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Abstract. In graph mining applications, there has been an increasingly strong
urge for imposing user-specified constraints on the mining results. However, un-
like most traditional itemset constraints, structural constraints, such as density
and diameter of a graph, are very hard to be pushed deep into the mining process.
In this paper, we give the first comprehensive study on the pruning properties of
both traditional and structural constraints aiming to reduce not only the pattern
search space but the data search space as well. A new general framework, called
gPrune, is proposed to incorporate all the constraints in such a way that they re-
cursively reinforce each other through the entire mining process. A new concept,
Pattern-inseparable Data-antimonotonicity, is proposed to handle the structural
constraints unique in the context of graph, which, combined with known pruning
properties, provides a comprehensive and unified classification framework for
structural constraints. The exploration of these antimonotonicities in the context
of graph pattern mining is a significant extension to the known classification of
constraints, and deepens our understanding of the pruning properties of structural
graph constraints.

1 Introduction
Graphs are widely used to model complicated structures in many scientific and commer-
cial applications. Frequent graphs, those occurring frequently in a collection of graphs,
are especially useful in characterizing graph sets, detecting network motifs [2], dis-
criminating different groups of graphs [3], classifying and clustering graphs [4–6], and
building graph indices [7]. For example, Huan et al. [5] successfully applied the fre-
quent graph mining technique to extract coherent structures and used them to identify
the family to which a protein belongs. Yan et al. [7] chose discriminative patterns from
frequent graphs and applied them as indexing features to achieve fast graph search.

Unfortunately, general-purpose graph mining algorithms cannot fully meet users’
demands for mining patterns with their own constraints. For example, in computational
biology, a highly connected subgraph could represent a set of genes within the same
functional module [8]. In chem-informatics, scientists are often interested in frequent
graphs that contain a specific functional fragment, e.g., a benzine ring. In all these
applications, it is critical for users to have control on certain properties of the mining
results for them to be meaningful. However, previous studies have left open the problem
of pushing sophisticated structural constraints to expedite the mining process. This gap
between user demand and the capability of current known mining strategies calls for a
constraint-based mining framework that incorporates these structural constraints.
Related Work. A number of efficient algorithms for frequent graph mining are avail-
able in data mining community, e.g., AGM [14], FSG [15], the path-join algorithm [16],
gSpan[17], MoFa[3], FFSM [18], SPIN[19] and Gaston [20]. Few of them considered



the necessary changes of the mining framework if structural constraints are present.
Constraint-based frequent pattern mining has been studied in the context of associa-
tion rule mining by Ng et al. [9], which identifies three important classes of constraints:
monotonicity, antimonotonicity and succinctness and develops efficient constraint-based
frequent itemset mining algorithms for a single constraint. Ng et al. also pointed out
the importance of exploratory mining of constrained association rules so that a user
can be involved in the mining process. Other complicated constraints, such as gradi-
ents [26], block constraints [27], constraints on sequences [28], and connectivity con-
straints [23], are proposed for different applications. Pei et al. discovers another class
of constraint convertible constraints and its pushing methods. Constrained pattern min-
ing for graphs has been looked into by Wang et al., [29], although only constraints with
monotonicity/antimonotonicity/succinctness are discussed. Bucila et al. [10] introduced
a DualMiner framework that simultaneously takes advantage of both monotonicity and
antimonotonicity to increase mining efficiency. The general framework of these mining
methods is to push constraints deep in order to prune pattern search space. Although
this is effective in many cases, the greatest power of constraint-based frequent pattern
mining is achieved only when considering together the reduction on both the pattern
search space and the data search space. Bonchi et al.have taken successful steps in this
direction by proposing ExAnte, [11–13], a pre-processor to achieve data reduction in
constrained itemset mining. ExAnte overcame the difficulty of combining the pruning
power of both anti-monotone and monotone constraints, the latter of which had been
considered hard to exploit without compromising the anti-monotone constraints. Bouli-
caut and De Raedt [1] have explored constraint-based mining as a step towards inductive
databases.

