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ABSTRACT
Observed in many applications, there is a potential need of
extracting a small set of frequent patterns having not only
high significance but also low redundancy. The significance
is usually defined by the context of applications. Previous
studies have been concentrating on how to compute top-k
significant patterns or how to remove redundancy among
patterns separately. There is limited work on finding those
top-k patterns which demonstrate high-significance and low-
redundancy simultaneously.

In this paper, we study the problem of extracting redunda-
ncy-aware top-k patterns from a large collection of frequent
patterns. We first examine the evaluation functions for mea-
suring the combined significance of a pattern set and propose
the MMS (Maximal Marginal Significance) as the problem
formulation. The problem is known as NP-hard. We further
present a greedy algorithm which approximates the optimal
solution with performance bound O(log k) (with conditions
on redundancy), where k is the number of reported patterns.
The direct usage of redundancy-aware top-k patterns is il-
lustrated through two real applications: disk block prefetch
and document theme extraction. Our method can also be
applied to processing redundancy-aware top-k queries in tra-
ditional database.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications - Data Mining

General Terms: Algorithms

Keywords: Pattern Extraction, Significance, Redundancy

1. INTRODUCTION
Frequent patterns are widely used in sophisticated data

mining and database applications, including association rule

∗The work was supported in part by the U.S. National Sci-
ence Foundation NSF IIS-03-08215/05-13678 and NSF BDI-
05-15813. Any opinions, findings, and conclusions or recom-
mendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the funding agen-
cies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’06, August 20–23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008 ...$5.00.

mining, classification, clustering, and indexing. Recent prog-
ress on frequent-pattern mining has seen two trends: (1)
measuring significance of various kinds of patterns, such
as tf-idf scores [23] for text topics and position-weighted
matrix score [17] for biological motifs; and (2) eliminating
redundancy among discovered patterns, e.g., lossless com-
pression using closed [18] or non-derivable [4] patterns, and
lossy summarization using ordered patterns [16], cover-set
[1], clustering [25], or pattern profiles [26]. These studies of-
ten emphasize significance and redundancy separately, while
many applications need to consider these two measures to-
gether.

One interesting example is correlation-directed disk block
prefetch. A disk access sequence is a sequence of blocks,
e.g., b35, b100, b9039, ..., where bi represents the ith block on
the disk. Suppose an access to b35 is repeatedly followed by
an access to b9039, it may improve the I/O performance if
these two blocks are arranged adjacent to each other and
fetched together when block b35 is accessed. Li et al. [14]
show that correlation-directed prefetch can improve the av-
erage I/O response time by up to 25%. The system uses
association rules as a decision system: Whenever the left-
hand side of a rule is satisfied, the blocks on the right-hand
side are pre-fetched. However, there are considerable re-
dundancy existing in association rules, for example, one can
generate more than 200k rules for one I/O trace collected at
the HP Lab [20]. Due to the resource limitation, a system
may only want to pick a subset of important yet divergent
rules. The significance of each rule can be measured by its
additional value to the existing rules.

The second example is document theme extraction [3, 15],
where each document (or each sentence) is treated as a
transaction. The goal is to extract the frequent patterns
of term occurrence, called themes, buried in a large set of
documents. Given a document set, the top-k frequent pat-
terns returned by a mining algorithm are not necessarily the
best k themes one can find. Many frequent term sets could
overlap significantly with each other. Such overlapping may
render top-k important themes very redundant.

As shown in the above two applications, a useful compact
pattern set should simultaneously demonstrate high signif-
icance and low-redundancy. We call this kind of patterns
redundancy-aware top-k patterns.

Previous studies on pattern compression (summarization)
[1, 16, 25, 26] are able to approximate a collection of frequent
patterns using a small pattern set, which aims to minimize
the frequency restoration error for those patterns that are
not selected. A close work to this paper is the pattern order-



ing problem studied in [16], where the authors rank patterns
such that the top-k patterns are able to best summarize the
whole set of frequent patterns. The major difference be-
tween our problem and all of the previous works is that
we emphasize both significance and redundancy on the se-
lected top-k patterns, and the pattern significance is defined
by the context of the applications; while summarizing the
whole collection of the patterns is not our goal. The previ-
ous works only consider pattern relevance rather than signif-
icance, thus may not provide a solution to redundancy-aware
top-k pattern extraction.

Previous works on top-k frequent pattern mining [10] as-
sume patterns are independent, which unfortunately is not
the case. Figure 1(a) shows a set of frequent patterns where
each circle represents one pattern whose significance is col-
ored in gray scale, and the distance between two circles re-
flects their relevance. The intuition of redundancy-aware
top-k patterns is illustrated in Figure 1(b) as opposed to
the traditional top-k patterns in Figure 1 (c) and the k sum-
marized patterns in Figure 1(d). Redundancy-aware top-k
patterns make a trade-off between significance and redun-
dancy. The three patterns pointed by arrow in Figure 1(b)
have high significance and low redundancy. On the other
hand, the traditional top-k approach picks patterns based
on significance solely and a pattern summarization approach
picks patterns based on relevance solely.

significance


(a) a set of patterns

significance + relevance


(b) redundancy-aware top-
k

significance


(c) traditional top-k

relevance


(d) summarization

Figure 1: Redundancy-aware Top-k, Traditional
Top-k, and Summarization

In this paper, we formulate the redundancy-aware top-k
pattern extraction problem through a general ranking model
which integrates two measures, significance and redundancy,
into one objective function. We first examine the evaluation
functions for measuring the combined significance of a pat-
tern set and propose the MMS (Maximal Marginal Signifi-
cance) as the problem formulation. The problem is known
as NP-hard. We further present a greedy algorithm which
approximates the optimal solution with performance bound
O(log k) , where k is the number of reported patterns.

