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Abstract—Fueled by an emerging underground economy,
malware authors are exploiting vulnerabilities at an alarming
rate. To make matters worse, obfuscation tools are commonly
available, and much of the malware is open source, leading to a
huge number of variants. Behavior-based detection techniques
are a promising solution to this growing problem. However,
these detectors require precise specifications of malicious be-
havior that do not result in an excessive number of false alarms.

In this paper, we present an automatic technique for ex-
tracting optimally discriminative specifications, which uniquely
identify a class of programs. Such a discriminative specification
can be used by a behavior-based malware detector. Our
technique, based on graph mining and concept analysis, scales
to large classes of programs due to probabilistic sampling of
the specification space. Our implementation, called HOLMES,
can synthesize discriminative specifications that accurately dis-
tinguish between programs, sustaining an 86% detection rate
on new, unknown malware, with 0 false positives, in contrast
with 55% for commercial signature-based antivirus (AV) and
62-64% for behavior-based AV (commercial or research).

I. INTRODUCTION

The problem posed by malware is real, ubiquitous, and

continues to grow steadily [1]. The past decade has seen a

fundamental shift in incentive for creators and distributors

of malware. Whereas the traditional motivation for hack-

ers was primarily based on reputation, there now exists a

substantial and continually growing economy that trades in

bank account information, credit card numbers, and other

sensitive information of real monetary value on the Internet.

Malware plays an integral role in this economy as a tool

for criminals to harvest sensitive information, as well as a

platform for launching other illegal money making-schemes.

The predominant technique for detecting malware remains

signature-based scanning, where the syntactic characteristics

of a malware instance form a signature used to identify that

specific instance. Since malware writers have an economic

incentive to evade detection, they have perfected the art of

creating malware variants such that each requires a distinct

signature. Consequently, the number of distinct malware is

growing at an alarming rate. David Perry from Trend Micro

reported that some antivirus (AV) vendors are seeing 5,000

new malware samples per day [2]. The ability to create a

1 This work was done over the course of an internship at IBM Research.

large number of variants gives hackers an upper hand, as they

can automatically generate new malware much more quickly

than analysts can develop signatures for them. Recently,

researchers have proposed a number of techniques that

examine the underlying behavior of suspected malware [3],

[4], [5]. There are also a few products on the market (such

as Threatfire and Sana Security) that use behavior-based

detection. These techniques are very promising because it

is harder for an attacker to radically change the behavior of

a malware than to morph its syntactic structure. Essentially,

a single syntactic signature maps to a single instance of

malware, whereas a single behavioral specification maps to

multiple instances.

Constructing behavioral specifications that have a low

false positive rate and at the same time are general enough

to detect variants of malware is a major challenge. The

most common technique to date for generating behavioral

specifications relies almost entirely on manual analysis and

human ingenuity – an expensive, time-consuming, and error-

prone process that provides no guarantees regarding the

quality of the resultant specifications. An automatic tech-

nique for building such specifications is desirable, both to

reduce the AV vendors’ response time to new threats and to

guarantee precise behavioral specifications. If the behavioral

specification used for detection is not specific enough, then

there is a risk that benign applications will be flagged as

malware. Similarly, if it is too specific then it may fail to

detect minor variants of previously observed malware. In

this paper we address the challenge of automatically creating

behavioral specifications that strike a suitable balance in this

regard, thus removing the dependence on human expertise.

We make the observation that the behavioral specifications

used in malware detection are a form of discriminative
specification. A discriminative specification describes the

unique properties for a set of programs, in contrast to another

set of programs. This paper gives an automatic technique that

combines graph mining and concept analysis to synthesize

discriminative specifications, and explores an application of

the resulting specifications to malware detection. Given a

set of behavior graphs that describe the semantics exhibited

by malicious and benign applications, the graph mining

operation extracts significant behaviors that can be used to
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Figure 1. HOLMES combines program analysis, structural leap mining, and concept analysis to create optimal specifications.

distinguish the malware from benign applications. As these

behaviors are not necessarily shared by all programs in the

same set (as, for example, there are many ways in which

a malicious program can attack a system), we use them as

building blocks for constructing discriminative specifications

that are general across variants, and thus robust to many

obfuscations. Furthermore, because our graph mining and

specification construction algorithms are indifferent to the

details of the underlying graph representation, our technique

complements and benefits from recent advances in binary

analysis [6], [7] and behavior graph construction [5].

Our paper makes the following contributions:

• We divide the problem of constructing a specification

into two tasks, (1) mining significant behaviors from

a set of samples and (2) synthesizing an optimally

discriminative specification from multiple sets of mined

behaviors. For each task we introduce novel algorithms,

derived from leap mining [8] and concept analysis [9],

respectively. The two tasks naturally mirror a human

analyst’s workflow, where new malware samples are

first analyzed for unique behaviors and then merged

with behaviors from existing malware. (Sections III

and IV)

• We develop a tool called HOLMES1 that takes a set of

malicious and benign binaries, extracts significant mali-

cious behaviors, and creates an optimally discriminative

specification. Our experience with HOLMES shows that

it automatically identifies both behaviors documented

by AV-industry analysts as well as previously undoc-

umented behaviors, and that it scales with the degree

of behavioral diversity in the malware and benign sets.

(V)

• We perform evaluation on unknown malware, showing

that a specification produced by HOLMES detects it

with high accuracy (86% detection rate with 0 false

alarms), even when we mine behaviors from one

1Our tool, just like Sherlock Holmes, combs through mountains of
seemingly unrelated information to identify signs of malicious activities.

malware family and test synthesized specifications on

another. (Sections VI and VII)

II. OVERVIEW

The behavior of a program can be thought of as its effect

on the state and environment of the system on which it

executes. Most malware relies on system calls to deliver a

malicious payload, so reasoning about behavior in terms of

the system calls made by a program allows us to succinctly

and precisely capture the intent of the malware author, while

ignoring many implementation-specific artifacts. Using this

representation, we wish to derive a behavioral specification

that is descriptive of a given set of programs (the positive set
of programs) but does not describe any program in a second

set (the negative set of programs). In the malware detection

case, the positive set consists of malicious programs and

the negative set consists of benign programs, and the goal

is to construct a specification that is characteristic of the

malicious programs but not of the benign programs.

For an arbitrarily chosen positive set of programs one is

unlikely to find a single behavior common to all of them; if

there is one such common behavior, it is likely also present

in the programs from the negative set. Thus, we need to

partition the positive set into subsets of similar programs,

such that programs in the same subset share many behaviors.

This leads us to the high-level workflow of our technique,

which is presented in 1 and proceeds as follows:

I. The positive set of programs is divided into disjoint

subsets of behaviorally similar programs. This can

be performed manually, or using existing malware

clustering techniques [10], [11].

II. Using existing techniques for dependence-graph con-

struction [12], a graph is constructed for each malware

and benign application to represent its behavior.

III. The significant behaviors specific to each positive sub-

set are mined. (III)

A significant behavior is a sequence of operations that

distinguishes the programs in a positive subset from
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all of the programs in the negative subset. We use

structural leap mining [8] to identify multiple distinct

graphs that are present in the dependence graphs of the

positive subset and absent from the dependence graphs

of the negative set.

IV. The significant behaviors mined from each positive

subset are combined to obtain a discriminative spec-

ification for the whole positive set. (IV)

Two significant behaviors can be combined either by

merging them into one significant behavior that is more

general, or by taking the union of the two behaviors.

We use concept analysis to identify the behaviors that

can be combined with little or no increase in the

coverage rate of the negative set, while maintaining

the coverage rate of the positive set. As there are

exponentially many ways of combining behaviors, we

use probabilistic sampling to approximate the optimal

solution in an efficient manner.

A. Behavior Mining

We will walk through the application of our behavior

extraction algorithm and specification construction on the

spyware family Ldpinch. According to Symantec security

response [13], members of the Ldpinch family install them-

selves to persist on a system, and then attempt to steal

sensitive system information, such as passwords and email

addresses, and send it back to the malware author.