Our Contributions. In this paper we show that the data reduction technique can in fact
be extended beyond the preprocessing stage as in ExAnte, and pushed deeper into the
mining algorithm such that the data search space is shrunk recursively each time it is
projected for a pattern newly grown, through the entire mining process. More impor-
tantly, our study of graph constraints shows that for sophisticated constraints in data
sets whose structures are more complicated than itemsets, data space pruning could be
effective only when the structural relationship between the embedded pattern and the
data is taken into account. This new constraint property, which we term as Pattern-
inseparable D-antimonotonicity, is unique in the context of graphs and, to our best
knowledge, has not been explored before in literature. It distinguishes itself from other
pruning properties in that most sophisticated structural constraints, e.g., diameter, den-
sity, and connectivity, exhibit neither antimonotonicity nor monotonicity. Without ex-
ploiting Pattern-inseparable D-antimonotonicity, current mining algorithms would have
to enumerate all frequent graphs in the first place and then check constraints on them
one by one. The paper makes the following contributions: First, we present the first sys-
tematic study of the pruning properties for complicated structural constraints in graph
mining which achieves pruning on both pattern and data spaces. The full spectrum of
pruning power is covered by (1) extending the known antimonotonicities for itemsets
to easier cases and (2) discovering novel pattern-separable and pattern-inseparable D-
antimonotonicities to handle structural constraints when pattern embeddings have to be
considered. Secondly, a general mining framework is proposed that incorporates these



pruning properties in graph pattern mining. In particular, data space pruning is cou-
pled tightly with other constraint-based pruning such that data reduction is exploited
throughout the entire mining process. Thirdly, discussion is given on mining strategy
selection when a trade-off has to be made between the naive enumerating-and-checking
approach and our pruning-property-driven approach.

2 Preliminaries
As a convention, the vertex set of a graph P is denoted by V (P ) and the edge set
by E(P ). For two graphs P and P ′, P is a subgraph of P ′ if there exists a subgraph
isomorphism from P to P ′, denoted by P ⊆ P ′. P ′ is called a supergraph of P . In
graph mining, a pattern is itself a graph, and will also be denoted as P . Given a set of
graphs D = {G1, G2, . . . , Gn}, for any pattern P , the support database of P is denoted
as DP , and is defined as DP = {Gi|P ⊆ Gi, 1 ≤ i ≤ n}. DP is also referred to as the
data search space of P , or data space for short. A graph pattern P is frequent if and
only if |DP |

|D| ≥ σ for a support threshold σ.
A constraint C is a boolean predicate on the pattern space U . Define fC : U →

{0, 1} as the corresponding boolean function of C such that fC(P ) = 1, P ∈ U if and
only if P satisfies the constraint C. For example, let C be the constraint Max Degree(P )≥
10 for a graph pattern P . Then fC(P ) = 1 if and only if the maximum degree of all
the vertices of P is greater than 10. We formulate the constraint-based frequent graph
pattern mining problem as the following:
Definition 1. (Constraint-based Frequent Graph Pattern Mining) Given a set of
graphs D = {G1, G2, . . . Gn}, a support threshold σ, and a constraint C, constraint-
based frequent graph pattern mining is to find all P such that |DP |

|D| ≥ σ and fC(P ) = 1.
Here are some graph constraints used in this paper: (1) The density ratio of a graph

P , denoted as Density Ratio(P ), is defined as Density Ratio(P ) = |E(P )|
|V (P )|(|V (P )|−1)/2 .

(2) The Density of a graph P is defined as Density(P ) = |E(P )|
|V (P )| . (3) The Diameter

of a graph P is the maximum length of the shortest path between any two vertices of
P . (4) EdgeConnectivity(P )(V ertexConnectivity(P )) is the minimum number of
edges(vertices) whose deletion from P disconnects P .

3 Pattern Mining Framework
gPrune can be applied to both Apriori-based model and the pattern-growth model.
In this paper, we take the pattern-growth model as an example to illustrate the prun-
ing optimizations. Nevertheless, the techniques proposed here can also be applied to
Apriori-based methods. The pattern-growth graph mining approach is composed of two
stages (1) pattern seed generation (2) pattern growth. The mining process is conducted
by iterating these two stages until all frequent patterns are found.
Pattern Seed Generation: We use gSpan[17] to enumerate all the seeds with size of
increasing order. One pattern seed is generated every time and proceeds to the pattern
growth stage. A pattern seed could be a vertex, an edge, or a small structure.
Pattern Growth: As outlined in Algorithm 1, PatternGrowth keeps a set S of pattern
seeds and a set F of frequent patterns already mined. Each iteration of PatternGrowth
might generate new seeds (added to S), and identify new frequent patterns (added to