Although our work focuses on pattern extraction, the met-
hodology developed in this paper can also be applied to
many top-k query applications [2] to help users explore query
results more effectively. More specifically, since similar re-
sults are often ranked closely, the top-k query results may

not provide enough diversified information to users. Our
method can be used to get the redundancy-aware top-k
ranking.

The rest of the paper is organized as follows. Section 2
introduces the concept of redundancy-aware top-k pattern
extraction and its problem formulation. A comparison of
the alternative objective functions is made in Section 3. We
propose an improved algorithm for the MMS problem in
Section 4. Section 5 presents two case studies of document
theme extraction and correlation-directed prefecth. The re-
lated work is presented in Section 6 and we conclude our
study in Section 7.

2. PROBLEM FORMULATION
In this section, we first discuss measures for pattern signif-

icance and pattern redundancy, and then propose the formal
problem formulation.

2.1 Significance and Redundancy
Here we define significance and redundancy in the context

of this paper.

Definition 1. (Pattern Significance) A significance mea-
sure S is a function mapping a pattern p ∈ P to a real value
such that S(p) is the degree of interestingness (or usefulness)
of the pattern p.

There are several previous studies on the significance (or
interestingness) measure of patterns, which include [11] on
rule interestingness, and [22, 24, 12] on interesting measure
of frequent item-set or association patterns. According to
[22], the significance measure can be divided into objective
measures and subjective measures. Commonly used objec-
tive measures include support, confidence, lift, coherence,
and tf-idf for text patterns and attribute values for database
tuples. Subjective measure is usually a relative score com-
pared with some prior knowledge or background model. It
measures the unexpectedness of a pattern by computing its
divergence from the background model. [11, 12] are exam-
ples that use subjective measures.

We further extend the expression S to combined signifi-
cance and relative significance. Let S(p, q) be the combined
significance of patterns p and q, and S(p|q) = S(p, q)−S(q)
be the relative significance of p given q. Note that the com-
bined significance S(p, q) means the collective significance
of two individual patterns p and q, not the significance of a
single super pattern p ∪ q.

Given significance measures, we can define the redun-
dancy between two patterns.

Definition 2. (Pattern Redundancy) Given the signifi-
cance measure S, the redundancy R between two patterns p
and q is defined as R(p, q) = S(p) + S(q) − S(p, q). Subse-
quently, we have S(p|q) = S(p)−R(p, q).

In this paper, we make the assumption that the combined
significance of two patterns is no less than the significance of
any individual pattern (since it is a collective significance of
two patterns) and does not exceed the sum of two individ-
ual significance (since there exists redundancy). This simply
says that the redundancy between two patterns should sat-
isfy

0 ≤ R(p, q) ≤ min(S(p), S(q)). (1)



The ideal redundancy measure R(p, q) is usually hard to
obtain. In this paper, we approximate redundancy using
distance between patterns.

Definition 3. (Pattern Distance) A distance measure D :
P×P → [0, 1] is a function mapping two patterns p, q ∈ P to
a value in [0, 1], where 0 means p, q are completely relevant
and 1 means p, q are totally independent.

The distance can be calculated based on the pattern struc-
ture, e.g., the edit distance between two DNA sequences; or
based on the underlying data used in the discovery process,
e.g., the Jaccard distance used in [13]; or based on the distri-
bution of the patterns, e.g., Kullback-Leibler Divergence. If
a distance is a metric measure, i.e., it has properties of iso-
lation, symmetry, and triangle inequality, it will bring many
desirable properties. In the above example, both string edit
distance and the Jaccard distance are metrics.

More generally, the distance D(p, q) can be weighted to
reflect users’ preference on penalizing redundancy. Since
distance is the complementary of redundancy, we use the
following equation to approximate R:

R(p, q) = (1−D(p, q))×min(S(p), S(q)). (2)

The above function indicates that the value of R(p, q) is
bounded by [0, min(S(p), S(q))] (see Eqn. (1)).

2.2 Evaluating k Patterns
We extend our formulation to a set of k patterns. Let G

be an evaluation function measuring the significance of a set
of k patterns Pk = {p1, p2, . . . , pk}. If we assume patterns
in Pk are all independent, we have:

Gind(Pk) =

kX
i=1

S(pi),

where S is the significance measure.
In general, there are redundancies between patterns. Let

L be a function returning redundancies among Pk:

Ggen(Pk) =

kX
i=1

S(pi)− L(Pk).

In many cases, L is very hard to formulate. We propose two
heuristic evaluation functions Gas (average significance) and
Gms (marginal significance), which sacrifice some generality
but are more practical for computation and search. We first
define our computation model based on a new concept, re-
dundancy graph.

Definition 4. (Redundancy Graph) Given a significance
measure S and redundancy measure R, a redundancy graph
of a set of patterns P is a weighted graph G(P) where each
node i corresponds to a pattern pi. The weight on node i is
pattern significance S(pi) and the weight on an edge (i, j) is
the redundancy R(pi, pj).

Let the redundancy subgraph induced by the set of k pat-
terns be G(Pk). The natural formulation of L is to consider
all pair-wise redundancy by summing the edge weights of

G(Pk). Since there are k patterns and k(k−1)
2

edges, we fur-
ther normalize it by taking average weights on edges. Typi-
cally, the average weights associated with a pattern pi are:

w(pi) =
1

k − 1

kX
j=1,j 6=i

R(pi, pj).

