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Abstract. Sequential pattern mining has been studied extensively in data mining
community. Most previous studies require the specification of a min_support threshold
for mining a complete set of sequential patterns satisfying the threshold. However, in
practice, it is difficult for users to provide an appropriate min_support threshold. To
overcome this difficulty, we propose an alternative mining task: mining top-k frequent
closed sequential patterns of length no less than min_¢, where k is the desired number
of closed sequential patterns to be mined, and min_¢ is the minimal length of each
pattern. We mine the set of closed patterns since it is a compact representation of the
complete set of frequent patterns.

An efficient algorithm, called TSP, is developed for mining such patterns without
min_support. Starting at (absolute) min_support = 1, the algorithm makes use of the
length constraint and the properties of top-k closed sequential patterns to perform
dynamic support-raising and projected database-pruning. Our extensive performance
study shows that TSP has high performance. In most cases, it outperforms the efficient
closed sequential pattern mining algorithm, CloSpan, even when the latter is running
with the best tuned min_support threshold. Thus we conclude that for sequential pat-
tern mining, mining top-k frequent closed sequential patterns without min_support is
more preferable than the traditional min_support-based mining.

1. Introduction

Sequential pattern mining is an important data mining task that has been studied
extensively (Agrawal and Srikant, 1995) (Mannila et al, 1995) (Guha et al, 1999)
(Pei et al, 2001) (Zaki, 2001) (Ayres et al, 2002). It has a broad range of appli-
cations, including analysis of customer purchase patterns, web access patterns,
discovery of motifs and tandem repeats in DNA sequences, analysis of various
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sequencing or time-related processes such as scientific experiments, disease treat-
ments, natural disasters, and many more.

The sequential pattern mining problem was first introduced by Agrawal and
Srikant (Agrawal and Srikant, 1995): Given a set of sequences, where each se-
quence consists of a list of elements and each element consists of a set of items,
and given a user-specified min_support threshold, sequential pattern mining is to
find all of the frequent subsequences whose occurrence frequency is no less than
min_support.

The common framework among the current sequential pattern mining meth-
ods is to use a min_support threshold to generate the frequent sequential patterns,
based on the popular Apriori property (Agrawal and Srikant, 1994): every sub-
pattern of a frequent pattern must be frequent (also called the downward closure
property). This framework leads to the following two problems that may hinder
its popular use.

First, sequential pattern mining often generates an exponential number of
patterns, which is unavoidable when the database consists of long frequent se-
quences. The similar fact is observed at mining itemset and graph patterns when
the size of the patterns is large. For example, a database containing a frequent
sequence ((a1)(az)...(aps)) (Vi # j,a; # a;) will generate at least 264 — 1 fre-
quent subsequences. It is very likely some subsequences share the same support
with this long sequence, and they are essentially redundant patterns.

Second, it is nontrivial to provide an appropriate min_support threshold: one
needs to have prior knowledge about the mining query and the task-specific data,
and be able to estimate, without mining, how many patterns will be generated
with a particular threshold. Setting min_support is a subtle task: a too small
value may lead to the generation of thousands of patterns, whereas a too big one
may lead to no answers found.

A solution to the first problem, called CloSpan, was proposed recently (Yan
et al, 2003). CloSpan can mine closed sequential patterns, where a sequential
pattern s is closed if there exists no superpattern of s with the same support
in the database. Mining closed patterns may significantly reduce the number of
patterns generated and is information lossless because it can be used to derive
the complete set of sequential patterns.

As to the second problem, the similar issue also occurs in frequent itemset
mining. Han et al. (Han et al, 2002) changes the task of mining frequent pat-
terns to mining top-k frequent closed patterns of minimal length min_f, where k
is the number of closed patterns to be mined, top-k refers to the & most frequent
patterns, and min_£ is the minimal length of the closed patterns. This setting is
also desirable in the context of sequential pattern mining. We will show a real
application case of top-k sequential pattern mining in Section 2. Unfortunately,
most of the techniques developed in (Han et al, 2002) cannot be directly applied
in sequence mining. This is because subsequence testing requires order match-
ing which is more difficult than subset testing. Moreover, the search space of
sequences is much larger than that of itemsets. However, some ideas developed
in (Han et al, 2002) are still influential in our algorithm design.

In this paper, we introduce a new multi-pass search space traversal algo-
rithm that finds the most frequent patterns early in the mining process and al-
lows dynamic raising of the min_support threshold which is then used to prune
unpromising branches in the search space. Also, we propose an efficient closed
pattern verification method which guarantees that during the mining process the
candidate result set consists of desired closed sequential patterns. The efficiency
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of our mining algorithm is further improved by applying the minimum length
constraint in the mining and by employing the early termination conditions de-
veloped in CloSpan (Yan et al, 2003).

The performance study shows that in most cases our algorithm TSP has
comparable or better performance than CloSpan, currently the most efficient
algorithm for mining closed sequential patterns, even when CloSpan is running
with the best tuned min_support.

The rest of the paper is organized as follows. In Section 2, some basic con-
cepts of sequential pattern mining are introduced and the problem of mining the
top-k frequent sequential patterns without minimum support is formally defined.
Section 3 presents the algorithm for mining top-k frequent closed sequential pat-
terns. A performance study is reported in Section 4. Section 5 gives an overview
of the related work on sequential pattern mining and top-k frequent patten min-
ing. We also discuss extensions of our method and suggestion for future research
in this section. Section 6 concludes this study.