The first step of the behavior-mining algorithm extracts

portions of the dependence graphs of programs from the

positive set that correspond to behavior that is significant
to the programs’ intent. At a high level, this step can be

thought of as contrasting the graphs of positive programs

against the graphs of negative programs, and extracting the

subgraphs that provide the best contrast. Note that we do

not use any a priori notion of significance, but rather rely

on the mining algorithm to identify significant behaviors.

2 presents a small portion of the output produced by ap-

plying our algorithm using the Ldpinch spyware family (the

positive set) and some benign programs (the negative set,

listed in VI-B) as an example. These three graphs correspond

respectively to leaking bugfix information, setting the system

to execute the malware each time the system is restarted,

and adding the malware to the list of applications that can

bypass the system firewall. The first two behaviors were

previously reported by Symantec analysts, while the third

behavior (bypassing the firewall) was produced by HOLMES,

along with the others. To the best of our knowledge, human
analysts have not previously reported this behavior for the
Ldpinch family.

B. Specification Synthesis

The information produced by our behavior-mining al-

gorithm can be thought of as a collection of high-level

NtEnumerateKey(X1, X2)

X2 ≈ Y2
��

NtOpenKey(Y1, Y2)
IsRegistryKeyForBugfix(Y2)

Y1 = Z1

��
NtQueryValueKey(Z1, Z2, Z3)

Z3 ≈ W3
��

NtDeviceIoControlFile(W1, W2, W3)
W2 = SEND

(a) Significant behavior: Leaking bugfix information over the network.

NtCreateKey(X1, X2)
IsRegistryKeyForWindowsShell(X2)

X1 = Y1

��
NtSetValueKey(Y1, Y2, Y3)

Y2 = "Startup"

(b) Significant behavior: Adding a new entry to the system autostart list.

NtOpenKey(X1, X2)
IsRegistryKeyForFirewallConfig(X2)

X1 = Y1

��
NtSetValueKey(Y1, Y2, Y3)

Y2 = NameOfSelf()

(c) Significant behavior: Bypassing firewall to allow malicious traffic.

Figure 2. Three significant behaviors extracted from the Ldpinch family.

behavioral primitives that characterize programs from the

positive set. Considering the behaviors listed in 2, we

could create a detector for the Ldpinch family by treating

each mined behavior as a component in a specification of

malicious behavior. With this, we would treat as malicious

any program that installs itself to persist on restart and
disables the firewall and sends system bugfix information

over the network. However, this would fail to detect other

families of spyware that do not exhibit these exact behaviors.

For example, a piece of spyware that only installs itself to

persist on restart and leaks bugfix information, but does

not disable the system firewall, would not be detected. In

short, a detector created using information extracted from

one specific family of spyware is too specific to capture the

wide range of behavior observed across other families.

To generalize such narrowly-defined specifications, we

have developed an algorithm for generating discriminative

specifications composed only of the significant behaviors
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descriptive of a given corpus of programs as a whole.

Our algorithm can guarantee that these specifications are

optimal with respect to the true and false positive rates over

a target sample distribution. However, as constructing an

optimal specification can take a prohibitively large amount

of time, our algorithm is also capable of generating good

specifications efficiently. To accomplish this, we frame the

problem of constructing optimal characteristic specifications

as a clustering problem, and apply concept analysis [9] to

enumerate a set of possible clusters over the sample distribu-

tion. We then use simulated annealing [14], a probabilistic

sampling technique, to efficiently search for a subset of

clusters that can be used to construct a close approximation

to the optimal specification. This is done in such a way as to

allow a direct tradeoff between efficiency and the optimality

of the solution, making our technique useful in a number of

settings.

III. MINING SIGNIFICANT BEHAVIORS

Our technique for mining behaviors by contrasting two

sets of programs is dependent on a precise notion of software

behavior. At a high level, a behavior consists of a set

of operations invoked by a program and the relationships

between them. We use data dependence graphs over a set

of operations Σ to describe behaviors. in

Definition 1 (Behavior): A behavior is a data dependence

graph G = (V,E, α, β) where:

• the set of vertices V corresponds to operations from Σ,

• the set of edges E ⊆ V × V corresponds to dependen-
cies between operations,

• the labeling function α : V → Σ associates nodes with

the name of their corresponding operations, and

• the labeling function β : V ∪ E → Ldep associates

vertices and edges with formulas in some logic Ldep

capable of expressing constraints on operations and the

dependencies between their arguments.

In the context of malware detection we equate, without

loss of generality, the set of operations Σ with the set of sys-

tem calls on our target platform. Thus, we will use the terms

“events”, “operations”, and “system calls” interchangeably.

We characterize operations as functions. An operation σ ∈
Σ is a function of N typed and named variables, σ : a1 :
τ1 × a2 : τ2 × · · · × aN : τN → R : τR, where τi is the

type of the i-th argument ai and τR is the type of the return

value R. The result of a program execution E is a sequence

of operation invocations (or trace) TE = 〈σ0, σ1, . . . , σn〉.
A program P exhibits a behavior G = (V,E, α, β) if it

can produce an execution trace T = 〈σ0, σ1, . . . , σn〉 with

the following properties:

1) Every operation in the behavior corresponds to an

operation invocation in the trace and its arguments

satisfy the constraints:

∀vi ∈ V . ∃σi ∈ T . α(vi) = σi ∧ β(vi)[σi]

Table I
SOME OF THE SECURITY LABELS (AND CORRESPONDING LOGICAL

CONSTRAINTS) THAT ALLOW US TO CAPTURE INFORMATION FLOWS.

Security Label Description
NameOfSelf The name of the currently execut-

ing program.
IsRegistryKeyForBootList A Windows registry key listing

software set to start on boot.
IsRegistryKeyForWindows A registry key that contains con-

figuration settings for the operat-
ing system.

IsSystemDirectory The Windows system directory.
IsRegistryKeyForBugfix The Windows registry key con-

taining list of installed bugfixes
and patches.

IsRegistryKeyForWindowsShell The Windows registry key con-
trolling the shell.

IsDevice A named kernel device.
IsExecutableFile Executable file.

In our graphical representation of behaviors, the security labels appear as
arguments constraints inside nodes. For example, in 2(a), the
NtOpenKey node has its argument Y2 constrained by the security label
IsRegistryKeyForBugfix .

2) The logic formulas on edges connecting behavior oper-

ations is satisfied by the corresponding pair of operation

invocations in the trace:

∀(vi, vj) ∈ E . ∃σi, σj ∈ T . β(vi, vj)[σi, σj ]

Capturing information flow in dependence graphs: Ex-

isting techniques for constructing dependence graphs from

programs provide only data-flow (and sometimes control-

flow) dependencies between operations [15], [16], [5]. In-

formation flows are characterized not only by the path

taken by the data in the program but also by the security

labels assigned to the data source and the data sink of the

information flow.

We enhance the dependence graphs obtained from the ex-

isting tools by assigning labels to particular files, directories,

registry keys, and devices based on their significance to the

system (e.g., system startup list, firewall settings, system

executables). The Microsoft Windows documentation [17]

lists a large number of files, directories, registry keys, and

devices that are relevant to system security, stability, and

performance. We list in I a few of the labels we apply

to the nodes in the constructed dependency graphs. These

labels, although operating system-specific, are not tied to

any particular class of malware or benign programs. The

labels are represented in our behavior formalism as logical

formulas expressing constraints on arguments. Unlabeled

arguments that are also not part of a dependency are fully

unconstrained, meaning that any program (malicious or

benign) can set them arbitrarily.

Approaches to mining behavior: Behavior mining an-

alyzes the dependence graphs of programs from a positive

subset and the negative set and identifies the subgraphs that

are most useful in uniquely characterizing the programs in

the positive subset. We associate a quality metric to each
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behavior to evaluate each candidate graph resulting from

mining. Roughly speaking, the quality metric of a behavior

is proportional to the number of programs in the positive set

that exhibit that behavior and inversely proportional to the

number of programs in the negative set that exhibit it. The

goal of behavior mining is then to find a set of behaviors

that maximize this quantity over the given program sets. We

capture this notion of behavior, which we term significant
behavior, using statistical principles borrowed from infor-

mation theory to construct a precise quality metric (III-A).

