ be the weight of edge ðu, vÞ in a neighbor

association graph. Intuitively, if u and v are in the same dense

subgraph, scoreðu, vÞ should be close to 1.0. If u and v are not

in the same dense subgraph e.g. u might also be a member

of another dense subgraph, the score should be smaller.

Certainly, if u and v do not share any dense k-graphlet, the

score should be set to 0. Furthermore, scoreðu, vÞ should not be

too much relevant to the size of the dense subgraph that u and

v belong to, which could cause bias against small dense

subgraphs.
Let us first examine an extreme case. Suppose there is a large

clique with n vertices. Given two vertices, u and v in the clique,

the maximum number of k-graphlets (cliques) they share is
n�2
k�2

� �
. Obviously, this number is highly sensitive to n and should

be normalized. Since n is not known in advance, we use the

number of dense k� 1-graphlets (cliques) that contain vertex u

to normalize it,

n� 2

k� 2

� �
n� 1

k� 2

� � ¼ n� kþ 1

n� 1
: ð4Þ

When n	 k, Equation (4) is close to 1.
Let �u be the set of frequent dense (k� 1)-vertexlets that

contain vertex u and �u, v be the set of frequent dense

k-vertexlets that contain vertices u and v. We define scoreðu, vÞ

as follows,

scoreðu, vÞ ¼
j�u, vj

j�uj
: ð5Þ

Given a graph G�, the probability of a k-graphlet whose

density is at least � is not very relevant to the size of G�. Let this

probability be p. The score function in Equation (5) is roughly

normalized,

scoreðu, vÞ �

p �
n� 2

k� 2

� �

p �
n� 1

k� 2

� � ¼ n� kþ 1

n� 1
:

g1

g2

Fig. 4. A neighbor association graph derived in part from the graph

shown in Figure 3. The solid edge means the pair of nodes share at least

two triangles in the summary graph, while the dashed line shows they

share at most one triangle.
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The score function discussed so far is not symmetric: score

ðv, uÞ is not equal to scoreðu, vÞ. We could take the average as

the final weight between two vertices u and v. One advantage

of this score function is that it need not enumerate all of the

dense k-graphlets. In fact, sufficient sampling in k-graphlets

is good enough to estimate the number of k-graphlets contain-

ing u or v.

5.2 Neighbor association summary graph

DEFINITION 4 (Vertexlet). Given a vertex set V, a k-vertexlet

is a subset of V with k vertices.

Since we are working on multiple graphs, it is important

to count small frequent dense k-vertex sets (called vertexlets) to

construct the neighbor association summary graph from a set

of graphs. That is, given two vertices u and v, we calculate

scoreðu, vÞ as the number of frequent dense k-vertexlets that

contain u and v, and normalize it using frequent dense

(k� 1)-vertexlets. A frequent dense k-vertexlet is a frequent

dense vertexset with k vertices. We call such summary graph

a neighbor association summary graph. In contrast, the original

summary graph is also called first-order summary graph.
As to the neighbor association summary graph, one can

imagine, given two vertices u and v, if k is chosen large enough,

the neighbor association method is equivalent to an exhaustive

search method, where it enumerates all frequent dense

vertexsets that include u and v. From this point of view, by

setting k to a small number, our design of a neighbor

association summary graph is positioned between the first-

order summary graph and the exhaustive search method.

An interesting question is that given a frequent dense

vertexset V0, what is the percentage of its k-vertexlets that are

frequently dense? We use random graph as an example to give

analytical result. Suppose there is an n-vertex dense vertexset V0

whose support is r in a graph dataset D. Assume the supporting

graphs in D�ðV
0Þ are r independent random graphs whose

density is at least �. What is the probability of a k-vertexlet

g (g � V0) whose density is at least �0 in all of these r graphs?
Let t ¼ kðk� 1Þ=2, the probability that the density of g is at

least �0 in the ith graph (1 � i � r) is

p ¼
Xt

l¼d�0te

t
l

� �
�lð1� �Þðt�lÞ ¼ I�ðd�

0te, t� d�0te þ 1Þ, ð6Þ

where

I�ða, bÞ ¼
Bð�, a, bÞ

Bð1, a, bÞ
, Bð�, a, bÞ ¼

Z �

0

uða�1Þð1� uÞðb�1Þdu:

Equation (6) is the probability that g is dense in the the ith

random graph. The probability that g is dense in all of the r

independent graphs is pr. For a typical value p¼ 0.5, the value

of pr could be very low when r is large. The number of

k-vertexlets in V0 whose density is at least �0 is pr � n
k

� �
on

average. It seems that when r increases, no matter what the

value �0 has, pr drops quickly. Fortunately, in our problem

setting, the difficulty of mining FDVS’s emerges when r is very

low (r ¼ �m). When the support threshold (�) is set high, the

first-order summary graph becomes good enough because most

of the noise edges will be removed due to their low weights in

the summary graph. Furthermore, since most of the connec-

tions in a frequent dense vertexset are correlated across multiple

coexpression graphs, the chance to have frequent dense

vertexlets should be much higher than pr.

5.3 Implementation

In this section, we put together our design of the neighbor

association summary graph. Algorithm 1 outlines the workflow

of building a neighbor association summary graph. In the first

step, the first-order summary graph is constructed with

infrequent edges removed. This first-order summary graph is

then taken as a template for the neighbor association summary

graph and its edge weight will be recalculated. In practice, since

the number of frequent edges should be significantly smaller

than that of infrequent ones, the template is relatively sparse.

In order to estimate the cardinality of �u, one could sample

t subsets of V, each of which draws k� 2 vertices from the

vertexset V except u. Each of t sets forms a (k� 1)-vertexlet

with u. Let � be the percentage of frequent dense ones among

these t (k� 1)-vertexlets. Hence, j�uj can be estimated via

� � n�1
k�2

� �
. When �u is small, we might have to sample a very large

number of vertex subsets from V. In order to speed up this

process, a trade-off is used to restrict the sampling to those

vertices that have frequent edges connecting to u. The number

of such vertices should be smaller than n. If the cost is still high,

we could first cluster V into subsets and calculate j�uj within

each subset. The same technique can also be applied to the

estimation of j�u, vj. Lines 8–11 re-assign the edge weights

and finish the construction of a neighbor association summary

graph.

Once the neighbor association summary graph is built, we

apply the same mining routine illustrated in Section 3: use

Algorithm 1 Neighbor Association Summary Graph Construction

Input: Graph dataset D ¼ fG1,G2, . . . ,Gmg,
Vertex set V,
Density threshold �, minimum degree ratio d,
Minimum support threshold �;
Vertexlet size k;

Output: A neighbor association summary graph S;

1: build the first-order summary graph S0 over D;
2: remove edges in S0 whose weight is below ��m;
3: for each node u in S0 do

4: estimate j�uj;
5: for each edge ðu, vÞ in S0 do

6: estimate j�u, vj;
7: S S0;
8: for each edge ðu, vÞ in S do

9: if j�uj, j�vj > 0 then

10: re-assign weight wðu, vÞ ¼ ð
j�u, vj

j�uj
þ
j�u, v j

j�v j
Þ=2;

11: else set weight wðu, vÞ ¼ 0;
12: return;
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clustering to decompose the neighbor association summary
graph into (overlapping) dense subgraphs and then refine those
discovered dense subgraphs if their corresponding vertexsets

are not frequently dense enough.
The mining algorithm, including coexpression graph parti-

tioning, summary graph and neighbor association summary

graph construction, clustering and refinement, is named NeMo
for Network Module Mining. Note that NeMo will merge the

results generated by the first order and neighbor association
summary graphs to maximize its potential.

6 EXPERIMENTAL STUDIES

6.1 Data Source, modeling and parameter setting

We selected 105 human microarray datasets, generated by

Affymetrix U133 and U95Av2 platforms (details on
Supplementary Material). Each microarray dataset is modeled
as a coexpression graph where each node is a unique gene and an

edge exists between two nodes/genes if their expression
correlation with a p-value less than 0.01 is significant. The

expression correlation between each pair of genes, denoted as r,
is the correlation coefficient of minimum absolute value using
the leave-one-out Pearson correlation, which is robust against

single experiment outliers and sensitive to overall similarities in
expression patterns (Zhou et al., 2002). In our study, the top 2%
most significant correlations with a p-value less than 0.01 are

included in each graph. The threshold of 2% can be justified by
Equation 2 under which noise edges are unlikely to form a

random dense subgraph.