2. Problem Definition

In this section we define the basic concepts in sequential pattern mining and
introduce the problem of mining the top-k frequent sequential patterns. The
notations used here are similar to (Yan et al, 2003).

Let I = {iy,42,...,%x} be a set of all items. A subset of I is called an item-
set. A sequence s = (t1,t2,...,tm) (t; C I) is an ordered list. Without loss of
generality, we assume that the items in each itemset are sorted in certain order
(such as alphabetic order). The size, |s|, of a sequence is the number of itemsets
in the sequence, i.e, |s| = m. The length, I(s), is the total number of items in the
sequence, i.e., [(s) = 31" |t;]. A sequence a = (a1,as,...,an) is a sub-sequence
of another sequence 8 = (b1, ba,...,b,), denoted as a C S (if « # 3, written as
a C B), if and only if Fiq,4a,...,4m, such that 1 <41 < i2 < ... < iy < n and
a1 C b, ,a2 Cby,,..., and an, C b;,, . We also call 8 a super-sequence of a, and
B contains a. If B contains a and their supports are the same, we call 3 absorbs
a.

A sequence database, D = {s1,82,...,8,}, is a set of sequences. Each se-
quence is associated with an id. For simplicity, say the id of s; is i. | D| represents
the number of sequences in the database D. The (absolute) support of a sequence
a in a sequence database D is the number of sequences in D which contain «,
support(a) = |{s|s € D and o C s}|.

Definition 2.1. (top-k closed sequential pattern) A sequence s is a se-
quential pattern in a sequence database D if its support (i.e., occurrence fre-
quency) in D is no less than min_support. A sequential pattern s is a closed
sequential pattern if there exists no sequential pattern s’ such that (1) s C ¢/,
and (2) support(s) = support(s'). A closed sequential pattern s is a top-k closed
sequential pattern of minimal length min_¢ if there exist! no more than
(k — 1) closed sequential patterns whose length is at least min_f and whose
support is higher than that of s. [

1 Since there could be more than one sequential pattern having the same support in a sequence
database, to ensure the result set is independent of the ordering of transactions, the proposed
method will mine every closed sequential pattern whose support is no less than the support of
the k-th frequent closed sequential pattern.
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Seq ID.  Sequence

(ac)(d)(e))
(e)(abef)(e))
(a)(e)(0))
(d)(ac)(e))

(
(
(
(

Table 1. Sample Sequence Database D

Our task is to mine the top-k closed sequential patterns of minimal length
min_{ efficiently in a sequence database.

Example 1. Table 1 shows a sample sequence database. We refer to this dataset
as D and will use it as a running example in the paper. Suppose our task is to
find the top-2 closed sequential patterns with min_¢ = 2 in D. The output should
be: {(a)(e)) : 4,{(ac)(e)) : 3. Although there are two more patterns with support
equal to 3: {(ac)) : 3,{(c)(e)) : 3, they are not in the result set because they are
not closed and both of them are absorbed by {((ac)(e)) : 3. ]

Application scenario. Although top-k sequential pattern mining has its ap-
plications in customer shopping sequence mining, it is interesting to note that
it can be applied to improve the performance of computer storage systems (Li
et al, 2003). Li et al. (Li et al, 2003) applies CloSpan to find block correlations
in disk access sequences. A disk access sequence is a sequence of blocks like
bss, b100, boo3g, -..; b; represents the iz, block on the disk. Suppose an access to
bss is repeatedly followed by an access to bgogg, it may improve the I/O per-
formance if we arrange these two blocks adjacent or fetch them together. When
we mine closed sequential patterns in disk access sequences, the number of se-
quential patterns returned may vary a lot based on different support thresholds.
In practice, it is difficult for users to provide an appropriate support threshold.
However, the users may have an estimation about the number of patterns they
are able to process, especially, in system caching and prefetching. In most cases,
it is sufficient to achieve good performance by optimizing the top thousands of
correlated blocks. Thus top-k sequential pattern mining paves the way for this
kind of application.

3. Method Development

This section presents our method, TSP, for mining top-k closed sequential pat-
terns without a given minimum support threshold. First, we introduce the con-
cept of prefix projection-based sequential pattern mining and the PrefixSpan
algorithm (Pei et al, 2001) which provides the background for the development
of our method. Next, we present a novel multi-pass search space traversal algo-
rithm for mining the most frequent patterns and an efficient method for closed
pattern verification and the minimum support raising during the mining process.
Finally, we propose two additional optimization techniques that further improve
the efficiency of the algorithm.
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3.1. Projection-based Sequential Pattern Mining

Here we briefly introduce PrefixSpan (Pei et al, 2001) and CloSpan (Yan et al,
2003), and then focus on the design of TSP.

Definition 3.1. Given a sequence s = (t1,...,t,) and an item «, s ¢ & means
s concatenates with a. s ¢ a can be an I-Step extension (Ayres et al, 2002),
soja= (t1,...,tm U {a}), if Vk € t;,,k < a; or an S-Step extension (Ayres
et al, 2002), s o5 @ = (t1,...,tm,{a}). n

For example, ((ae)) is an I-Step extension of ((a)), whereas {(a)(c)) is an S-
Step extension of {(a)). (Yan et al, 2003) extends the definition of item extension
to sequence extension.