F ). Line 1 initializes the data structures. Initially, S contains only the pattern seed. Line
2 to 11 grow every pattern seed in S until S is exhausted. For each pattern seed Q,
which is taken from the set S in Line 3, Q is checked through its data search space
and augmented incrementally by adding a new edge or vertex (Lines 4 and 5). Each
augmented pattern is checked for pattern pruning in Line 6 and dropped whenever it
satisfies the pattern pruning requirements. All the augmented patterns that survive the
checking are recorded in St. Then in Line 8, for each surviving pattern, we construct its
own support data space from that of Q’s. Line 9 checks data pruning for each G in the
support space. Since each thus augmented pattern is a frequent pattern, we add them to
F in Line 10. Finally, these patterns are added to S, so that they will be used to grow
new patterns. When S is exhausted, a new pattern seed will be generated until it is clear
that all frequent patterns are discovered. The algorithm input: A frequent pattern seed
P , graph database D = {G1, G2, . . . , Gn} and the existing frequent pattern set F . The
algorithm output: New frequent pattern set F .

Algorithm 1 PatternGrowth
1: S ← {P}; F ← F

⋃{P}; St ← ∅
2: while S 6= ∅;
3: Q ← pop(S);
4: for each graph G ∈ DQ

5: Augment Q and save new patterns in St;
6: Check pattern pruning on each P ∈ St;
7: for each augmented pattern Q′ ∈ St

8: Construct support data space DQ′ for Q′;
9: Check data pruning on DQ′ ;

10: F ← F
⋃

St;
11: S ← S

⋃
St;

12: return F ;

PatternGrowth checks for pattern pruning in Line 6 and data pruning in Line 9.
Pattern pruning is performed whenever a new augmented pattern is generated. This
means any unpromising pattern will be pruned before constructing its data search space.
Notice that data pruning is performed whenever infrequent edges are dropped after a
new data search space is constructed and offers chance to drop new target graphs. As
such, the search space for a pattern keeps shrinking as the pattern grows.

4 Pruning Properties
A pruning property is a property of the constraint that helps prune either the pattern
search space or the data search space. Pruning properties which enable us to prune
patterns are called P-antimonotonicity, and those that enable us to prune data are called
D-antimonotonicity.
4.1 Pruning Patterns

(1) Strong P-antimonotonicity

Definition 2. A constraint C is strong P-antimonotone if fC(P ′) = 1 → fC(P ) = 1
for all P ⊆ P ′.



Strong P-antimonotonicity is simply the antimonotone property which has been
known long since [9]. We call it strong P-antimonotonicity only to distinguish it from
the other P-antimonotonicity introduced below. An example of strong P-antimonotone
constraint for graph is acyclicity.
(2) Weak P-antimonotonicity

Constraints like “Density Ratio(G) ≥ 0.1” is not strong P-antimonotone. Grow-
ing a graph G could make Density Ratio(G) go either up or down. However, they
have weak P-antimonotonicity, which is based on the following intuition. If a constraint
C is not strong P-antimonotone, then there must exist a pattern P violating C and a
supergraph of P , say Q, that satisfies C. In this case, we cannot prune graph P even if
P violates C because Q might be missed if Q can only be grown out of P . However, if
we can guarantee that Q can always be grown from some other subgraph P ′ such that
P ′ satisfies C, we can then safely prune P .
Definition 3. A constraint C is weak P-antimonotone if for a graph P ′ where |V (P ′)| ≥
k for some constant k, fC(P ′) = 1 → fC(P ) = 1 for some P ⊂ P ′, such that
|V (P )| = |V (P ′)| − 1.

k is the size of the minimum instance to satisfy the constraint. When mining for
weak P-antimonotone constraints, since we are sure that, for any constraint-satisfying
pattern Q, there is a chain of substructures such that g1 ⊂ g2 ⊂ ... ⊂ gn = Q and
gi satisfies the constraint for all 1 ≤ i ≤ n, we can drop a current pattern P if it
violates the constraint, even if some supergraph of P might satisfy the constraint. Weak
P-antimonotonicity allows us to prune patterns without compromising the completeness
of the mining result. A similar property on itemsets, ”loose antimonotonicity”, has been
discussed by Bonchi et al.in [13]. Notice that if a constraint is strong P-antimonotone,
it is automatically weak P-antimonotone; but not vice versa. Also note that we can have
similar definition of weak P-animonotonicity with the chain of substructure decreasing
in number of edges.