There are a number of techniques that have been devel-

oped to perform this type of discriminative subgraph mining,

such as minimal contrast subgraph mining [18] and struc-

tural leap mining [8]. Minimal contrast subgraph mining

returns complete results, and has exponential runtime com-

plexity. On the other hand, leap mining returns approximate

results, but has lower complexity. Because our experience

indicates that malware dependence graphs can be quite large,

we characterize our mining task as an optimization problem

over the information gain function, and use leap mining [8]

to find approximately optimal solutions. Furthermore, to

better characterize the set of programs, we modify the basic

leap mining algorithm to return multiple results that are

structurally dissimilar from each other (III-B).

A. Behavior Significance

To formally characterize the notion of behavior signifi-

cance used by our technique, we consider the dependence-

graph sets G+ and G− constructed from the members of

a positive subset and the negative set, respectively. From

these sets, we wish to produce a set of graphs GΔ such that

when given an arbitrary graph G ∈ G+ ∪G−, we can deduce

with high certainty whether G ∈ G+ by performing subgraph

isomorphism tests with the elements in GΔ. To this end, we

turn to information gain as a way of comparing candidate

graphs for suitability with respect to this criterion.

Information gain is defined in terms of Shannon entropy.

In our setting, the Shannon entropy of G+ ∪ G− is defined

with respect to the membership of elements in either G+ or

G−. Let E+ refer to the event that a graph G randomly

selected from G+ ∪G− is in G+, and define E− similarly for

G−. We define the entropy of G+ ∪G−, written H(G+ ∪G−),

H(G+ ∪ G−) = −P [E+] log(P [E+]) − P [E−] log([E−])

Intuitively, H(G+ ∪ G−) corresponds to the uncertainty

regarding whether some G ∈ G+ ∪ G− belongs to G+ or

to G−. Reducing this uncertainty means that one can tell

with increased assurance whether some graph G is in G+
rather than in G−.

In terms of entropy, our problem is that of finding

additional information that allows us to reduce the entropy

of G+ ∪G−. This is precisely what information gain models;

information gain is the expected reduction in entropy caused

by partitioning the original set, G+∪G−, into two smaller sets

according to some criterion. In our case, this criterion is the

presence of a candidate subgraph via subgraph isomorphism

in the elements of the original set. To simplify notation,

we define information gain in terms of an arbitrary set of

graphs S rather than G+ ∪ G−. For some graph G and set

of graphs S, we refer to the set SG = {GI ∈ S|G ⊆ GI},

where ⊆ denotes the subgraph isomorphism relation between

to graphs. Information gain is defined over a set of graphs

S and a candidate graph G:

Gain(S, G) = H(S)−
( |SG|

|S| H(SG) +
|S \ SG|

|S| H(S \ SG)
)

where S \ SG is the set difference between S and SG.

The second part of this equation sums the weighted entropy

of S after it is partitioned according to membership of G.

Gain(G+ ∪ G−, g) is a measure of how well a graph g will

allow us to determine whether some graph G ∈ G+ ∪ G−
belongs to G+ by performing subgraph isomorphism tests

between g and G, which is the stated goal of significant-

behavior mining.

Definition 2 (Significant Behavior): Given two sets of

dependence graphs, G+ and G−, a significant behavior g is

a subgraph of some dependence graph g ∈ G+ such that the

information gain Gain(G+ ∪ G−, g) is maximized.

Information gain is a powerful statistical tool that allows

us to select significant behaviors from the positive set. We

use it as the quality measure to guide the behavior mining

process.

B. Structural Leap Mining

Using 2 we frame behavior mining as an optimization

problem over Gain(G+ ∪ G−, g), to find g such that Gain
is maximized. To search the space of possible solutions

for g efficiently, we use a technique called structural leap
mining [8] to find approximate solutions to this optimiza-

tion problem. Like most discriminative objective functions,

information gain is not anti-monotonic [8], which could

invalidate all of the frequency-centric graph mining algo-

rithms that adopt this property as a major pruning heuristic.

Instead, structural leap mining exploits the correlation be-

tween structural similarity and similarity in objective score

for functions like information gain to quickly prune the

candidate search space. Specifically, candidate subgraphs are

enumerated from small to large size in a search tree and

their score is checked against the best subgraph discovered

so far. Whenever the upper bound of information gain in a

search branch is smaller than the score of the best subgraph

discovered, the whole search branch can be safely discarded.

In addition to this vertical pruning of the search space, sib-

lings of previously enumerated candidates are “leaped over”

since it is likely they will share similar information gain.

This horizontal pruning is effective in pruning subgraphs

that represent similar behaviors. While this might result in an

approximation of the optimal solution, it can be shown that
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structural leap mining can guarantee the optimal solution at

the expense of additional runtime. For further details, we

refer the reader to the original paper [8].

Based on the observation that a set of programs is not

likely to be sufficiently characterized by a single significant

behavior, we modified the original leap mining algorithm

to return the top k significant behaviors. Furthermore, to

avoid redundancy among these behaviors we use a numerical

measure of behavior similarity (3), and require that each pair

of behaviors in our top-k list has a behavior similarity that

falls below a predefined threshold.

Definition 3 (Behavior Similarity): Given two graphs g

and g′, their similarity is | 2E(g′′)
E(g)+E(g′) |, where g′′ is the

maximal common subgraph of g and g′ and E(g) denotes

the number of edges in g.

This definition of similarity ensures that the graphical

encodings of the behaviors in our list share little similarity in

structure; this is usually sufficient to eliminate redundancy

in significant behaviors. We call such subgraphs similarity-
aware top-k significant behaviors, and iteratively call struc-

tural leap mining to extract these behavior patterns.

IV. SYNTHESIS OF DISCRIMINATIVE SPECIFICATIONS

A specification is a collection of behaviors and a char-

acteristic function that defines one or more subsets of the

collection. A program matches a specification if it matches

all of the behaviors in at least one characteristic subset. If

we interpret each characteristic subset as corresponding to a

class or family of programs, then a single specification can

require that a program match at least one of many families

that differ in arbitrary ways. A specification is discriminative
if it matches malicious programs but does not match benign

programs. The goal of specification synthesis is to construct

an optimally discriminative specification from a given set of

behaviors by identifying the behaviors and the characteristic

function that define the specification.

It is possible to use the behaviors produced by mining

to construct a discriminative specification. For example,

one such specification is naı̈vely constructed by listing

each mined behavior that is exhibitied by each sample in

the positive set, and asserting that a program matches the

specification if it exhibits all of the behaviors on any of the

samples’ lists. This specification is discriminative because

it makes use of all of the significant behaviors mined from

the positive set, each of which is known to discriminate

from the negative set. However, it is likely to fit the input

samples too closely. This solution is not likely to fulfill our

goal of covering a large number of variants and malware

from other families, as the samples in the malicious set may

exhibit behaviors that are not essential to their respective

families. We must find a set of behaviors that captures only

the essential characteristics of the positive set, without over-

generalizing to the negative set.

 

Figure 3. An example clustering of malware and benign applications over
behavior set {a, b, c, d, e}.

To relate the target sample set to specification construc-

tion, we observe that each set of behaviors induces a

cluster of samples, and frame the problem of finding an

optimal specification as a clustering problem. In this setting,

a specification corresponds to a set of clusters, and the

problem of constructing an optimal specification becomes

one of finding a set of clusters that satisies our notion of

optimality over samples.

For example, consider the set of malware clusters pre-

sented in 3. The samples labeled M correspond to the

labeled malicious samples used in the mining step, and those

labeled B are benign. The behaviors produced by mining

are labeled a, b, c, d, and e; we are not concerned with the

details of each behavior, but only their inclusion in the given

samples. The specification created using the naı̈ve algorithm

described at the beginning of this section corresponds to

selecting clusters {a, b, e}, {a, b, d}, {a, c, d}, and {a, c, e}.

Notice that this specification covers many of the malicious

samples while excluding the benign applications, but fails

to cover all of the malicious samples. Alternatively, we can

construct a specification out of the single cluster {a} that

is sure to cover all of the malicious samples, but this is

too general, as it also covers all of the benign applications.