Definition 3.2. Given two sequences, s = (t1,...,tm) and p = (#],..., ),
s o p means s concatenates with p. It can be itemset-extension, s o; p =
(t1, o ytm Ut ... t,) if VE € t,,j € t],k < j; or sequence-extension,
§0sp = {t1,. - stm,ti,...,th). If 8 = pos, pis a prefix of s’ and s is a
suffix of s'. n

For example, {(ac)) is a prefix of {(ac)(d)(e)) and {(d)(e)) is its suffix.

Definition 3.3. An s-projected database is defined as D; = {p | s’ € D,s' =
rop such that r is the minimum prefix (of s') containing s (i.e., s C r and #r', s C
r" C r)}. Notice that p can be empty. ]

For Table 1, D((ac)) = {((d)(e)),((_f)(e)),((e))}, Where(—f) means that f
and item ¢ in {(ac)) come from the same itemset. For each suffix sequence p in
Dy, the type of extension, i.e., whether s’ is an itemset-extension or a sequence-
extension of s, is recorded. The type of extension helps correctly grow s using
the projected database.

Assume that there exists a lexicographic order in the set of all items in
a database. Set Lexicographic Order is a linear order defined as follows. Let
t = {ir iz, ik}, t' = {j1, 2, -, Ji}, where iy <iz < ... <y and j1 < j2 <
... < Ji- Then t < t' iff either of the following is true:

1. for some h, 1 < h < min{k,l}, we have i, = j, for r < h, and ip, < jp, or
2. k<l,and i1 = ji, @2 = ja,. .., 0k = ji-

For example, (a, f) < (b, f), (a,b) < (a,b,c), and (a,b,c) < (b,c).

Based on this set lexicographic order, Sequence Lexicographic Order is given
as follows: (i) if 8’ = sop, then s < s'; (i) if s = ao; p and s’ = a o4 p', no
matter what the order relation between p and p' is, s < §'; (iii) if s = @ o; p and
s'=a¢;p', p<p indicates s < s'; and (iv) if s=ao;pand s' = ao,p', p<p
indicates s < s'.

For example, ((ab)) < {((ab)(a)) (i.e., a sequence is greater than its prefix);
{(ab)) < {(a)(a)) (i-e., a sequence-extended sequence is greater than an itemset-
extended sequence if both of them share the same prefix).

We construct a Lexicographic Sequence Tree as follows:

1. each node in the tree corresponds to a sequence, and the root is a null sequence;

2. if a parent node corresponds to a sequence s, its child is either an itemset-
extension of s, or a sequence-extension of s; and

3. the left sibling is less than the right sibling in sequence lexicographic order.
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/a)>'4\ <(b)>:2 <(c)>:3 <(d)>:2 <(e)>4

<(ac)>:3 <(a)(e)>4 <(c)(e)>3 <(d)(e)>2 <(e)(b)>:2
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<(ac)(e)>:3

Fig. 1. Lexicographic Sequence Tree
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Fig. 2. Prefix Search Tree

Figure 1 shows a lexicographic sequence tree for mining the sample database
in Table 1 with min_support = 2. The numbers in the figure represent the
support of each frequent sequence. We define the level of a node by the number
of edges from the root to this node. If we do pre-order transversal in the tree,
we can build an operational picture of lexicographic sequence tree (Figure 2). It
shows that the process extends a sequence by adding an I-Step item or an S-Step
item.

Algorithm 3.1 PrefixSpan

Input: A sequence s, a projected DB Dy, and min_support.
Output: The frequent sequence set F.

1: insert s to F7

2: scan D, once, find every frequent item « such that
(a) s can be extended to (s ¢; ), or
(b) s can be extended to (s o5 );

3: if no such «a available then;

4: return;

5: for each a do

6:  PrefixSpan(s o; &, Ds,o, min_support, F); or

7: PrefixSpan(s o5 a, Dso, o, min_support, F');

8: return;

Algorithm 3.1 from PrefixSpan (Pei et al, 2001) provides a general framework
for depth-first search in the prefix search tree. For each discovered sequence
s and its projected database Dj, it performs I-Step extension (line 6) and S-
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Step extension (line 7) recursively until all the frequent sequences which have
the prefix s are discovered. Line 3 shows the termination condition: when the
number of sequences in the s-projected database is less than min_support, it is
unnecessary to extend s any more.

3.2. Multi-Pass Mining and Support Threshold Raising

Since our task is to mine top-k closed sequential patterns without min_support
threshold, the mining process should start with min_support = 1, raise it pro-
gressively during the mining process, and then use the raised min_support to
prune the search space. This can be done as follows: as soon as at least k closed
sequential patterns with length no less than min_{ are found, min_support can
be set to the support of the least frequent pattern, and this min_support-raising
process continues throughout the mining process.

This min_support-raising technique is simple and can lead to efficient mining.
However, there are two major problems that need to be addressed. The first is
how to verify whether a newly found pattern is closed. This will be discussed in
subsection 3.3. The second is how to raise min_support as quickly as possible.
When min_support is initiated or is very low, the search space will be huge and
it is likely to find many patterns with pretty low support. This will lead to the
slow raise of min_support. As a result, many patterns with low support will be
mined first but be discarded later when enough patterns with higher support
are found. Moreover, since a user is only interested in patterns with length at
least min_¢, many of the projected databases built at levels above min_¢ may
not produce any frequent patterns at level min_¢ and below. Therefore, a naive
mining algorithm that traverses the search space in lexicographic order will make
the mining of the top-k closed sequential patterns very slow. Breadth-first search
also does not work. Since short sequences may not have high frequency, one has
to access lots of useless low support short sequences before finding any high
support long sequences.