The evaluation function Gas is defined as below:

Gas(Pk) =

kX
i=1

S(pi)− 1

2

kX
i=1

w(pi), (3)

where 1
2

is introduced because every redundancy R(pi, pj is
counted twice by both pi and pj . Substitute w(pi) in Eqn.
(3):

Gas(Pk) =

kX
i=1

S(pi)− 1

k − 1

kX
i=1

i−1X
j=1

R(pi, pj) (4)

We refer this formulation as average significance.
An alternative formulation for L is to compute the maxi-

mum spanning tree of G(P). Let the sum of edge weights on
the maximum spanning tree be w(MSTP). The evaluation
function Gms is defined as below:

Gms(Pk) =

kX
i=1

S(pi)− w(MSTP). (5)

Note that the Gms formulation is a generalization of maxi-
mal marginal relevance (MMR) heuristic in information re-
trieval [5], where a document has high marginal relevance
if it is both relevant to the query and contains minimal
marginal similarity to previously selected documents. The
marginal similarity is computed by choosing the most rele-
vant selected document. Different from Gms, this definition
gives a procedural way to evaluate a set of documents. If we
use this concept to compute the score of a set of patterns Pk

(by adding patterns p1, p2, . . . , pk incrementally), we have

MMR(Pk) = S(p1) +

kX
i=2

(
i−1

min
j=1

S(pi|pj)).

Combining the definition of relative significance, one can
easily verify that MMR approximates L by computing a
spanning tree on G(Pk). However, the score of MMR de-
pends on the order on which patterns are selected. Gms is
the minimum score over all possible MMR scores. We refer
Gms formulation as marginal significance.

Correspondingly, the problems of finding redundancy-aware
top-k patterns are as follows:

Definition 5. (Maximal Average Significance) Given a
set of pattern collection P, the problem of Maximal Average
Significance (MAS) is to find k-pattern set Pk such that
Gas(Pk) is maximized.

Definition 6. (Maximal Marginal Significance) Given a
set of pattern collection P, the problem of Maximal Marginal
Significance (MMS) is to find k-pattern set Pk such that
Gms(Pk) is maximized.

3. COMPARING MAS AND MMS
In this section, we examine the two proposed evaluation

functions. We show that both MAS and MMS problems
are NP-hard, and adopt a well-known greedy algorithm to
compare their performance.

3.1 The Greedy Algorithm
We consider a special case of the redundancy graph where

all patterns have the same significance score, and thus only
the weights on edges take effect. The problem of MAS is thus



to find a k-pattern set where the sum of edge weights are
minimized. This problem is equivalent to k-dense subgraph
problem, which is known to be NP-hard [7]. The problem of
MMS is to find a k-maximum spanning tree whose overall
weights are minimized. Holldorsson et al. [9] show that this
problem is NP-hard.

Since it is difficult to find the optimal solutions, we adopt
a well-known greedy algorithm to examine the performance
of MAS and MMS. The algorithm incrementally selects pat-
terns from P with an estimated gain g. A pattern is selected
if it has the maximum gain among the remaining patterns.
Given a set of selected patterns Pk, the gain of a pattern
p ∈ P − Pk is:

g(p) =

�
S(p)− 1

|Pk|
P

q∈Pk R(p, q), for MAS,

S(p)−maxq∈Pk R(p, q), for MMS.

At beginning, the result set Pk is empty. The algorithm
picks the most significant pattern and inserts it to Pk. When
|Pk| < k, we will compute gain g(p) for every remaining pat-
tern p ∈ P −Pk, and select the pattern with the maximum
gain. After a pattern is inserted into Pk, it remains in Pk.

The naive implementation of the above algorithm takes
time O(k2n). The alternative approach with time complex-
ity O(kn) can be implemented as follows. For each remain-
ing pattern, we can remember the previous gain and com-
pute the new gain by updating the redundancy with the
last pattern added to Pk. As an example, assume at the
ith iteration, the pattern pi is selected, and for each pattern
p ∈ P −Pk, gi(p) was computed with respect to Pk − {pi}.
To search for next candidate pattern, we need to update g(p)
by incorporating the newly selected pattern pi. One can ver-
ify the following update formulas for MAS and MMS:

gi+1(p) =

�
S(p)− 1

i

�
(i− 1)(S(p)− gi(p)) + R(p, pi)

�
,

S(p)−max
�
(S(p)− gi(p)), R(p, pi)

�
.

The execution of update functions takes constant time. The
algorithm is described in Algorithm 1. Finding the most
significant pattern takes time O(n). At each iteration, we
need to compute gain g(p) for each pattern p ∈ P −Pk, and
select the one with the maximum value. Using the update
functions, each iteration also takes time O(n). The total
time complexity of the greedy algorithm is O(kn).

Algorithm 1 The Greedy Algorithm

Input: A set of n patterns, P
Number of output patterns, k
Significance Measure, S
Divergence Measure, D

Output: k-pattern set, Pk

1: Let p be the most significant pattern;
2: Pk = {p};
3: while (|Pk| < k)
4: Find a pattern p such that the gain g(p) is the
5: maximum among the set of patterns in P − Pk;
6: Pk = Pk ∪ {p};
7: return

3.2 Comparing MAS and MMS

We examine both formulations using the same greedy al-
gorithm. The experiments are conducted on two real appli-
cations: disk block prefetch and document theme extraction.
For clear presentation, the results are organized in Section 5.
We observe that MMS performs much better in both experi-
ments. There are two possible reasons that may explain the
results. First, the unified greedy algorithm may favor MMS;
and second, the formulation of MMS is more reasonable.
We discuss these two issues one by one.

Since both problems are NP-hard and the greedy algo-
rithm reports approximate solutions. We study the perfor-
mance bound of the greedy solutions with respect to the
optimal solutions. The following theorem shows that Algo-
rithm 1 has performance bound 2 for MAS. Due to limited
space, we omit the proof.