We us the graph density ratio example to illustrate the pruning. The proof of the
following theorem is omitted due to space limit.
Theorem 1. Given a graph G, if Density Ratio(G) > δ, then there exists a sequence
of subgraphs g3, g4, . . . , gn = G, |V (gi)| = i (3 ≤ i ≤ n) such that g3 ⊂ g4 ⊂ . . . gn

and Density Ratio(gi) > δ.
Theorem 1 shows a densely connected graph can always be grown from a smaller

densely connected graph with one vertex less. As shown in this example of graph den-
sity ratio, even for constraints that are not strong P-antimonotone, there is still pruning
power to tap if weak P-antimonotonicity is available.

4.2 Pruning Data
(1) Pattern-separable D-antimonotonicity
Definition 4. A constraint C is pattern-separable D-antimonotone if for a pattern P
and a graph G ∈ DP , fC(G) = 0 → fC(P ′) = 0 for all P ⊆ P ′ ⊆ G.

For constraints with pattern-separable D-antimonotonicity, the exact embeddings of
the pattern are irrelevant. Therefore, we only need to check the constraint on the entire
graphs in the pattern’s data search space, and safely drop a graph if it fails the constraint.

Consider the constraint “the number of edges in a pattern is greater than 10”. The
observation is that every time a new data search space is constructed for the current



pattern P , we can scan the graphs in the support space and prune those with less than
11 edges.

It is important to recognize that this data reduction technique can be applied repeat-
edly in the entire mining process, instead of applying in an initial scan of the database
as a preprocessing procedure. It is true that we will not benefit much if this data pruning
is effective only once for the original data set, i.e., if any graph surviving the initial
scanning will always survive in the later pruning. The key is that in our framework,
data pruning is checked on every graph in the data search space each time the space
is updated for the current pattern. As such, a graph surviving the initial scan could
still be pruned later. This is because when updating the search space for the current
pattern P , edges which were frequent at last step could now become infrequent, and are
thus dropped. This would potentially change each graph in the data search space, and
offer chance to find new graphs with less than 11 edges which become eligible for prun-
ing only at this step. Other examples of pattern-separable D-antimonotonic constraints
include path/feature containment, e.g., pattern contains three benzol rings.
(2) Pattern-inseparable D-antimonotonicity

Unfortunately, many constraints in practice are not pattern-separable D-antimonotone.
V ertexConnectivity(P ) > 10 is a case in point. The exact embedding of the pattern
is critical in deciding whether it is safe to drop a graph in the data search space. These
constraints are thus pattern-inseparable. In these cases, if we “put the pattern P back to
G”, i.e., considering P together with G, we may still be able to prune the data search
space.

Definition 5. A constraint C is pattern-inseparable D-antimonotone if for a pattern
P and a graph G ∈ DP , there exists a measure function M : {P} × {G} → {0, 1}
such that M(P,G) = 0 → fC(P ′) = 0 for all P ⊆ P ′ ⊆ G.

The idea of using pattern-inseparable D-antimonotone constraints to prune data is
the following. After embedding the current pattern P into each G ∈ DP , we compute
by a measure function, for all supergraphs P ′ such that P ⊂ P ′ ⊂ G, an upper/lower
bound of the graph property to be computed in the constraint. This bound serves as
a necessary condition for the existence of a constraint-satisfying supergragh P ′. We
discard G if this necessary condition is violated. For example, suppose the constraint is
V ertexConnectivity(P ) > 10. If after embedding P in G, we find that the maximum
vertex connectivity of all the supergraphs of P is smaller than 10, then no future pattern
growing out of P in G will ever satisfy the constraint. As such G can be safely dropped.
The measure function used to compute the bounds depends on the particular constraint.
For some constraints, the computational cost might be prohibitively high and such a
computation will not be performed. Another cost issue associated with pruning based
on pattern-inseparable D-antimonotonicity is the maintenance of the pattern growth tree
to track pattern embeddings. The Mining algorithm has to make a choice based on the
cost of the pruning and the potential benefit. More discussion on the trade-off in these
cases is given in Section 5. We use the vertex connectivity as an example to show how
to perform data pruning. The time cost is linear in the pattern size for this constraint.

Let Neighbor(P ) be the set of vertices adjacent to pattern P . For the vertex con-
nectivity constraint, the following lemma gives a necessary condition for the existence
of a P ′ such that V ertexConnectivity(P ′) ≥ δ.