In fact, the best specification in this example corresponds to

the selection of clusters {a, c}, {a, b, e}, and {a, b, d}. While

this example is trivial, it resembles a simplified version of

the scenarios we encountered in our evaluation (VI).

A. Formal Concept Analysis

Formal concept analysis [9] provides a convenient set of

formalisms and tools to reason about specification synthesis

in terms of clusters and sample coverage. In this framework,

a concept is a pair (O,A) containing a set of objects O and

a set of attributes A. O is referred to as the extent of the

concept, and A the intent. In our setting, O is a cluster of
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samples, and A is the set of mined behaviors exhibited by

all of the samples in O. For our purposes, specifications are

formalized in terms of concepts over behaviors.

Definition 4 (Behavioral Specification and Matching):
Given a set of concepts {C1, C2, . . . , Cn}, we define

a behavioral specification S(C1, C2, . . . , Cn) to be

a disjunction of the conjunction of all behaviors in

A1, A2, . . . , An, respectively. A program matches a

specification S(C1, C2, . . . , Cn) if it exhibits all of

the behaviors in any of the intents of its concepts

C1, C2, . . . , Cn.

A single malware specification of this type covers as many

samples as possible from all families present in the malicious

set.

Given a listing of samples and the behaviors that they

exhibit, concept analysis provides a mechanism to construct

all of the possible clusters of samples in terms of their

attribute behaviors. We use an algorithm due to Nourine

and Raynaud [19] for its simplicity and performance on our

data. The algorithm begins by constructing all concepts with

singleton extents, and computes the pairwise intersection of

the intent sets of these concepts. This process is repeated

until a fixpoint is reached, and no new concepts can be

constructed. When this algorithm terminates, we are left with

an explicit listing of all of the sample clusters that can be

specified in terms of one or more mined behaviors.

Having enumerated each possible cluster, the problem of

synthesizing an optimal specification is reduced to the task

of selecting a set of clusters that are optimally discriminative

over the samples. We formalize this notion by defining

specification optimality in terms of coverage of the positive

and negative sets.

Definition 5 (Optimal Specification): Given a specifica-

tion S and a set of positive and negative samples C, let

tpC(S) be the number of positive samples in C covered by

S, and fpC(S) be the number of negative samples in C cov-

ered by S. We say that S is optimal if for a given threshold

t, tpC(S) ≥ t and fpC(S) < fpC(R), ∀R.tpC(R) ≥ t.

Given 5, our goal is to find concepts C1, C2, . . . , Cn such

that S(C1, C2, . . . , Cn) satisfies this definition of optimality

for a given threshold t. This definition allows us to specify

minimum requirements for the desired true positive rate, and

pick the specification with the lowest false positive rate. By

varying the threshold t, we can define specifications that

range from 100% true positives, to 0% false positives.

B. Simulated Annealing

Because specifications with redundant concepts do not

introduce any changes to the sample coverage of a specifi-

cation, the solution space for the specification optimization

problem consists of all possible combinations of concepts

produced by the enumeration algorithm. As is typical of

combinatorial optimization problems, the size of this space

is prohibitively large for an exact exhaustive search for the

best solution, so approximate methods are needed.

Simulated Annealing is a general probabilistic technique

for finding approximate solutions to global optimization

problems [14]. Specifically, if E is a finite set and U : E →
R is some cost function defined over the elements of E,

then simulated annealing finds the global minimum i0 of U ,

i0 ∈ E such that U(i0) < U(i) for all i ∈ E. The technique

proceeds iteratively as follows:

1) At each step, a candidate solution i is examined,

and one of its neighbors j ∈ N(i) is selected for

comparison.

2) The algorithm moves to j with some probability that is

positively correlated with U(j) < U(i) and a cooling
parameter T .

3) T is decremented according to a cooling schedule.

When T reaches a specified minimum, the algorithm

terminates and the current solution is returned.

The neighbor function N : E → 2E used in step 1 is defined

for each particular application.

Simulated annealing resembles a randomized version of

the greedy algorithm; the random component allows the

search to escape from local minima, and eventually converge

on the global minimum. Notice from steps 2 and 3 that

the tendency of the algorithm to move to a less-optimal

solution decreases as the cooling parameter approaches its

minimum. This causes the search to cover wider bands of

the candidate space early on, and make smaller movements

towards local minima later. It has been shown that the

use of an appropriate cooling schedule guarantees eventual

convergence to the global minimum of the cost function [14],

although this convergence may be quite slow. In practice

it is often acceptable to terminate the algorithm before the

cooling parameter reaches its minimum, and still end up

with a good solution. Our evaluation results corroborate this

claim (VI).

1) Cost Function: To map the cost function to our setting,

we must account for two independent variables: the true

and false positive rates over the set samples C. For a given

threshold t, the algorithm should discard all solutions S
with tpC(S) < t, and select the remaining solution that

is minimal with respect to fpC . The most straightforward

choice is:

U(S) =
{

fpC(S) if tpC(S) ≥ t
M otherwise

where M is larger than fpC(S) for all possible S. Provided

there exists a specification that meets the coverage require-

ment t, finding S that minimizes this function is equivalent

to finding the optimial specification for a given t.
2) Neighbor Function: Selecting an appropriate neighbor

function requires care to ensure that the search is able

to efficiently enumerate the candidate solution space. For

example, it is not productive to consider specifications that
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contain duplicate concepts. The structural relationships of

concepts to each other may also have implications for

coverage. Recall that a sample matches a specification if

it exhibits all of the behaviors of any of the concepts in

the specification. If the specification contains two concepts

Ci, Cj such that Ci ⊂ Cj , then Ci will match any sample

that Cj does, and Cj can be removed from the specification.

With these considerations in mind, we construct a neigh-

bor function that allows the algorithm to search the can-

didate space efficiently, without encountering obvious re-

dundancies. For a candidate solution S(C1, . . . , Cn), define

BS(C1,...,Cn) to be the set of specifications obtained by re-

moving one specification in {C1, . . . , Cn} from S. Similarly,

define FS(C1,...,Cn) as the set of specifications obtained

by adding a single specification Ck to {C1, . . . , Cn} such

that Ck � Ci for all Ci ∈ {C1, . . . , Cn}. Then for a

specification S, N(S) = BS ∪ FS . This definition of N
allows the algorithm to move backwards or forwards without

including concepts that contribute nothing to the coverage

of the specification.

3) Sampling and Cooling: To define the acceptance prob-

abilities for a transition from specification Si to Sj , we use

the Metropolis sampler [14]:

αij(T ) =
{

e
U(j)−U(i)

T if U(j) > U(i)
1 if U(j) ≤ U(i)

αij(T ) is the acceptance probability for this transition in

terms of the cooling parameter T . We selected this sampler

for its simplicity, as well as the fact that it is straightforward

to define a cooling schedule for this sampler that is guar-

anteed to converge to a global minimum [14]. The cooling

schedule we use is indexed by the current iteration k,

Tk =
max{U(i) − U(j),∀i, j ∈ N(i)}

log(k)

which satisfies this convergence property. While {Tk}k≥0

converges slowly, in practice this schedule produces a near-

optimal solution quickly, thus giving an acceptable answer

efficiently while leaving the possibility of finding the optimal

specification open in exchange for additional runtime cost.

C. Constructing Optimal Specifications

Using concept analysis and the sampling techniques dis-

cussed in the previous subsection, it is possible to devise a

practical algorithm that takes a threshold t, a set containing

labeled positive and negative samples, and a set of behaviors

produced using the behavior mining techniques described in

III, and produces a behavioral specification satisfying 5. This

algorithm, SPECSYNTH, is presented in 4.