Theorem 1. Let the k-pattern set returned by Algorithm
1 (with MAS gain) be Pk, and the optimal pattern set be
Ok. We have:

Gas(Ok) ≤ 2Gas(Pk).

To our best knowledge, the algorithm does not have perfor-
mance bound for MMS. In fact, a counter example in Section
4.2 shows that the worst case performance bound on MMS
could be much worse than that of MAS. This analysis indi-
cates that Algorithm 1 does not favor MMS and the worse
performance of MAS may be caused by the limitation of its
formulation.

We further examine the top-k patterns returned by both
algorithms in our experiments. The patterns returned by
MAS clearly contain more redundancy. This is because the
redundancy penalty in MAS formulation is averaged by the
number of patterns k, and each pattern usually has redun-
dancy with a few other patterns. The larger the value of k,
the smaller the redundancy penalties. One may suggest to
remove the denominator (i.e., k − 1) in Eqn. (4). However,
this may lead to over penalizing in the objective function
since the number of redundancy penalties is the order of
square of the number of patterns. On the other hand, the
MMS formulation is not sensitive to the value of k.

In summary, the MMS formulation is quite reasonable.
One possible extension to MMS formulation is to allow weigh-
ted combination of the significance and redundancy penalty.
This actually is implicitly handled by our definition of dis-
tance measure because we can always incorporate the user-
defined weights into the distance definitions. In the rest of
the paper, we mainly focus on the MMS problem.

4. AN IMPROVED METHOD FOR MMS
Here we discuss an improved method to the MMS prob-

lem. We assume that the distance measure satisfies triangle
inequality. Our method is not restricted to this constraint.
However, if this condition holds, our solution has a guaran-
teed performance bound.

4.1 The Computational Model
We first introduce a variant computation model based on

redundancy graph. As defined in Section 2, the redundancy
graph is an edge-weighted and node-weighted undirected
graph. We transform it to the directed redundancy graph
as follows: for each pair of patterns pi and pj , we create a
directed edge from pi to pj , and the associated edge weight is
the relative significance S(pj |pi). The weight on each node



pi is still the pattern significance S(pi). An example of this
transformation is shown in Fig. 2 (Not all directed edges are
shown in the transformed redundancy graph).

(a) Undirected Redundancy Graph (b) Directed Redundancy Graph
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S(p1)S(p1)

R(p1, p2)

R(p1, p3)

R(p3, p4) R(p3, p5)

S(p3|p1)

S(p4|p3)
S(p5|p3)

S(p2|p1)

S(p2)

S(p4) S(p5)

S(p2)

S(p4)
S(p5)

S(p3)

Figure 2: Directed redundancy graph

In MMS problem, Gms(Pk) is evaluated by computing
the maximum spanning tree on the sub redundancy graph
G(Pk). There are k node weights and k− 1 edge weights in
the tree. We particularly select the most significant pattern
as the root of the maximum spanning tree, and combine
the other k − 1 node weights and the k − 1 edge weights.
Example 1 shows this procedure.

Example 1. In Fig. 2, suppose the set of pattern Pk =
{p1, p2, p3, p4, p5} is evaluated by the spanning tree shown in
Fig. 2 (a), and p1 is the most significant pattern. Originally,
Gms(Pk) =

P5
i=1 S(pi)−R(p1, p2)−R(p1, p3)−R(p3, p4)−

R(p3, p5). It is equivalent to Gms(Pk) = S(p1) + S(p2|p1) +
S(p3|p1) + S(p4|p3) + S(p5|p3), as shown in Fig. 2 (b).

Since we transform the negative redundancy penalties to
positive relative significance, the original maximum span-
ning tree on the undirected redundancy graph corresponds
to the minimum spanning tree on the directed redundancy
graph. The MMS problem is equivalent to searching a con-
strained rooted minimum spanning tree on the directed re-
dundancy graph such that the overall weights on the root
node and on the edges in the tree are maximized. The con-
straint specifies that the root must be the most significant
pattern in the tree.

4.2 Performance Study of Algorithm 1
We study the worst case performance of MMS by Al-

gorithm 1, under the assumption that the distance mea-
sure satisfies triangle inequality. The following example
shows that this greedy approach may lead to a serious prob-
lem in some case. We rewrite the computation equation of
S(p|q) here for easy understanding of the example: S(p|q) =
S(p)− (1−D(p, q)) min(S(p), S(q)).

p3

s1

s3

d13 = 1
c

d12 = c−1
c

d13

d23 = 1
c
d13

s2 = c
c−1

s3 − δ

p2

p1

Figure 3: A directed redundancy graph with 3 patterns

Example 2. Consider a graph with three patterns p1, p2,
and p3 (Fig. 3). For simplicity, we use si and dij to denote
S(pi) and D(pi, pj), respectively. Let s1 ≥ s2 ≥ s3, and
s2 = c

c−1
s3 − δ (where δ > 0 is a small perturbation). Let

d12 = c−1
c

d13, d23 = 1
c
d13, and d13 = 1

c
. One can verify that

d12, d13, and d23 satisfy triangle inequality. The greedy algo-
rithm will first select pattern p1. Since S(p3|p1) = d13s3 >
d12s2 = S(p2|p1), the algorithm will pick p3 as the next.
The estimated gain on the objective function is r = S(p3|p1).
The algorithm continues to look for the next pattern p2. The
estimated gain for adding p3 and p2 is:

S(p3|p1) + min(S(p2|p1), S(p2|p3)) ≈ 2r.

However, the real objective function of MMS is evaluated by
the spanning tree p1 → p2 → p3, with the gain S(p2|p1) +
S(p3|p2) ≈ r + r

c
, where c can be chosen arbitrarily large.

This over-estimation can be accumulated quite large when
the number of patterns increases.