In this section we propose a heuristic search space traversal algorithm which
in most cases mines the top-k frequent patterns as quickly as the currently fastest
sequential patterns mining algorithm, even when the latter is tuned with the most
appropriate min_support threshold.

3.2.1. Optimal traversal of the search space

First, let us define what we mean by optimal traversal of the search space for
top-k mining. Assuming that we have found the k& most frequent closed sequential
patterns for a given database, we call the support of the least frequent pattern
final_support. This is the maximum min_support that one can raise during the
mining process. In Example 1, final_support = 3.

For the purpose of top-k mining, the optimal traversal of the search space
(i.e., the prefix search tree) is such a traversal that does not visit any node
(or projected database) that has support less than final_support, i.e., if the
final _support is given, PrefixSpan will traverse the search space optimally in
terms of our top-k mining problem. Figure 3 shows a prefix search tree con-
structed during an optimal traversal of the search space for Example 1. Tt is
important to note that optimality is defined here only for the basic search space
traversal algorithm that will be used in our top-k mining method. The search
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Fig. 3. Optimal Prefix Search Tree

space can be pruned further using other techniques such as the min_¢ constraint
and the early termination conditions discussed in the next subsections. This
subsection develops the base algorithm that can traverse the search space as ef-
ficiently as if it was given the final support, and then we will build up additional
optimization techniques on it.

Algorithm 3.2 GreedyTraversal

Input: A sequence s, min_support, min_{, k, and a projected DB D;.
Output: The top-k frequent sequence set F'.

: if support(s) < min_support then return;
:if I(s) = min_{ then
Call PrefixSpanWithSupportRaising(s, min_support, k, Ds, F);
return;
: while there exists an « in D, such that s ¢; a or s ¢, a is the most frequent
sequential pattern in the whole database do
GreedyTraversal(s ¢; a, min_support, min_t, k, Dso, o, F); or
GreadyTraversal(s o5 a, min_support, min_€, k, Ds,, o, F);
7: return;

>

Algorithm 3.2 is a hypothetical algorithm that traverses the first min_¢ levels
of search space greedily without raising min_support. The patterns of length
less than min_¢ will not contribute to the result set, thus they cannot be used
to raise min_support. Algorithm 3.2 runs in the way that it always picks the
most promising branch in the prefix search tree and does depth-first search. A
promising branch means there are lots of closed sequences of length longer than
min_{ in this branch and their support is very high. We can set different criteria
to measure which branch may be promising. Here, we select the pattern which
is the most frequent one among all patterns having the same length. After the
algorithm reaches the level min_£ node, the algorithm calls PrefixSpan to mine
the descendant nodes completely. At the same time, it raises min_support using
the method described above.

Algorithm 3.2 is impractical. Notice that the first call to GreedyTraversal has
to set min_support = 1 at the beginning. That is, one has to mine patterns with
min_support = 1 and build project databases for them before finding the first
k closed sequences of length min_f. This is inefficient. Moreover, it is difficult
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to implement the criteria shown in line 5. In the next subsection, we propose a
multi-pass, heuristic-based mining algorithm, which mitigates these problems.

3.2.2. Multi-pass mining and projected-database tree

Our goal is to develop an algorithm that builds as few prefix-projected databases
with support less than final_support as possible. Actually, we can first search
the most promising branches in the prefix search tree in Figure 2 and use the
raised min_support to search the remaining branches. The algorithm is outlined
as follows: (1) initially (during the first pass), build a small, limited number
of projected databases for each prefix length, (I < min_{), (2) then (in the
succeeding passes) gradually relax the limitation on the number of projected
databases that are built, and (3) repeat the mining again. Each time when we
reach a projected database Dy, where [(s) = min_€ — 1, we mine D completely
and use the mined sequences to raise min_support. The stop condition for this
multi-pass mining process is when all projected databases at level min_¢ with
support greater than min_support are mined completely. We limit the number
of projected databases constructed at each level by setting different support
thresholds for different levels. The reasoning behind this is that if we set a support
threshold that is passed by a small number of projected databases at some higher
level, in many cases this support will not be passed by any projected databases
at lower levels and vice versa.

Algorithm 3.3 TopSequencesTraversal

Input: A sequence s, min_support, min_t, k, a projected DB Dy,
histograms H[1..min _£], and constant factor 6.
Output: The top-k frequent sequence set F'.
: if support(s) < min_support then return;
:if I(s) = min_{ then
Call PrefixSpanWithSupportRaising(s, min_support, k, Ds, F);
return;
: scan D, once, find every frequent item « such that
(a) s can be extended to (s¢; @), or
(b) s can be extended to (s o a);
insert item « into histogram H[I(s) + 1];
: next_level top_support < GetLevelTopSupportFromHistogam (6, H[I(s) + 1])
)

: for each «, support(a) > next_level_top_support do
TopSequencesTraversal(s ¢; «, min_support, min_t, k, Dse,q, H, 6); or
TopSequencesTraversal(s ¢ a, min_support, min_t, k, Dg,. o, H, 0);
9: return;

o2l =]

Algorithm 3.3 performs a single pass of TSP. In order to find the complete
result set we need to call this algorithm multiple times to cover all potential
branches. The limit on the number of projected databases that are built during
each pass is enforced by function GetLevel TopSupportFromHistogam, which uses
histograms of the supports of the sequences found earlier in the same pass or in
the previous passes and the factor 8 which is set in the beginning of each pass.
Figure 4 illustrates the multi-pass mining on the problem setting from Example
1, the bolded lines show the branches traversed in each pass. In this example,
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Fig. 5. PDB-tree: A Tree of Prefix-projected Databases

the mining is completed after the second pass because after this pass the support
threshold is raised to 3 and there are no unvisited branches with support greater
than or equal to 3.