SPECSYNTH begins by constructing the full set of con-

cepts describing the input data using the algorithm of

Nourine and Raynaud [19]. We perform an additional opti-

mization to reduce the cost of constructing the full set, by

removing the redundant concepts discussed in IV-B2 before

function SPECSYNTH(D,A, t)
C ← ∅
Sopt ← ∅
k = 2
for all positive d ∈ D do

ad = {a ∈ A | a is exhibited by d}
C ← C ∪ (d, ad)

end for
remove redundant concepts from C
C ← NOURINE-RAYNAUD(C)
Si ← S(c) for some c ∈ C
while Tk > 0 do

Sj ← SIMANNEAL(Si)
if fpD(Sj) < fpD(Sopt) or

(|tpD(Sj) − t| < |tpD(Sopt) − t|
and fpD(Sj) = fpD(Sopt) then
Sopt ← Si

end if
k ← k + 1

end while
return Sopt

end function

Figure 4. Specification Synthesis Algorithm. D is the input set containing
labeled positive and negative samples, A is a set of behaviors produced via
mining, and t is the threshold.

running NOURINE-RAYNAUD. After computing the concept

set, simulated annealing is run until {Tk}k≥0 converges, and

the best solution encountered during the search is returned.

V. IMPLEMENTATION

To evaluate HOLMES’s ability to effectively generalize

behavioral specifications of malware, we implemented a

proof-of-concept tool and ran it using real malware samples.

The functionality of HOLMES is largely agnostic to the

specific details of the behavior representation used, as well

as the method used to generate execution traces. As trace

collection and behavior graph construction are not the focus

of this work, we save consideration of more sophisticated

techniques in this area for future work. However, we note

that the use of multi-path analysis tools [6], [7] to extract

a more diverse set of behaviors from a sample may be

fruitfully applied here, and will most likely result in higher-

quality specifications, as the mining and synthesis algorithms

will have access to a fuller set of malicious behaviors.

Toolkit for Dependence-Graph Construction: We per-

form dynamic analysis on our malicious and benign sample

sets to extract a sequence of system call events with argu-

ment data for each sample. We use a version of Bindview’s

STrace for Windows [20], which we modified to provide

more detailed argument information for the system calls.

Collecting traces from malware must be performed with

care, as it requires running the samples in a realistic en-
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vironment, while ensuring that they cannot escape the trace

collection environment. For this, we use two instances of

QEMU [21]. The first instance runs Windows, and serves

as a victim machine connected to a second instance. The

second instance, called the server, ensures that none of the

network traffic originating in the Windows victim is able to

reach the real network, and also acts as a virtual “internet-

inna-box” [22] to provide a realistic set of network services

to the Windows victim. Our experiences indicate that this is

a safe approach to extracting reasonable traces from many

malware.

After collecting traces, we construct dependence graphs.

The traces we parse range in size from several hundred

kilobytes to several hundred megabytes, making this a

demanding computation in terms of memory requirements.

If the graph is constructed in memory as dependencies are

inferred, the graph constructor frequently hits the 4 gigabyte

limit common on 32-bit platforms. Therefore, our utility

constructs the graph directly on the hard disk as the trace is

parsed.

We use the dynamic dependence inference algorithm of

Christodorescu et al. [16]. Initially, the dependence graph

contains only nodes, one for each event in the trace. The

algorithm inserts edges into this graph for every inferred

dependence, and annotates both nodes and edges with con-

straints over system call arguments.

The algorithm infers two types of dependences between

system calls. A def-use dependence expresses that a value

output by one system call is used as input to another system

call and is similar to the concept of def-use dependence from

program analysis. A value dependence is a logic formula

expressing the conditions placed on the argument values of

one or more system calls, describing any data manipulations

the program performs in between system calls. Currently, the

algorithm computes an underapproximation of the depen-

dence graph as it does not recover complex dependences.

To discover def-use dependences between events (system

calls) in an execution trace, the algorithm uses argument

values together with type information. Each argument of

a system call has its type qualified to specify whether

the argument is an in argument, an out argument, or an

inout argument. The algorithm infers a dependence between

two system calls (and creates a corresponding edge in the

dependence graph) when the later system call has an in (or

inout) argument with the same type and the same value as

the out (or inout) argument of the earlier system call.

The algorithm infers value dependences between system

call events that have string-valued arguments. Strings (and,

equivalently, byte arrays) are interesting because the vast

majority of system calls have at least one string argument

through which a large amount of data is passed between

a program and the OS. If a string-valued out (or inout)
argument and a string-valued in (or inout) argument from a

subsequent event share a substring of longer than a threshold

(i.e., 12 in our experiments, to minimize false dependences),

then a dependence edge is added from the first system call

to the second. We enhanced the algorithm to annotate nodes

in the dependence graph with the security labels from I, thus

gaining a degree of information-flow sensitivity.

After inferring the behavior graphs, we prune them by re-

moving nodes and edges that are not likely to correspond to

malicious behavior, and merging redundant subgraphs. For

example, we remove events relating to user interaction and

display graphics, while we keep all events that correspond

to resource acquisition, modification, transmission, and ex-

ecution. To identify redundancies, we compare subgraphs

and eliminate duplicated portions. Additionally, we collapse

sequential reads and writes to stream resources (e.g., files

and sockets) into a single “block” access. Intuitively, one

read of 1000 consecutive bytes from a file is equivalent to

one thousand consecutive reads of 1 byte each.

Toolkit for Behavior Mining and Specification Synthe-
sis: After constructing the behavior graphs, we partition the

malware graphs based on the behavioral similarity of their

corresponding samples. Rather than relying on experimental

techniques [10], [11], we utilize the manual efforts of the

antivirus industry by using samples whose AV labels agree

for multiple vendors. We used our own implementation of

structural leap mining to mine significant behavior subgraphs

from the malicious and benign graph database, because no

existing leap mining implementation meets our functional

needs (see III-B). Our implementation of the specification

synthesis algorithm of Figure 4 is written entirely in Python.

The algorithm fits cleanly within about 300 lines of code,

including the Nourine-Raynaud algorithm [19] to compute

the specification set.

VI. EVALUATION

We evaluated our behavior mining and specification syn-

thesis algorithms on a corpus of real malware samples from a

set of honeypots [23], and a representative corpus of benign

applications. Our evaluation shows:

• The specifications synthesized by HOLMES from a

known malware set allows the detector to reach an

86% detection rate over unknown malware with 0
false positives. This is a significant improvement over

the 40-60% detection rate observed from commercial

behavior-based detectors, the 55% rate reported for

standard commercial AV [24], and the 64% rate re-

ported by previous research [5].

• HOLMES is efficient and automatic, constructing a

specification from start to finish in under 1 hour in

most cases. The longest execution time was caused

by the mining algorithm, which took 12-48 hours2 to

complete for some network worms. This is a significant

2We are currently parallelizing this algorithm, and expect speedups that
are almost linear in the number of processors (e.g., 6 times faster on an
8-core system.)
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Figure 5. Our evaluation workflow and timeline, annotated with input-set sizes for a single fold.

improvement over the reported current time window
of 54 days between malware release and detection by
commercial products [25].

• The behavior-mining algorithm described in III finds

approximately 50 malicious behaviors on average for a

malware family, including some behaviors never previ-

ously documented by human analysts. The specification

synthesis algorithm uses 166 malicious behaviors from

6 families to derive a specification containing 818 nodes

in 19 concepts each with 17 behaviors on average,

without introducing any false positives.

These results strongly support our claim that our algorithms

produce near-optimally discriminative specifications.

Evaluation Input Selection: We collected 912 malware

samples and 49 benign samples. The malware samples were

obtained from a honeypot over a period of eight months [23],

and consisted of samples from the following families: Virut,

Stration, Delf, LdPinch, PoisonIvy, Parite, Bactera, Banload,

Sality, DNSChanger, Zlob, Prorat, Bifrose, Hupigon, Al-

laple, Bagle, SDBot, and Korgo.

The benign samples used in our evaluation were selected

to form a behaviorally diverse and representative dataset. It

is important to provide the behavior extraction algorithm a

set of benign applications that is representative of common

desktop workloads, or the results that it produces may

contain behaviors commonly percieved to be non-malicious.