The reason that the greedy approach has the over-esti-
mation problem is that the relative significance is not sym-
metric. Given patterns p and q, we have S(q|p) ≥ S(p|q) if
S(q) > S(p). If we select the less significant pattern p first,
there will be an over-estimation. To avoid this problem, we
should try to incrementally add patterns according to sig-
nificance decreasing order. This motivates our alternative
approximation algorithm.

4.3 An Alternative Approach
We first outline the main ideas. The algorithm searches

for a specific value r, with which, the algorithm first finds
the most significant pattern (as p1), and removes all patterns
p such that S(p|p1) ≤ r; then finds the most significant
pattern in the remaining patterns (as p2), and removes all
patterns p such that S(p|p2) ≤ r, and so on. We finally get
kr patterns. Ideally, we want to find the perfect r value such
that kr = k.

The first intuition is that when r value is small, we may
have kr > k, and when r value is large, kr < k. If the kr

value is monotonic to r, then we can run a binary search on
the domain of r. Unfortunately, kr is not monotonic to r.
Fig. 4 shows a counter example that a larger r value leads
to a larger kr.

1.0

1.4

1.0

0.5

1.0
p4

p3

p1

p2

p5

Figure 4: A Counter Example

Example 3. Suppose S(p1) ≥ S(p2) ≥ . . . ≥ S(p5). We
only display the edges whose weights are less than 1.5. When
r = 1.0, we get two patterns p1 and p3. When r = 1.4, we
get three patterns p1, p4 and p5.

Instead of searching for the perfect r value, we search
for a pair of trial values t and T (t < T ), such that T
leads to kT ≤ k and t leads to kt ≥ k. If the difference
T − t = ε is sufficiently small, we can pick k patterns from
the kt patterns with some desired property (i.e., Lemma 1).

We introduce the ε-normalization on edge weights. For
each pattern pair pi and pj , the edge weight S(pi|pj) =
S(pi)−R(pi, pj) ≤ S(pi). Suppose p1 is the most significant



pattern, we have S(pi|pj) ≤ S(p1). That is, every edge
weight is upper bounded by S(p1). We partition [0, S(p1)]
into B equi-width intervals, and each interval has width ε =
S(p1)

B
. S(pi|pj) is normalized to S(pi|pj) = bB×S(pi|pj)

S(p1)
c ×

ε. With this normalization, we run a binary search on the
normalized edge weights whose search space is 0 to S(p1)
(i.e., B intervals). Initially, kT = 1 ≤ k by T = S(p1), and
kt = |P| ≥ k by t = 0. If k(T+t)/2 ≥ k, we update t =
(T + t)/2. Otherwise, we update T = (T + t)/2. After log B
times binary search, we have T − t = ε and kT ≤ k ≤ kt.

We discuss how to select k patterns from kt patterns when
T − t = ε. Our goal is to find k patterns such that (1) the
directed-edge weight between them is lower bounded by a
positive value d, and (2) for any other pattern q, there exists
one pattern p in the selected k patterns such that the edge
weight S(q|p) is upper bounded by a constant factor of d.

pT
1

pt
5

pt
2 pt

3 pt
4(p

t
5)pt

1

pt
2pt

1 pt
3 pt

4

kt = 5

k = 4

kT = 3
pT

2 pT
3

Figure 5: Find k patterns from (u, l)-pair

The selecting strategy is demonstrated by Fig. 5. Let
pt
1, p

t
2, . . . , p

t
kt

be the selected kt patterns (assume S(pt
1) ≥

S(pt
2) ≥ . . . ≥ S(pt

kt
)), and pT

1 , pT
2 , . . . , pT

kT
be the selected

kT patterns. Each pattern is around by a circle which in-
dicates a set of patterns removed due to the selection of
this pattern. Every pattern pt

i must belong to one circle
in pT

j (j = 1, 2, . . . , kT ). We select k patterns from the kt

patterns by the following rules:

1. The most significant pattern pt
i in each pT

j circle is first
selected. In our example, patterns pt

1, p
t
3 and pt

4 are se-
lected;

2. While the number of selected patterns is less than k, we
select the most significant pt

i patterns in the remaining
patterns (i.e., we select pattern pt

2). After k patterns
are selected, the remaining pt

i will find a selected pattern
which belongs to the same circle pT

j with pt
i. In our ex-

ample, pt
5 is a remaining pattern, and it belongs to circle

pT
3 with a selected pattern pt

4. We further merge pt
5 as

well as all the patterns in circle pt
5 to circle pt

4.

The complete procedure is summarized as Algorithm 2,
which is self-explanatory. Each iteration takes time O(kn),
and the complexity to find the values of T and t (T − t =
ε) is O(kn log B). Generally, we use k ≤ B ≤ n. The
complexity of selecting k patterns from kt patterns relies on
the generation of kt patterns, whose complexity is O(ktn).
In most cases, kt is comparable to k.

The desired property as we claimed earlier is summarized
in Lemma 1.

Lemma 1. Let d = t and the selected k patterns be p1, p2,
. . . ,pk (significance decreasing order). If the distance satis-
fies triangle inequality, then for each pi and pj, S(pi|pj) ≥ d
and S(pj |pi) ≥ d; and for each pattern q within the circle of
pattern pi, S(q|pi) ≤ 3d + 5ε.