In our current implementation the factor € is a percentile in the histograms
and the function GetLevelTopSupportFromHistogam returns the value of the
support at #-th percentile in the histogram. The initial value of @ is calculated
in the beginning of the mining process using the following formula: 8 = (k *
minl) /Nrtems, where Nygems is the number of distinct items in the database. In
each of the following passes the value of 8 is doubled. Our experiments show that
the performance of the top-k mining algorithm does not change significantly for
different initial values of 8 as long as they are small enough to divide the mining
process in several passes.

In order to efficiently implement the multi-pass mining process described
above we use a tree structure that stores the projected databases built in the
previous passes. We call this structure Projected Database Tree or PDB-tree. The
PDB-tree is a memory representation of the prefix search tree and stores infor-
mation about partially mined projected databases during the multi-pass mining
process. Since the PDB-tree consists of partially mined projected databases, once
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a projected database is completely mined, it can be removed from the PDB-tree.
Because of this property, the PDB-tree has a significantly smaller size than the
whole prefix search tree traversed during the mining process. The maximum
depth of the PDB-tree is always less than min_f because TSP mines all pro-
jected databases at level min_¢ and below completely. In order to further reduce
the memory required to store the PDB-tree, we use pseudo-projected databases
at the nodes of the PDB-tree, i.e., we only store lists of pointers to the ac-
tual sequences in the original sequence database. Figure 5 shows an example of
PDB-tree, where each searched node is associated with a projected database.

3.3. Verification of Closed Patterns

Now we come back to the question raised earlier in this section: how can we
guarantee that at least k closed patterns are found so that min_support can be
raised in mining? Currently, CloSpan mines closed sequential patterns. CloSpan
stores candidates for closed patterns during the mining process and in its last
step it finds and removes the non-closed ones. This approach is infeasible in top-k
mining since it needs to know which pattern is closed and accumulates at least
k closed patterns before it starts to raise the minimum support. Thus closed
pattern verification cannot be delayed to the final stage.

In order to raise min_support correctly, we need to maintain a result set to
ensure that there exists no pattern in the database that can absorb more than
one pattern in the current result set. Otherwise, if such a pattern exists, it may
reduce the number of patterns in the result set down to below k& and make the
final result incomplete or incorrect. For example, assume k = 2, min_f = 2, and
the patterns found so far are: {{(a), (b)) : 5, {(a), (¢)) : 5}. If these patterns are
used to raise min_support to 5 but later a pattern ((a), (b), (c)) : 5 is found,
the latter will absorb the first two. Then the result set will consist of only one
pattern instead of two. Thus it is incorrect to set min_support to 5. In this case
the correctness and completeness of the final result can be jeopardized because
during some part of the mining one might have used an invalid support threshold.

Here we present a technique that handles this problem efficiently.

Definition 3.4. Given a sequence s, s € D, the set of the sequence IDs of all
sequences in the database D that contain s is called sequence ID list, denoted
by SIDList(s). The sum of SIDList(s) is called sequence ID sum, denoted
by SIDSum(s).

If the sequences in the original database D do not have numeric identification
numbers, we can assign such numbers when we scan the database.

Remark 3.1. Given sequences s’ and s”,if s’ C s” and support(s') = support(s")
then SIDList(s") = SIDList(s") and SIDSum(s') = SIDSum(s").

Rationale. Since s’ is a subsequence of s”, s’ is contained in all sequences in
the database that contain s”. Also, s’ cannot be contained in any sequences
that do not contain s” because s’ and s” have the same support. Therefore,
SIDList(s') = SIDList(s") and SIDSum(s') = SIDSum(s"). n

Lemma 3.1. Given sequences s’ and s", if support(s') = support(s"), SID List
(s') # SIDList(s"), then neither s’ is subpattern of s, nor s” is a subpattern
of s'.
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Rationale. This lemma, can be easily proved by contradiction using Remark 3.1.
Assume s' C s”. Given that support(s') = support(s"), we have SID List(s') =
SIDList(s") from Remark 3.1, which is a contradiction. In the same way we can
prove that s" C s’ is not possible either. n

Remark 3.2. If there exists a frequent item «,a € Dy, such that support(s o
o) = support(s) or support(s o; a) = support(s), then s should not be added to
the current top-k result set, because there exists a superpattern of s with the
same support.

Rationale. Since support(s o5 a) = support(s) and s C (s o5 a), thus s is not a
closed pattern and should not be added to the current result set. Similarly, we
can prove it for the case of itemset extension. [

Based on Remarks 3.1 and 3.2 and Lemma 3.1, we developed an efficient
verification mechanism to determine whether a pattern should be added to the
top-k set and whether it should be used to raise the support threshold.