To this end, we included a number of applications that

interact with the web, standard office applications, admin-

istrative tools, entertainment applications, installers, and

uninstallers. We believe that the hardest task for a behavior-

based malware detector is to distinguish between malicious

programs and benign programs that are quite similar. For

example, installers and uninstallers oftentimes perform the

type of administrative routines used by malware upon initial

infection (e.g. setting code to persist on restart, changing

existing system configurations, etc.). Thus, we consulted an

expert from the behavior-based antivirus industry for benign

applications that are known to produce false positives and

added them to our evaluation set.

Our benign corpus consists of the following applica-

tions: Adobe Acrobat Reader, Ad-Aware installation, Ad-

Aware, AVG Antivirus, Bitcomet, Bitcomet uninstallation,

Google Chrome, Google Chrome installation/configuration,

Windows command prompt, FileZilla FTP server, Firefox,

Windows FTP client, Google Desktop installation, Google

Desktop, Internet Explorer, mIRC chat client, Outlook, Putty

SSH client, Skype, Windows tasklist, Sysinternals TCPView,

Thunderbird, Windows traceroute, Microsoft Visual Studio,

WinRAR archive utility, Windows Media Player, Microsoft

Word, YouTube video downloader, Ares Galaxy, FLV Player,

PC Tools Antivirus, PowerISO, Siber Systems RoboForm,

Almico Software SpeedFan, Javacool SpywareBlaster, Tor-

rent Swapper, TrueCrypt, and Windows Essentials Media

Codec Pack. We also evaluated on the installation routines

for the following applications: Ares Galaxy, dBpoweramp

Music Converter, Easy CD-DA Extractor, FLV Player, Pow-

erISO, Primo PDF, Almico Software SpeedFan, Javacool

Spyware blaster, System Mechanic, ClamWin Antivirus, and

TrueCrypt.

Evaluation Methodology: We split the malware corpus

into three sets: one for mining behaviors, one for driving the

synthesis process, and one for testing the resulting specifica-

tion. The set used in mining simulates the known malware

at a given point in time and so it was fixed throughout

the experiments. We selected six families for mining that

contain behaviors which represent a wide range of known

malware functionality. The malware set used in the synthesis

step corresponds to malware discovered after the behavior

mining, while the test set represents malware discovered

after specification synthesis. Recall that our goal is to

mine general family-level specifications robust to differences

within variants of the same family. Thus, for the synthesis
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and test sets, we divide samples from the remaining families

into randomly-selected disjoint sets.

Since newly discovered malware and future, unknown

malware are fungible, we perform 10-fold cross-validation to

ensure that the synthesis process is not affected by any biases

in our choice of malware sets. Graphically, the evaluation

proceeded as shown in 5. The second and third steps shown

in the figure, specification synthesis and behavior-based

malware detection, respectively, correspond to a single fold

of the cross-validation. Our final results are averaged over

all ten folds.

For constructing the malware dependence graphs, we

perform a single-path dynamic analysis of the malware

samples for 120 seconds to collect a trace. This yields

useful results because most malware is designed to execute

at least part of its payload without additional input, and in

as many environments as possible. We used executions of

120 seconds, as we found that two minutes is generally

enough time for most malware to execute its immediate

payload, if it has one. While some malware samples do

not perform any malicious behavior in this period, we

found that these samples usually wait for some external

trigger to execute their payload (e.g. network or system

environment), and will not perform any behaviors if left

to execute without further action. Finally, we attempted to

extract multiple execution traces from the samples used in

our evaluation using previously-existing SAT-based concolic

execution tools [6]. However, while we believe that this is

a promising area with positive implications for our work,

the performance of current tools does not scale to the

extent required by our evaluation. Extracting between ten

and twenty execution traces from a single sample can take

on the order of days, whereas we need to evaluate hundreds

of samples. See section VII for further discussion on this

topic.

For benign samples (most of which are interactive applica-

tions), we extract a representative trace by interacting with it

as a normal user would in a common environment, for up to

15 minutes. For example, if the application is a web browser,

we direct it to popular websites that require more than

just plain HTML (i.e. JavaScript, Flash, etc.). For installer

applications, we run them to completion on the system using

all of the default options. For applications reported to us as

problematic by the AV industry, we try to reproduce any

problematic executions that were described to us. In general,

collecting a representative trace from benign application is

more difficult than from malicious applications. We made

a best-effort attempt to cover as many typical code paths

as possible by using the benign application in a realistic

desktop environment, but due to the well-known difficulty

of this problem [6], [7], we can make no guarantees of total

coverage.

To cluster the behavior graphs by perceived similarity, we

consulted the McAfee, Kaspersky, and Microsoft malware

Table II
DETECTION RATES OF COMMERCIAL BEHAVIOR-BASED DETECTORS

AND HOLMES.

Sana
ActiveMDT

PC Tools
ThreatFire HOLMES

Detection rate 42.61% 61.70% 86.56%

classifications, and grouped those graphs given the same

label. These particular antivirus engines were selected based

on our experience that they tend to agree about labels more

frequently than others. Each cluster of behavior graphs with

the same label was then run through the leap-mining process.

A. Comparison with Commercial Products

Using the malware in our evaluation set, we evaluated

the detection capabilities of two commercial behavior-based

malware detectors, Sana’s ActiveMDT [26] and ThreatFire

by PC Tools [27]. Our goal was to determine how a

detector using the specifications produced by HOLMES fares

against state-of-the-art tools with behavior-based detection

technology. The results shown in II indicate clear gains in

detection capabilities using specifications produced with our

technique.

While the technical details of ActiveMDT and Threatfire

are proprietary, we suspect that the superior performance

of our specifications is due to HOLMES’s ability to quickly

search for a disjunction of combinations of relatively simple

software behaviors that describe the target malware. Due

to the enormous state space of these disjunctions, and the

difficulty of finding one that does not also specify benign ap-

plications, manual efforts to do so are unlikely whereas our

probabilistic search finds a near-optimal candidate quickly.

The difficulty of deriving a similar specification manually is

highlighted by the size of our most effective specifications

(∼ 800 nodes).

B. Behavior Extraction Results

We ran HOLMES’s behavior-mining algorithm over the

known malware set, consisting of six malware families:

Virut, Stration, Delf, LdPinch, PoisonIvy, and Parite. These

families exhibit a wide range of malicious behaviors, includ-

ing behaviors associated with network worms, file-infecting

viruses, spyware, and backdoor applications. The set of

benign applications used in behavior extraction are a rep-

resentative subset of our full benign corpus: AVG Antivirus,

Firefox, Internet Explorer, Skype, Windows task manager,

Microsoft Visual Studio, Windows traceroute, WinSCP, Re-

alVNC Server, and Sun Java 6 runtime environment instal-

lation.

The results of our behavior mining evaluation are pre-

sented in III. The second column, # Mined, corresponds to

the number of patterns returned by the mining algorithm.

The third column, # Unique, corresponds to the number

of distinct behaviors returned by our behavior extraction

algorithm. Because the semantics of system calls are not
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Table III
RESULTS OF BEHAVIOR EXTRACTION ON 72 SAMPLES FROM SIX

MALWARE FAMILIES.

Malware Family # Mined # Unique # Malicious
VIRUT 67 19 14
STRATION 29 18 13
DELF 44 28 21
LDPINCH 75 14 10
POISONIVY 21 13 9
PARITE 51 17 10
Average 47.8 44.5% 70.0%

entirely independent [28], distinct sequences of system calls

often have nearly identical semantic effect on the system,

making this quantity relevant to our results. The fourth

column, # Malicious, corresponds to the number of unique

behaviors that are likely used to carry out malicious intent.

In our experiments, some of the behaviors returned by

HOLMES are not malicious in nature. For example, many of

the malicious samples changed the system’s random number

generator seed, which none of the benign applications did.

As a result, this pattern was returned for many of the

families, despite the fact that by itself it is not a malicious

behavior. Each average at the bottom of the table is based

on the number of graphs in the column to its left; for

example, 70.0% of the unique graphs mined (column 3) were

malicious (column 4).

To compare the behaviors returned by HOLMES with the

behaviors reported by professional analysts, we consulted

the malware information databases maintained by Syman-

tec [13], Kaspersky [29], and McAfee [30]. In almost all

cases, the malicious behaviors returned by HOLMES corre-

spond to those reported in the malware families we used.