Algorithm 2 Greedy Algorithm for MMS

Input: A set of n patterns, P
Number of output patterns, k
Significance measure, S
Divergence measure, D
Weight normalization, B

Output: k-pattern set, Pk

1: ε = S(p1)
B

, t = 0, T = S(P1);
2: Run the binary search with (t, T ) in space [0, S(p1)];
3: selected[i] = false (i = 1, . . . , n);
4: removed[i] = false (i = 1, . . . , n);
5: for i = 1 to k
6: if there is no pattern left //k T+t

2
< k, decrease T

7: T = T+t
2

, goto line 2;
8: Let ps be the most significant pattern s.t.

selected[s] ≡ false and removed[s] ≡ false;
9: Assign selected[s] = true, removed[s] = true;
10: for j = 1 to n
11: if (!removed[j] and !selected[j]))

12: if (S(pj |ps) ≤ T+t
2

)
13: removed[j] = true;
14: if there are patterns left //k T+t

2
> k, increase t

15: t = T+t
2

, goto line 2;
16: Generate kt patterns;
17: Select k patterns from kt patterns;
18: return;

Sketch of Proof. See Appendix.
The following theorem shows that Algorithm 2 has a per-

formance guarantee for the MMS problem.

Theorem 2. Let the k-pattern set returned by Algorithm
2 be Pk, and the optimal pattern set be Ok. If the distance
measure satisfies triangle inequality, we have:

Gms(Ok) ≤ (6 +
10k

B
+ log k)Gms(Pk).

Sketch of Proof. See Appendix.
By setting B ≥ k, the performance bound of algorithm 2

for MMS problem is O(log k), while the additional factor on
complexity (i.e., log B) does not introduce heavy computa-
tional cost. In fact, as we will show in the experiments, the
running time of Algorithm 2 is similar to that of Algorithm
1.

5. EXPERIMENTAL RESULTS
To test the performance of the proposed algorithms, we

design two sets of experiments. The first examines the qual-
ity of extracted top-k patterns, and the second measures
the computational performance of the proposed methods.
For simplicity, we refer Algorithm 1 for maximal average
significance as MAS, Algorithm 1 for maximal marginal sig-
nificance as MMS, and Algorithm 2 (with bound) for max-
imal marginal significance as MMSb. We use SIG to refer
to the method extracting top-k patterns completely based
on significance (without considering redundancy). In all ex-
periments, the number of intervals for the binary search in
MMSb is set as B = k.



5.1 Quality of Top-K Patterns
Here we demonstrate two case studies that use our pro-

posed methods: (1) document theme extraction, and (2)
correlation-directed disk block prefetch. For each case study,
we discuss pattern generation, significance measure, distance
measure, and quality evaluation.

5.1.1 Document Theme Extraction
Theme discovery uses knowledge about the meaning of

words in a text to identify broad topics covered in a docu-
ment [3, 15]. One way to find themes from text document
is to extract the frequent patterns of term occurrence. For
example, a frequent pattern of “database management” in-
dicates that the document might be related to a collection of
database papers, whereas a frequent pattern like “red cross”
might identify the topic of the documents as aid and relief.
In this case study, we show how to apply our methods to dis-
covering redundancy-aware top-k term occurrence patterns.

Pattern Generation: A document collection is constructed
by a mixture of documents of four topics: 386 news articles
about Tsunami, 367 research papers about data mining, 350
research papers about bioinformatics, and 347 blog articles
about iPod Nano. A document is broken into sentences as
transactions. We mine sequential patterns [27] with a mini-
mum support of 0.02%, and 8, 718 patterns are generated.

Significance and Distance Measure: A pattern’s signifi-
cance is modeled by a tf-idf scoring function similar to the
Pivoted Normalization weighting based document score [23].
Specifically, given a theme pattern p = w1...wt, the signifi-
cance is defined by

S(p) =

tX
i=1

1 + ln(1 + ln(tfi))

(1− s) + s dl
avdl

· lnN + 1

dfi
,

where tfi equals the support of the pattern p, dfi is the in-
verse sentence frequency of word wi in the whole transaction
set, dl is the average sentence length associated with P , avdl
is the overall average sentence length and s is a parameter.
Given two patterns, p1 and p2, we use the Jaccard distance
measure [13]:

D(p1, p2) =1− |TS(p1) ∩ TS(p2)|
|TS(p1) ∪ TS(p2)| ,

where TS(p1) is the set of transactions containing pattern
p1.

Quality Evaluation: We run SIG, MAS, MMS and MMSb
on the original collection of 8, 718 themes to extract top-10
results, which are displayed in Table 1. Without consid-
ering redundancy, the top-10 results returned by SIG only
consist of two valuable themes (themes 1 and 4), and all the
others are redundant. MMS and MMSb report the identi-
cal results, where all 10 themes have high significance score
and are different from each other. There are two redundant
themes in MAS. This suggests that the redundancy penalty
by MAS formulation is not enough, and some theme patterns
whose high significance scores compensate the redundancy
penalties can still survive.

5.1.2 Correlation Directed Prefetch
Block correlations are common semantic patterns in stor-

age systems [14]. Correlated blocks tend to be accessed rel-
atively close to each other in an access stream. Explor-
ing these correlations is very useful for improving the effec-

tiveness of storage caching, pre-fetching, and data layout.
Particularly, at each access, a storage system can pre-fetch
correlated blocks into its storage cache so that subsequent
accesses to these blocks do not need to access disks, which
is several orders of magnitude slower than accessing directly
from a storage cache. A correlation pattern is a rule in the
form of “b35b100 → b9039” implying that if disk block b35

and b100 are accessed sequentially, then disk block b9039 will
be pre-fetched (note there is always only one block-id at
the right-hand side of a rule). Since the computer resources
are limited, our task is to extract top-k important rules for
prefetch purposes.