A prefix tree, called TopK _T'ree, is developed to store the current top-k result
set in memory. Also, in order to improve the efficiency of the closed pattern veri-
fication, a hash table, called SIDSum_Hash, is maintained that maps sequence
id sums to the nodes in TopK Tree.

In our top-k mining algorithm when a new pattern is found the algorithm
takes one of the following three actions: (1) add_and_raise: the pattern is added
to the top-k result set and is used to raise the support threshold, (2) add_but_no_
raise: the pattern is added to the top-k result set but is not used to raise the
support threshold, and (3) no_add: the pattern is not added to the top-k result
set.

The following algorithm implements the closed pattern verification.

Algorithm 3.4 Closed Pattern Verification

Input: A sequential pattern s
Output: One of the following three operations: add_and_raise,
add_but_no_raise, and no_add.

1: if 3 an item «, such that support(s o5 a) = support(s) or
support(s o; a) = support(s) then
return(no_add);

2: if SIDSum(s) is not in SIDSum_Hash then
return(add_and_raise);

3: for each s’ such that SIDSum(s') = SIDSum(s) and

Support(s') = Support(s) do

4 if s C s’ then return(no_add);

5 if s' C s then

6: replace s’ with s;

7 return(add_but_no_raise);

8

9

1

if SIDList(s') = SIDList(s) then
: return(add_but_no_raise);
0: return(add_and_raise);

Notice that the algorithm for closed pattern verification returns add_but_no_
raise for patterns that have the same SIDList as some other patterns that are
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already in the top-k result set. Such patterns are stored separately and are not
used to raise the support threshold min_support. This eliminates the problem
mentioned earlier: If two patterns in the top-£ result set are absorbed by a single
new pattern, it may lead to less than k£ patterns in the result set. In summary,
our strategy is to maintain top-k patterns in the result set where no two patterns
can be absorbed by a single new pattern.

3.4. Applying the Minimum Length Constraint

Now we discuss how to reduce the search space using the minimum length con-
straint min_¢.

Remark 3.3. (Minimum Length Constraint) For any sequence s’ € Dy such
that I(s') + I(s) < mint, the sequence s’ will not contribute to a frequent
sequential pattern of minimum length min_¢, and it can be removed from the
projected database D;.

Based on Remark 3.3, when our algorithm builds a projected database, it
checks each projected sequence to see whether it is shorter than min_£ — [(s)
before adding it to the projected database.

Notice that the minimum length constraint can be used to reduce the size of
a projected database D, only when [(s) < min_¢ — 1. Thus when the prefix s
is longer than min_¢ — 2, the program does not need to check the length of the
projected sequences.

3.5. Early Termination by Equivalence

Early termination by equivalence is a search space reduction technique developed
in CloSpan(Yan et al, 2003). Let Z(D) represent the total number of items in D,
defined as

n

I(D) =) I(sy).
i=1
We call Z(D) the size of the database. For the sample dataset in Table 1, Z(D) =
17. The property of early termination by equivalence shows if two sequences
s C ¢’ and Z(D;) = (D), then Vv, support(s o ) = support(s’ o). It means
the descendants of s in the lexicographical sequence tree must not be closed.
Furthermore, the descendants of s and s’ are exactly the same. CloSpan uses this
property to quickly prune the search space of s.

To facilitate early termination by equivalence in the top-k mining, we explore
both the partially mined projected database tree, PDB T'ree, and the result set
tree, TopK Tree. Two hash tables are maintained: one, called PDB_Hash, map-
ping databases sizes to nodes in PDB _Tree and the other, called TopK _Hash,
mapping databases sizes to nodes in TopK Tree.

For each new projected database Dg that is built, we search the two hash
tables using Z(Dy) as a key and check the following conditions:

— If there exists a sequence s',s' € PDB _Tree, such that Z(D,) = Z(Dgy) and
s C s’ then stop the search of the branch of s.
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abbr. meaning

Number of sequences in 000s

Average itemsets per sequence

Number of different items in 000s

D
C
T Average items per itemset
N
S

Average itermsets in maximal sequences

I Average items in maximal sequences

Table 2. Parameters in IBM Quest Data Generator

— If there exists a sequence s',s' € PDB _Tree, such that Z(D,) = Z(Dgy) and
s' € s then remove s’ from PDB_Tree and continue the mining of the branch
of s.

— If there exists a sequence s',s' € TopK Tree and s' ¢ PDB_Tree, such that
I(Ds) = I(Dy) and s C s’ then stop the search of the branch of s.

With this adoption of early termination in TSP, the performance of TSP is
improved significantly.

4. Experimental Evaluation

This section reports the performance testing of TSP in large data sets. In par-
ticular, we compare the performance of TSP with CloSpan. The comparison is
based on assigning the optimal min_support to CloSpan so that it generates the
same set of top-k closed patterns as TSP for specified values of k and min_£. The
optimal min_support is found by first running TSP under each experimental con-
dition. Since this optimal min_support is hard to speculate without mining, even
if TSP achieves the similar performance with CloSpan, TSP is still more valuable
since it is much easier for a user to work out a k value for top-k patterns than a
specific min_support value.