6.2 Validation of transcriptional module discovery

We applied NeMo to discover frequent approximate dense
vertexsets in the 105 coexpression networks, and identified

4,727 recurrent coexpression clusters, which satisfy the follow-
ing criteria: the cluster density is greater than 0.7 in at least 10
supporting datasets. The average cluster size is 10.7 with a SD

of 2.9. A histogram of the cluster size distribution is provided
on the Supplementary Material. To assess the clustering quality
we tested the member genes of each cluster for enrichment of

the same bound transcription factor. The transcription factor
to target gene relationships were ascertained through ChIP-

Chip experiments, which contain 9,176 target genes for 20 TFs
covering the entire human genome (details on our
Supplementary Material). We define a recurrent cluster to be

a potential transcriptional module if (1) >75% of the cluster
genes are bound by the same transcription factor; and (2) the

enrichment of the particular TF in the cluster is statistically
significant with a hypergeometric P-value <0:01 relative to its
genome-wide occurrences. Among the identified clusters,

15:4% satisfied our definition of potential transcription
modules, which is a high hit rate considering we only tested
1% of the approximately 2000 transcription factors estimated

to exist in the human genome. One possible explanation for this
high coincidence with the ChIP-Chip data is some of the

transcription factors, such as E2F4, play a major role in
regulating cell proliferation; and nearly half of our datasets
study neoplastic transcriptomes. To approximate the

false positive rate of our potential transcription module

identification, we permuted the cluster memberships 100 times

and tested for TF-binding enrichment. On average, the
permuted set of clusters was only 0:2% enriched for a

common transcription factor. This demonstrates the potential
power of our approach to reliably reconstruct regulatory
modules.

The integrity of the clusters is further validated by varying
the cluster density and recurrence. As the criteria for cluster

identification increases in stringency, the relative proportion of
clusters that share a common bound TF also increases (Fig. 5).
At a high recurrence rate, even clusters that are not tightly

coexpressed are likely to represent transcription modules. For
example, 16:1% of clusters with a density of 0.5 at support 20

are enriched for a bound transcription factor whereas clusters
with a density 0.8 and support 5 has a hit rate of only 11:3%.

This reveals the compensatory effect of recurrence versus
density in capturing transcription modules. Therefore, relaxing
the density criterion allows us to identify loosely coexpressed

transcription modules, caused by either subtle regulatory
mechanisms or measurement noise, which analysis of an

individual dataset would not identify. This confirms the
foundation of this study to integrate multiple microarray

datasets for transcription module discovery.
In an attempt to scale up the transcription module

identification, we attempted to validate our clusters based

on putative transcription factor binding sites (TFBS) which
are conserved in human, mouse and rat (Kuhn et al., 2007)

(download version Feb/06). The data contains 407 TFs with
7,720 distinct binding targets within our dataset. Among the
identified clusters that satisfied our criteria, 12:5% showed

enrichment for the same TFBS with a hypergeometric P-value
<0:001 as compared to the permutation test of which only

3:3% were enriched.
The high quality of the clusters identified by NeMo is also

supported by functional homogeneity analysis. We define a
cluster to be functionally homogeneous if >75% of the
member genes belong to the same Gene Ontology biological

process with a hypergeometric P-value <0:01. As the cluster
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density and recurrence increase, the functional homogeneity of

the clusters increases as well (Fig. 6). Using our cluster criteria

of a minimum density of 0.7 and a support of 10, 65:3% of our

clusters are functionally homogeneous compared to the 2:2% in

the permuted clusters. This high degree of functional homo-

geneity provides further support for the potential co-regulation

of our clusters. The clusters participate in a broad range of

biological processes such as cell cycle, immune response and

electron transport. Interestingly, most of the modules with

evolutionarily conserved TFBSs are functionally annotated as

immune response genes, indicating the important role of

immune-related regulatory mechanisms in evolutionary history.