Pattern Generation: We use the rules provided by [14].
The experiment uses a set of real system traces, Cello-92,
collected at the Hewlett-Packard Laboratories [20]. It cap-
tured all low-level disk I/Os performed on Cello, which is a
timesharing system used by a group of researchers at the HP
Labs to do simulation, compilation, editing, and e-mail. The
traces include the accesses to 8 disks. Long trace sequences
are broken into fixed-size short sequential transactions (in
our experiment, the window size is 50). We mine sequen-
tial patterns from the transformed transaction database and
276, 054 rules are generated.

Significance and Distance Measure: The significance of a
rule should be measured by the performance gain with its
existence. The model of cost-benefit of pre-fetching could be
very complicated. Here we adopt a simplified yet effective
measure [14]. Given a rule l → r, the significance of this
rule is |TS(l, r)|, where TS(l, r) is the set of transactions
having l followed by r. Given two rules, “rule1 : l1 → r1”
and “rule2 : l2 → r2”, the distance measure is defined as
follows:

D(rule1, rule2) =

8<: 1 , r1 6= r2,

1− |TS(l1, r1) ∩ TS(l2, r2)|
|TS(l1, r1) ∪ TS(l2, r2)| , r1 = r2.

If two rules have different block-ids at the right-hand side,
then they are not related to each other. Otherwise, these two
rules trigger the same pre-fetching target. We compare the
support sets of these two rules. If the overlap is significant,
then the relative significance of one rule with respect to the
other is small.
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Quality Evaluation: We run SIG, MAS, MMS, and MMSb
on the original collection of 276, 054 rules to extract top-k
rules, which are further fed into a simulation system [14].



Table 1: Top-10 Document Themes

Top-k SIG MAS MMS MMSb
1 permission make digital permission make digital permission make digital permission make digital

copy personal grant copy personal grant copy personal grant copy personal grant
without fee distribute without fee distribute without fee distribute without fee distribute

commercial full citation commercial full citation commercial full citation commercial full citation
2 permission make digital database manage database database manage database database manage database

copy personal distribute application mine algorithm application mine algorithm application mine algorithm
commercial full citation keyword keyword keyword

3 permission make digital pattern recognition design pattern recognition design pattern recognition design
copy personal copy fee method classify evaluate method classify evaluate method classify evaluate

4 database manage database information retrieval information retrieval information retrieval
application mine algorithm storage information storage information storage information

keyword search keyword search keyword search keyword
5 database manage database permission make digital artificial intelligence artificial intelligence

mine algorithm keyword copy personal distribute learn general term learn general term
commercial full citation algorithm experimentation algorithm experimentation

6 database manage database artificial intelligence international federate international federate
application mine algorithm learn general term red cross red crescent red cross red crescent

algorithm experimentation
7 database manage database international federate australia prime minister australia prime minister

application mine keyword red cross red crescent john howard australia john howard australia
8 database manage database australia prime minister indonesia president indonesia president

mine term algorithm john howard australia susilo bambang yudhoyono susilo bambang yudhoyono
9 database manage database database manage database deputy defense secretary deputy defense secretary

mine term keyword application mine keyword paul wolfowitz paul wolfowitz
10 database manage database indonesia president thailand prime minister thailand prime minister

application mine term susilo bambang yudhoyono thaksin shinawatra thaksin shinawatra
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The performance is evaluated by miss ratio (Fig. 6) and
response time (Fig. 7). We observe (1) both MMS and
MMSb perform much better than SIG, indicating that the
redundancy-aware top-k patterns contain more valuable in-
formation; (2) the MMSb method is better than MMS, which
is consistent with our claim that MMSb is more robust; and
(3) MAS is almost identical to SIG. This is because in this
experiment, k is relative large, whereas redundancy only ex-
ists among very limited number of patterns (i.e., only the
rules that have the same right-hand side are possibly redun-
dant to each other). Averaging by a very large number of k
makes the redundancy penalty negligible.

5.2 Computational Performance
Here we examine the computational performance of the

two proposed greedy algorithms for MMS. We run the exper-
iments on the document theme data set. The computation
times w.r.t. different top-k values are shown in Fig. 8. Given
a collection of patterns, both algorithms scale well with re-
spect to k. Although MMSb has higher complexity in the
worst case, its running time is comparable to MMS. This is
because (1) it generally stops early in each trial r where we
try to find k patterns, thus the complexity of each iteration
is less than O(kn); and (2) a pattern does not participate
in further computation as soon as it is removed (while in
MMS each pattern will be compared with all the selected k
patterns).

6. RELATED WORK
In Section 1, we have discussed the connection of our

work with previous pattern compression (summarization)
approaches and database top-k query processing. A closely
related work is the pattern ordering problem studied in [16],
where the authors also compute top-k patterns. Their cri-
terion of the top-k pattern set is to provide best frequency
estimation of those patterns that are not selected. Thus the
objective function to evaluate the k pattern set is well de-
fined. Our problem definition is more general since we do
not assume any specific application. The greedy algorithm
used in [16] is similar to Algorithm 1.

Our work is also related to document retrieving and rank-
ing problem in Information Retrieval [5, 21]. The formula-
tion of MMS is a generalization of maximal marginal rele-
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Figure 8: Computation Time w.r.t top-k

vance heuristic [5]. Different from techniques in IR where
results are generally evaluated by user study, we propose
explicit objective functions and develop an approximate al-
gorithm with the near optimal solution.

The problem of MAS is identical to the maximum dis-
persion problem in graph algorithm. Ravi et al. [19] show
that the bound of performance guarantee of any polynomial
approximation is at least 2 and Algorithm 1 achieves this.
The problem of MMS is related to finding a minimum span-
ning tree in a subgraph. Finding subset maximizing the
minimum weight of a combinatorial structure was first pro-
posed by Halldorsson et al. [9]. They give approximation
algorithms in the metric undirected graph, where only edge
weights exist. Our problem is different because patterns
form a node-weighted as well as the edge-weighted graph.