The datasets used in this study are generated by a synthetic data generator
provided by IBM. It can be obtained at http://www.almaden.ibm.com/cs/quest.
Table 2 shows the major parameters that can be specified in this data generator,
more details are available in (Agrawal and Srikant, 1995).

All experiments were performed on a 1.8GHz Intel Pentium-4 PC with 512MB
main memory, running Windows XP Professional. Both algorithms are written
in C++ using STL and compiled with Visual Studio .Net 2002.

The performance of the two algorithms has been compared by varying min _¢
and k. When k is fixed, its value is set to either 50 or 500 which covers the range
of typical values for this parameter. Figures 6 and 7 show performance results
for dataset D100C5T2.5N105412.5. This dataset consists of relatively short se-
quences, each sequence contains 5 itemsets on average and the itemsets have 2.5
items on average. The experimental results show that TSP mines this dataset
very efficiently and in most cases runs several times faster than CloSpan. The
difference between the running time of the two algorithms is more significant
when longer patterns are mined (larger min_£ ). There are two major reasons
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for the better performance of TSP in this dataset. First, it uses the min_¢ con-
straint to prune short sequences during the mining process which in some cases
significantly reduces the search space and improves the performance. Second,
TSP has more efficient closed pattern verification scheme and stores a result set
that contains only a small number of closed patterns, while CloSpan keeps a
larger number of candidate patterns that could not be closed and removes the
non-closed ones at the end of the mining processes.

Figures 8 and 9 show the experiments on dataset D100C10T10N10S4I5 which
consists of longer patterns compared to the previous one. The average number of
itemsets per sequence in this dataset is increased from 5 to 10. For this dataset the
two algorithms have comparable performance when min_£ is small. The reasons
for the similar performance of the two algorithms are that the benefit of applying
the min_¢ constraint is smaller because the sequences in the dataset are relatively
longer. However, as indicated by Figure 9, when min_{ increases, TSP runs faster
than CloSpan again.

As we can see, min_{ plays an important role in improving the performance
of TSP. If we ignore the performance gain caused by min_¢, TSP can achieve
the competitive performance with well tuned CloSpan. We may wonder why
minimum support-raising cannot boost the performance like what min_£ does.
The rule of thumb is that the support of upper level nodes should be greater
than lower level nodes (the support of short sequences should be greater than
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that of long sequences). Then, few nodes in the upper level can be pruned by the
minimum support. Since we cannot access the long patterns without accessing
the short patterns, we have to search most of upper level nodes in the prefix
search tree. As we know, the projected database of the upper level nodes is very
big and expensive to compute. Thus, if we cannot reduce checking the projected
databases of the upper level nodes, it is unlikely that we can benefit from support-
raising technique a lot. However, the support-raising technique can free us from
setting minimum support without sacrificing the performance.

In summary, the multi-pass search space traversal strategy combined with
the dynamic raising of min_support avoid the construction of a large number
of unnecessary projected databases with support less than final_support. Even
though the top-k algorithm is not given any minimum support threshold, it
achieves a similar or even better performance in comparison with CloSpan run-
ning with the optimal min_support threshold.

5. Discussion

In this section, we discuss the related work and the directions for further study.
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5.1. Related work

We first show the relationships and differences of the TSP algorithm with (1) the
Apriori-based algorithms: AprioriAll, GSP and SPADE, (2) the pattern growth-
based algorithms: FreeSpan, PrefixSpan, and CloSpan, and (3) the top-k frequent
pattern mining algorithm: TFP.

5.1.1. Apriori-Based Algorithms

Agrawal and Srikant (Agrawal and Srikant, 1995) introduced the sequential pat-
tern mining problem and three algorithms to solve it. Among those algorithms,
AprioriAll was the only one to mine the complete set of frequent sequential pat-
terns. Later in (Srikant and Agrawal, 1996) they proposed the GSP (General-
ized Sequential Patterns) algorithm for mining sequential patterns. All of these
algorithms are based on the Apriori property proposed in association mining
(Agrawal and Srikant, 1994) and a candidate generation-and-test approach. The
Apriori property states that any superpattern of a nonfrequent pattern cannot
be frequent. Using this heuristic, AprioriAll and GSP narrow down the search
space for frequent sequential patterns drastically. To mine frequent sequences
with length (I + 1), the Apriori-based algorithm needs to find all the candidate
length-(I+1) sequences from their previously derived length-I frequent sequences,
scan the database one more time to collect their counts, which makes them in-
efficient for mining long patterns.

5.1.2. SPADE

Zaki in (Zaki, 2001) proposed a new approach for mining frequent sequential pat-
terns, called SPADE (Sequential Pattern Discovery using Equivalence classes).
This algorithm uses vertical id-list database format, i.e., for each item an id-list
of the identifiers of the sequences in which it appears and their corresponding
time stamps are created. The frequent sequential patterns are mined by perform-
ing temporal join operations on these id-lists. SPADE decomposes the original
problem into smaller subproblems, which can be independently solved in main-
memory, using lattice search techniques. SPADE outperforms GSP by a factor of
two, and by an order of magnitude with some pre-processed data. This method
can mine the complete set of frequent sequences in only three database scans.