One interesting exception is the result of mining some our

file-infecting viruses (Virut and Parite) and network worms

(Stration and Delf). HOLMES found behaviors characteristic

of spyware, such as remote process code injection and

reconfiguration of browser settings. These behaviors were

not reported by many of the databases we consulted, demon-

strating the effectiveness of the algorithm. In a few cases,

HOLMES did not return behaviors that were documented

by the AV databases. For example, every database claims

that Parite injects code into explorer.exe in order to

stay memory-resident, but this behavior was not found by

HOLMES in our evaluation. We suspect that many of these

behaviors were not returned due to the limited coverage of

the single-path dynamic analysis used to collect behavior

information.

The results of our evaluation indicate that the behavior-

mining algorithm described in III can be used as a pow-

erful tool for automatically extracting useful information

from malware code. Although the results leave room for

improvement, we show in the following section that they

are sufficient to construct near-optimal specifications.

NtOpenKey(X1, X2)
X1 = “/../Windows/../InternetSettings/..”

DefUse(X2, Y1)

��
NtSetValueKey(Y1, Y2, Y3)

Y1 = “ProxyBypass”

NtSetValueKey(Y1, Y2, Y3)
IsRegistryKeyForBootList(Y1)

NtOpenKey(Y1, Y2, Y3)
IsRegistryKeyForWindows(Y1)

NtOpenKey(X1, X2)
X1 = “/REGISTRY/MACHINE”

DefUse(X2, Y1)

��
NtSetValueKey(Y1, Y2, Y3)
IsRegistryKeyForBugfix(Y1)

Figure 6. A representative concept derived by HOLMES, consisting of 4
significant behaviors (changing the browser proxy settings, changing the
boot list, querying system information, and querying the bugfix informa-
tion).

C. Specification Synthesis Results

We applied the specification synthesis algorithm given in

4 to the behaviors mined in VI-B. The synthesis algorithm

relies on a training set of labeled samples (both known

malicious and known benign) to search for an optimally

discriminative specification. Note that this synthesis step

does not add new behaviors to the set, it only combines

the ones previously mined. The training set consisted of

28 common desktop applications and 42 malware sam-

ples from twelve families not used in the behavior-mining

step: Bactera, Banload, Sality, DNSChanger, Zlob, Prorat,

Bifrose, Hupigon, Allaple, Bagle, SDBot, and Korgo. To

evaluate the performance of HOLMES on multiple datasets,

we performed cross validation by partitioning the 420 new
malware samples not used in mining into ten disjoint sets,

running training cycles over each of them independently,

and evaluating on the remaining sets not used in each round

of training. We did this for multiple threshold values t to

explore the tradeoff between true positive and false positive

rate.

The results of our evaluation are presented in 7, with

an example of a concept derived by SpecSynth shown in

6. Note that the graphs in Figure 6 do not constitute an

entire specification, but merely one disjunct among many

in a much larger specification (see Definition 4 for clari-
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Figure 7. Detection results for multiple synthesized specifications show a
clear tradeoff between true positives and false positives.

fication on this point). Each percentage given in Figure 6

is the average over the ten folds. With a threshold value of

t = 0.85, HOLMES was able to construct a specifications for

each fold that covered none of the benign samples from our

set, and nearly all (86.56% avg.) of our unknown malware.

The variance between results for different folds was small,

in the range of tenths of a percentage point. Raising the

threshold resulted in a slightly higher true positive rate, but

at the expense of a much higher false positive rate. These

trends underscore the inherent difficulty of constructing good

discriminative specifications.

To summarize, these results indicate that our technique

for mining discriminative specifications is able to effectively

identify the key components required to describe a given

class of software in useful, realistic settings.

D. Performance and Scalability

In our experience, the runtime performance of the behav-

ior mining algorithm varies significantly between malware

families. For some families, particularly spyware (LdPinch)

and file-infecting viruses (Virut and Parite), behavior extrac-

tion required between ten and sixty minutes to complete. For

families that exhibit repeated behaviors through the course of

their execution, such as network worms (Stration and Delf),

the dependence graphs can be quite large (10,000-20,000

nodes and edges), causing the behavior mining algorithm to

run between 12 and 48 hours before completion. The worst-

case complexity of this operation is exponential. However,

this performance is rarely encountered, and can be mitigated

by accepting a tradeoff in the quality of the result for a

shorter running time [8]. In practice, it is difficult to precisely

characterize the expected complexity of behavior mining.

The factors that affect performance the most are the size

of the input behavior graphs, and the similarity between

the malicious and benign graphs. When the two sets are

highly dissimilar, the algorithm can quickly find subgraphs

that maximize entropy between the two sets; when this is

not the case, the algorithm must search for larger subgraphs,

and suitable results take a long time to produce. Currently,

this component is the largest performance bottleneck in our

workflow. However, it is fully unsupervised, and can thus

run concurrently with other analyses, in the “background”.

We are currently investigating the use of probabilistic al-

gorithms to improve the performance of behavior mining,

as well as parallelizing the algorithm. We expect significant

performance gains from these enhancements.

On the other hand, the performance of HOLMES is quite

good. On average, the specifications presented in 7 were

found in under one minute (the single exception to this

took approximately 80 seconds), although the algorithm was

allowed to run for 30 minutes to search for a potentially

better solution. This corresponds to a tradeoff present in

our technique: if allowed to run to completion, HOLMES

is guaranteed to find the optimal solution. However, it will

usually find a good solution quickly, so the user is ultimately

left with the choice of performance or solution optimality.

One concern is the potentially high cost of generat-

ing all concepts for a given dataset using NOURINE-

RAYNAUD [19]. In the worst case, this computation can

take exponentially long in the size of the dataset. However,

because we remove all redundant concepts in the first round

of this computation (this is discussed in more detail in

IV), the size of our input to NOURINE-RAYNAUD does not

necessarily scale linearly with the number of samples in the

training set. Rather, it scales with the behavioral diversity, or

the number of mined behaviors shared by the samples, of the

training set. For our evaluation, it took less than one second

to compute all of the concepts for the samples, and we expect

that most usages of HOLMES will meet with similar results.

However, to address the possibility of encountering dense

concept sets, we are currently evaluating the use of binary

decision diagrams (BDD’s) for concept enumeration [31].

VII. DISCUSSION

Our results indicate that malicious behaviors are shared

across multiple families, and that our algorithms as imple-

mented in HOLMES are successful in identifying and isolat-

ing these behaviors. HOLMES combines these discriminating

behaviors to form a specification that can be used in the

detection of unknown malware with a 86% true positive rate

and 0 false positives. As with any empirical evaluation, there

are limitations that must be considered when interpreting the

results.

First, we consider threats to construct validity, and in

particular to our choice of behavioral model. We combine

data flows connecting system calls with security labels to

allow us to characterize the information flows enabled by

malicious programs. Previous work has shown that using

data flows to describe malicious behavior is a powerful ap-

proach [15], [5], [3] and that the system-call interface is the

right abstraction for characterizing user-space malware [11],
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[32]. This of course does not cover all malware types, some

of which might produce other event types (e.g., browser

spyware interacts primarily with the browser API). We

designed HOLMES to be orthogonal to the actual semantics

of the events and constraints that make up behavior graphs.

Thus, deriving specifications for other classes of malware not

covered here can use our algorithms, given an appropriate

behavior-graph construction mechanism.

Threats to internal validity relate to our system’s ability to

construct accurate and precise behavior graphs, in terms of

events, dependencies. and security labels captured. Missing

events, dependencies, or labels can prevent HOLMES from

finding the optimally discriminating specification, even when

given sufficient time. HOLMES builds on existing work for

creating the behavior graph and will benefit from more pow-

erful tools that use, for example, dynamic taint tracing [15],

[5] and multipath analysis [7]. Currently, the set of security

labels we use is limited to our perusing of the Microsoft

Windows documentation website. Deriving a complete and

accurate set of security labels is an open research problem,

as is measuring the impact of such a set on the specification-

synthesis process in HOLMES.