7. CONCLUSIONS
To extract redundancy-aware top-k patterns, we exam-

ined two problem formulations: MAS and MMS. We stud-
ied a unified greedy approach to compare these two functions
and show that MMS is a reasonable formulation to our prob-
lem. We further present an improved algorithm for MMS
and show that the performance is bounded by O(log k). We
present two case studies to examine the performance of our
proposed approaches. Both MMS algorithms are able to find
high-significant and low-redundant top-k patterns. Particu-
larly, in block correlation experiments, we observe that our
improved algorithm performs better.

This study opens a new direction on finding both diverse
and significant top-k answers to querying, searching, and
mining, which may lead to promising further studies. One
further issue is the formal study of the evaluation functions
for a pattern set. Direct mining of top-k patterns from data
is another promising direction.

8. APPENDIX
Sketch of Proof for Lemma 1.
The first result is true because all pi patterns are se-

lected from kt patterns. If i > j, we also have S(pi|pj) ≥
S(pj |pi) ≥ d. To prove the second result, we first show two
related claims. For simplicity, we use d12 and s1 to denote
D(p1, p2) and S(p1), respectively.

If the distance measure satisfies triangle inequality, then
given a directed triangle as shown in Fig. 9(a), S(p2|p1) +
S(p3|p2) ≥ S(p3|p1) (Claim 1 ); and given a directed triangle

(a) (b)

p1 p3

p2

p1 p3

p2

Figure 9: Two directed triangles

as shown in Fig. 9(b), S(p1|p2)+S(p3|p2) ≥ S(p3|p1), where
s1 ≥ s3 (Claim 2 ).

The proof of these two claims are similar. We show one
case for claim 1. If s1 ≥ s2 ≥ s3, we have S(p2|p1) +
S(p3|p2) = d12s2+d23s3 ≥ d12s3+d23s3 ≥ d13s3 = S(p3|p1).

For each pattern q in the circle of pi, assume q originally
belongs to circle pj , and both pi and pj belong to circle pT

v .
We have:

S(q|pi) ≤ S(q|pj) + S(pj |pi) (Claim1)

≤ S(q|pj) + S(pj |pT
v ) + S(pi|pT

v ) (Claim2)

≤ S(q|pj) + S(pj |pT
v ) + S(pi|pT

v ) + 3ε

≤ t + T + T + 3ε ≤ 3t + 5ε.

Sketch of Proof for Theorem 2.
Let us call the patterns in Pk greedy patterns and the

patterns in Ok optimal patterns. The algorithm partitions
all patterns in P into k groups. In each group, the most
significant pattern is reported (let the pattern reported from
group i be pi). The edge weight between any pi and pj

(i, j ∈ {1, 2, . . . , k}) is at least d. We have Gms(Pk) ≥
S(p1) + (k − 1)d, where p1 is the most significant pattern.

Assume the k optimal patterns in Ok = {q1, q2, . . . , qk}
are distributed in k′ ≤ k groups. We create a spanning
tree for Ok based on the following two rules. First, if there
are multiple optimal patterns qi

1, q
i
2, . . . , q

i
ki within group i,

we locate the most significant pattern qi
1 and include edges

S(qi
j |qi

1) for all other patterns. According to Lemma 1,

S(qi
j |qi

1) ≤ S(qi
j |pi) + S(qi

1|pi) ≤ 6d + 10ε. The overall sum
of weights inside k′ groups is (k − k′)(6d + 10ε).

Second, we further include edges between optimal pat-
terns qi

1 to make a spanning tree on Ok. This is achieved by
an iterative procedure. Let the spanning tree correspond-
ing to Gms(Pk) be MSTp. We can decompose MSTp into

d k′
2
e paths such that the two end nodes of each path are

patterns pi, whose group contains an optimal pattern qi
1.

We group k′ optimal patterns into d k′
2
e pairs. In each pair

(a, b), we include the edge S(a|b) (or S(b|a)) if S(b) ≥ S(a)

(otherwise). There are at most d k′
2
e edges that will be in-

cluded. The sum of weights of the included edges is: w(k′) ≤
w(MSTp)+k′(6d+10ε), where w(MSTp) is the sum of edge
weights on MSTp. In each pair (a, b), we remove the pat-
tern whose significance value is smaller, and the larger one
stays for the next iteration. Since we remove half number
of patterns at each iteration, there will be at most log (k′)
iterations. When there is only one pattern left, a spanning
tree over Ok is constructed. The overall sum of edge weights

included in this procedure is: w(k′) + w( k′
2

) + . . . + w(2) ≤
log (k′)w(MSTp) + k′(6d + 10ε).

Since Gms(Ok) is the minimum score of all spanning trees
on Ok, we have Gms(Ok) ≤ G′ms(Ok). Because p1 is the
globally most significant pattern, maxk

i=1S(qi) ≤ S(p1).
Furthermore, Gms(Pk) = S(p1) + w(MSTp) ≥ S(p1) + (k−



1)d, we have d ≤ 1
k−1

(Gms(Pk)− S(p1)) ≤ 1
k
Gms(Pk). Fi-

nally, fr
Bε = S(p1), we have kε = k

B
Bε = k

B
S(p1) ≤ k

B
Gms(Pk).

Combining all of the above, we have:

Gms(Ok) ≤ G′ms(Ok)

≤ k
max
i=1

S(qi
1) + k(6d + 10ε) + log (k′)w(MSTp)

≤ S(p1) + 6kd + 10kε + log (k′)(Gms(Pk)− S(p1))

≤ S(p1) + (6 +
10k

B
+ log k)Gms(Pk)− log kS(p1)

≤ (6 +
10k

B
+ log k)Gms(Pk).
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