5.1.8. FreeSpan and PrefixSpan

FreeSpan (Frequent pattern-projected sequential pattern mining) was intro-
duced by Han, et al. in (Han et al, 2000). It uses frequent items to recur-
sively project sequence databases into a set of smaller projected databases.
The subsequent mining is limited to each of these smaller projected databases.
FreeSpan 1is significantly more efficient than the Apriori-based GSP . The prob-
lem of FreeSpan is that the same sequence can be repeated in many projected
databases. For example, if a sequential pattern appears in each sequence in the
database, its projected database will have the same size as the original database,
except for the infrequent items that will be removed.

In a later work (Pei et al, 2001) Pei, et al. introduced PrefixSpan (Prefix-
projected Sequential Pattern mining). Its general idea is to examine only the
prefix subsequences and project only their corresponding suffix subsequences
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into projected databases. In each projected database, sequential patterns are
grown by exploring only local frequent patterns. PrefixSpan runs considerably
faster than both GSP and FreeSpan , especially when longer sequential patterns
are mined.

5.1.4. CloSpan

CloSpan (Yan et al, 2003) (Closed Sequential Patterns mining) is a recently
proposed closed sequence mining algorithm. It uses depth-first search and prefix-
projected database method to enumerate the frequent sequential patterns. CloSpan
developed a novel technique called early termination by equivalence, which can
efficiently determine whether there are new closed patterns in search subspaces
and terminate the search of subspaces that do not contain such patterns. CloSpan
outperforms PrefixSpan by more than one order of magnitude and is capable of
mining longer frequent sequences in large databases with low minimum support.
An alternative to closed sequence mining is maximal sequence mining (Chen
et al, 1996). A maximal sequence is a frequent sequence that is not contained
in any other frequent sequence. One may lose support information on frequent
sequences when mining maximal sequences.

5.1.5. TFP: Mining top-k Frequent Closed Patterns without Minimum
Support

The algorithms reviewed in the last four subsections mine frequent sequential
patterns in sequence databases using user-specified min_support threshold. Our
algorithm has a frequent pattern mining counterpart, TFP (Han et al, 2002),
that mines frequent closed itemsets in transaction databases. Even though TFP
does not mine sequential patterns, it is closely related to TSP because TFP is
the first study on mining top-k frequent closed patterns with minimum length
constraint.

TFP is an FP-tree (Han et al, 2000) based frequent pattern mining algorithm
for finding the top-k frequent closed patterns without a predefined min_support
threshold. TFP starts the mining process with min_support threshold equal to 1,
and raises the support threshold during both the FP-tree construction and the
mining of the FP-tree. TFP explores “top-down” and “bottom-up” combined
FP-tree mining process to first mine the most promising tree branches. Also,
an efficient closure verification scheme is developed to determine whether the
newly discovered patterns are closed. TFP in most cases achieves better perfor-
mance than two of the most efficient frequent closed pattern mining algorithms,
CLOSET (Pei et al, 2000) and CHARM (Zaki and Hsiao, 2002), even when they
are running with the best tuned min_support threshold. TFP concludes that
mining the top-k frequent patterns without min_support can be efficient and
should be more preferable than the traditional min_support-based mining.

The algorithm proposed in the present paper adopts the problem definition
of TFP and provides an efficient solution to this problem in the more challenging
setting of mining frequent closed sequential patterns in sequence databases.
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5.2. Future work

There are several issues related to our algorithm for mining top-k frequent closed
sequential patterns that should be studied further. For example, more sophisti-
cated methods for determining the parameter 6 that controls the level support
thresholds in the different passes of the multi-pass mining process should be in-
vestigated. It is possible to use the support distributions observed in the earlier
passes to set more appropriate values of @ for the subsequent passes. Another
potential optimization is to modify the algorithm to perform the breath-first
search of the search space after it reaches level min_f. This can avoid traver-
sal of long branches in the beginning of the mining and will raise min_support
faster. However, the breath-first traversal also has its disadvantages: it requires
more memory and limits the usage of early termination by equivalence. Thus,
a comprehensive study on a variety of datasets needs to be done to evaluate
in what situations that the algorithm should use breath-first search instead of
depth-first search.

The performance study presented in this study includes only synthetic data
sets. In order to better evaluate the scalability and flexibility of the proposed
algorithm, experiments on real datasets need to be done. Other directions for
future research include incorporation of user-specified constraints (Garofalakis
et al, 1999) (Pei et al, 2002) into the mining of top-k closed sequential patterns
and extension of the method to mining other complicated structured patterns,
such as closed graph patterns (Yan and Han, 2003).

6. Conclusions

In this paper, we have studied the problem of mining top-k (frequent) closed
sequential patterns with length no less than min_f and proposed an efficient
mining algorithm TSP, with the following distinct features: (1) it adopts a novel,
multi-pass search space traversal strategy that allows mining of the most frequent
patterns early in the mining process and fast raising of the minimal support
threshold min_support dynamically, which is then used to prune the search space,
(2) it performs efficient closed pattern verification during the mining process that
ensures accurate raising of min_support and derives correct and complete results,
and (3) it develops several additional optimization techniques, including applying
the minimum length constraint, min_¢, and incorporating the early termination
testing proposed in CloSpan.

Our experimental study shows that the proposed algorithm delivers compet-
itive performance and in many cases outperforms CloSpan, currently the most
efficient algorithm for (closed) sequential pattern mining, even when CloSpan is
running with the best tuned min_support. Through this study, we conclude that
mining top-k closed sequential patterns without min_support is practical and in
many cases more preferable than the traditional min_support threshold based
sequential pattern mining.
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