Finally, there is the question of whether the malware and

benign sets are representative of real-world scenarios. We

analyzed only 912 malware samples and only 49 benign

programs, and cannot claim that the results generalize to

other settings. However, the malware samples are real, have

been collected over a period of 8 months using an Internet-

connected honeypot, and have exhibited a wide variety of

behaviors when we analyzed them. Similarly, the benign

applications are some of the most popular applications on the

Microsoft Windows platform. Furthermore, given that our

synthesis algorithm is adaptive by design, improved spec-

ifications can be produced when completely new malware

or new benign applications appear, without repeating the

analysis of any previous samples.

VIII. RELATED WORK

Malware analysis: Our work continues a research

tradition of using program analysis and statistical reasoning

techniques to analyze and prevent malware infection. Sev-

eral researchers have investigated the problem of clustering

malware; Bailey et al. used behavioral clustering to resolve

inconsistencies in AV labeling schemes [10], and Rieck et al.
proposed a classification technique that uses support vector

machines to produce class labels [11] for unknown malware.

Our work is complementary to automated clustering efforts,

as we can use the results of these techniques to create initial

sample partitions for behavior extraction (see Section III).

Our work produces precise specifications of malware

families from which existing behavioral detection techniques

can benefit. Two detectors mentioned in the literature, those

of Kolbitsch et al. [5] and Christodorescu et al. [3], use

notions of software behavior that correspond very closely

to our own (see Section III), and could thus make direct

use of our specifications. Additionally, commercial behavior-

based detectors such as Threatfire and Sana’s ActiveMDT

could potentially use the behavioral specifications produced

by HOLMES; as we show in Section VI, doing so may reduce

the amount of time needed to produce reliable specifications.

Recently, Kolbitsch et al. explored the problem of creating

behavioral malware specifications from execution traces [5].

They demonstrated a technique for producing behavior
graphs similar to those used in our work, but with a

more sophisticated language for expressing constraints on

event dependencies, and showed that their specifications

effectively detect malware samples with no false positives.

One of their key observations was the necessity of complex

semantic dependencies between system call events, without

which false positive rates are unacceptably high. We also

observed this phenomenon in our experiments, and found the

need to introduce heuristic annotations (information flows)

to our graphs to effectively extract significant behaviors from

our corpus. Aside from differences in the type of behavior

representation graph used, their specification construction

algorithm differs from ours in two ways. First, they make no

attempt to generalize specifications to account for variants

within the same family, or of the same type. Second, they

do not discriminate their malicious behaviors from those

demonstrated by benign programs, so their technique does

not present a safeguard against false positives. Thus, their

work is complementary to ours: their specifications can serve

as a starting point for SPECSYNTH to automatically refine

for increased accuracy and coverage of variants.

Others have taken different approaches to deriving general

behavioral specifications robust to differences between mal-

ware variants of the same family. Cozzie et al. [33] describe

a system which fingerprints programs according to the data

structures that they use, and show that these fingerprints can

be used to effectively detect malware on end-hosts. Our be-

havioral specifications differ fundamentally from theirs. The

elements used to build our behavioral specifications, namely

system calls and constraints on their arguments, are program

actions that directly contribute to the malicious nature of

the malware. In some sense, the malware cannot induce

its harmful effect on the system without these elements.

On the other hand, the data structures used to build the

specifications of Cozzie et al. are not inextricably related to

the malicious nature of the samples. The practical upshot of

this difference is that our specifications may be more difficult

to evade, as doing so would require changing the system call

footprint of the malware rather than the data structure usage

patterns. Stinson and Mitchell [34] identified bot-like be-

haviors by noting suspicious information flows between key

system calls. Egele et al. describe a behavioral specification

of browser-based spyware based on taint-tracking [4], and

Panorama uses whole-system taint analysis in a similar vein

to detect more general classes of spyware [15].
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Specification mining: Several researchers have explored

mining for creating specifications to be used for formal

verification or property checking. The seminal work in this

area is due to Ammons et al. [35], who mined automata

representations of common software behavior to be used for

software verification. Their technique finds commonalities

between elements of a given set of programs, but unlike our

work, does not discriminate from a second set of programs.

Recently, Shoham et al. [36] and Sankaranarayanan et
al. [37] both mined specifications of API usage patterns.

Like that of Ammons et al., their work was geared towards

the ultimate goal of detecting accidental flaws in software,

rather than contrasting different types of software behavior

(e.g. malicious vs. benign). Christodorescu et al. [16] mined

discriminitive specifications for behavior-based malware de-

tection and suggested the use of simple security labels on

arguments. However, their technique produces specifications

that discriminate a single malware sample from a set of

benign applications. Our work is a generalization of this

setting, where a specification is produced to discriminate a

malware family from a set of benign applications. Further-

more, we incorporate a tunable notion of optimality to guide

a search through the full space of candidate specifications

for the most desirable solution. This tunable notion of opti-

mality, along with our use of statistical sampling techniques,

makes HOLMES scalable to a larger range of realistic settings

(see VI).

Concept analysis: Formal concept analysis was intro-

duced by Rudolf Wille in the 1980’s as part of an attempt to

make lattice theory more accessible to emerging fields [9]. It

has since been applied to a number of problems in computer

science, in particular software engineering. Ganapathy et
al. [38] used concept analysis to mine legacy source code

for locations likely to need security retrofitting. Although our

work is similar to theirs in the use of concept analysis to

secure a software system, there are considerable differences

in the settings in which our work is appropriately applied,

and the output of our analysis. The work of Ganapathy et al.
is meant to be applied to a body of non-adversarial source

code to derive suggestions for likely places to place hooks

into a reference monitor. In contrast, our work is applied to

adversarial binary code to derive global specifications of pro-

gram behavior. Others have applied it to various problems in

code refactoring [39], [40] and program understanding [41].

Our work contributes to the state of the art in this area by

demonstrating a novel application of concept analysis, and

showing how the associated drawbacks, namely complexity

explosion, can be mitigated with the appropriate use of

statistical sampling techniques. This technique may be of

independent interest for other uses of concept analysis that

suffer from the prohibitive cost of searching the concept

space.

IX. CONCLUSION

We described a technique for synthesizing discriminative
specifications that result in behavior-based malware detec-

tors reaching 86% detection rate on new malware with 0

false positives. Framing specification synthesis as a cluster-

ing problem, we used concept analysis to find specifications

that are optimally discriminative over a given distribution of

programs. We showed how probabilistic sampling techniques

can be used to find near-optimal specifications quickly,

while guaranteeing convergence to an optimal solution if

given sufficient time. The synthesis process is efficient and

constructs a specification within 1 minute. Our prototype,

called HOLMES, automatically mines behaviors from mal-

ware samples, without human interaction, and generates an

optimally discriminative specification within 48 hours. Pre-

liminary experiments show that this process can be reduced

to a fraction of this time by using multi-core computing

environments and leveraging the parallelism of our mining

algorithm. HOLMES improves considerably on the 56-day

delay in signature updates of commercial AV [25].
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brary specifications using inductive logic programming,” in
Proceedings of the 30th International Conference on Software
Engineering (ICSE ’08). New York, NY, USA: ACM Press,
2008, pp. 131–140.

[38] V. Ganapathy, D. King, T. Jaeger, and S. Jha, “Mining
security-sensitive operations in legacy code using concept
analysis,” in Proceedings of the 29th International Conference
on Software Engineering (ICSE ’07). Washington, DC, USA:
IEEE Computer Society, 2007, pp. 458–467.

[39] G. Snelting and F. Tip, “Reengineering class hierarchies using
concept analysis,” in SIGSOFT ’98/FSE-6: Proceedings of the
6th ACM SIGSOFT international symposium on Foundations
of software engineering. New York, NY, USA: ACM Press,
1998, pp. 99–110.

[40] P. Tonella, “Concept analysis for module restructuring,” IEEE
Transactions on Software Engineering, vol. 27, no. 4, pp.
351–363, 2001.

[41] ——, “Using a concept lattice of decomposition slices for
program understanding and impact analysis,” IEEE Transac-
tions on Software Engineering, vol. 29, no. 6, pp. 495–509,
2003.

60