6.3 Context-specific transcriptional control

Integrating multiple microarray datasets not only allows us to

identify robust transcription modules, but also to determine

the context information in which those modules are activated.

We determine the phenotypic context of a microarray dataset

based on the MeSH headings of its corresponding PubMed

record (Butte and Chen, 2006), which are then mapped to

UMLS concepts (Bodenreider, 2004). In total, 143 UMLS

concepts were mapped to at least 8 datasets. A total of 109 of

the clusters that satisfied our criteria are statistically

significant with a hypergeometric P-value <0:01 in a specific

condition such as malignant neoplasms, respiratory diseases or

nervous system disorders. Figure 7 shows a cluster of size 8

which is densely connected in 12 datasets, among which 5 are

leukemia datasets as shown. Relative to the 12 leukemia

datasets out of the total 105 datasets, the condition-specific

enriched activation of this module is statistically significant at

0.0042 level. The module is potentially regulated by E2F4, and

majority of its member genes are involved in cell cycle which

agrees with the nature of leukemia. The power of NeMo to

detect clusters with non-persistent edges is demonstrated here,

as only 7 of the 8 possible edges are present in all five

datasets.

6.4 Comparison with other approaches

In this section, we are going to compare several approaches to

demonstrate the effectiveness of graph partitioning and

neighbor association techniques. Four algorithms will be

compared: (1) modules discovered from individual graphs

(Independent), (2) summary graph over all coexpression graphs

(Summary), (3) summary graphs over partitioned graph sets

(Partitioning), (4) neighbor association summary graphs with

partitioning (Neighbors). In this experiment, we set the cluster

frequency, � ¼ 5%, and the cluster density � ¼ 50% (minimum

degree ratio¼ 0.5). Figure 8 shows the comparison of these four

algorithms. The Y axis is the percentage of homogeneous

modules discovered by each algorithm.

As shown in Figure 8, both Partitioning and Neighbors

techniques are effective to find dense modules with much higher

homogeneity than individual graphs and summary graph

without partitioning. We also experimented increasing the

support threshold. Both Partitioning and Neighbors perform

better since noise edges have smaller weight in summary graph.

When the support reaches �m ¼ 16, the homogeneity percen-

tage is 78:3 and 84:6% for Partitioning and Neighbors,

respectively.
Once frequent dense subgraphs in (neighbor association)

summary graphs are identified, they are post-processed for

generating frequent dense vertexsets that strictly satisfy the

density and frequency constraint. After post-processing, the

percentage of functionally homogeneous modules discovered

becomes similar for all the methods, which is above 36%. This

is reasonable because frequent dense vertexsets with similar

density and frequency should have similar characteristics.

However, the total number of genes identified by these four

methods could be different. Figure 9 shows the number of genes
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in homogeneous modules covered by frequent dense vertexsets.

Five numbers are included for Independent, Summary,

Partitioning, Neighbors and NeMO which merges the results

from Partitioning and Neighbors. From the result of NeMo, we

can calculate the genes exclusively discovered by Partitioning

and Neighbors. It shows their results are complementary to

each other. Figure 9 also shows summary graph without

partitioning does not work well for generating frequent dense

vertexsets, in part because it only looked at dense subgraphs in

one summary graph rather than multiple summary graphs.

7 CONCLUSIONS

We developed a novel graph-based algorithm, NeMo, to

efficiently mine the frequent dense vertexsets in a set of

coexpression graphs. We demonstrated its application in

identifying frequent coexpression clusters across many micro-

array datasets. The identified clusters possess high functional

homogeneity, and are likely to be regulated by the same

transcription factor(s), thus forming potential transcription

modules. Depending on the microarray datasets in which the

modules occur, we can further infer the conditions and contexts

in which they are activated. Given the vast amount of

microarray data accumulation in public repositories, NeMo

shall serve as a timely tool to reconstruct transcription modules

in a context-dependent way. In this study, we focused on
human transcriptional module reconstruction. However, the
proposed method is generally applicable to any organism for

which large amount of microarray data exists. It can also be
applied to other biological relational graphs for finding

approximate network modules.
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