Lemma 1. If |Neighbor(P )| < δ, then there exists no P ′ such that P ⊂ P ′ ⊂ G and
V ertexConnectivity(P ′) > δ.

Therefore, for each pair of pattern P and G ∈ DP , the measure function M(P, G)
could first embed P in G, and then identify Neighbor(P ). If |Neighbor(P )| is smaller
than 10, returns 0. This pruning check is computationally cheap and only takes time
linear in |V (G− P )|.

Constraint strong weak pattern-separable pattern-inseparable
P-antimonotone P-antimonotone D-antimonotone D-antimonotone

Min Degree(G) ≥ δ No No No Yes
Min Degree(G) ≤ δ No Yes No Yes
Max Degree(G) ≥ δ No No Yes Yes
Max Degree(G) ≤ δ Yes Yes No Yes

Density Ratio(G) ≥ δ No Yes No Yes
Density Ratio(G) ≤ δ No Yes No Yes

Density(G) ≥ δ No No No Yes
Density(G) ≤ δ No Yes No Yes

Size(G) ≥ δ No Yes Yes Yes
Size(G) ≤ δ Yes Yes No Yes

Diameter(G) ≥ δ No Yes No Yes
Diameter(G) ≤ δ No No No Yes

EdgeConnectivity(G) ≥ δ No No No Yes
EdgeConnectivity(G) ≤ δ No Yes No Yes
G contains P (e.g., P is a benzol ring) No Yes Yes Yes

G does not contain P (e.g., P is a benzol ring) Yes Yes No Yes

Fig. 1. A General Picture of Pruning Properties of Graph Constraints

We summarize our study on the most useful constraints for graphs in Figure 1.
Proofs are omitted due to space limit.

5 Mining Strategy Selection
The checking steps for pruning patterns and data are both associated with a computa-
tional cost. Alternatively, one can first mine all frequent patterns by a known mining
algorithm, gSpan [17] for example, then check constraints on every frequent pattern
output, and discard those that do not satisfy the constraint. We call this method the
enumerate-and-check approach in the following discussion. Which approach is better
depends on the total mining cost in each case. The best strategy therefore is to estimate
the cost and potential benefit for each approach at every pruning step, and adopt the one
that would give better expected efficiency.

The growth of a pattern forms a partial order ≺ defined by subgraph containment,
i.e., P ≺ Q if and only if P ⊆ Q. The partial order can be represented by a pattern tree
model in which a node P is an ancestor of a node Q if and only if P ≺ Q.

Each internal node represents a frequent pattern, which is associated with its own
data search space {Ti}. The execution of a pattern mining algorithm can be viewed as
growing such a pattern tree. Every initial pattern seed is the root of a new tree. Every
time it augments a frequent pattern P , it generates all P ’s children in the tree. As such,
each leaf corresponds to an infrequent pattern, or, in our mining model, a pattern that
does not satisfy the constraints, since it is not further grown. Accordingly, the running
time of a pattern mining algorithm can be bounded by the total number of nodes it
generates in such a tree. This total sum is composed of two parts: (1) the set of all
internal nodes, which corresponds to all the frequent patterns and is denoted as F ; and
(2) the set of all leaves, denoted by L, which corresponds to the infrequent patterns or
constraint-violating patterns.



Let’s look at the running time of the enumerate-and-check approach. Let the mini-
mum support threshold be σ, i.e.a frequent pattern has to appear in at least σ|D| graphs,
where D is the entire graph database. Let Tc(P ) be the cost to check a constraint C on a
graph P . The running time of the enumerate-and-check approach can be lower-bounded
as follows:

1. Internal Nodes
If an augmented pattern P is frequent, at least σ|D| time has to be spent in the
frequency checking and data search space construction. Hence, the construction
time for such a node P is |DP |+ Tc(P ) ≥ σ|D|+ Tc(P ).

2. Leaf Nodes
If P is infrequent, at least σ|D| time has to be spent in frequency checking. Since
frequency checking is limited to support data space of P ’s parent node, denoted as
Parent(P ), the construction time for P is ≥ min(σ|D|,|DParent(P )|)= σ|D|.
Then the total cost, TP , for mining from an initial pattern seed P by the enumerate-

and-check approach is lower-bounded as TP ≥ ∑
Pi∈FP

(σ|D|+Tc(Pi))+
∑

Pi∈L σ|D|
=σ|D||FP |+

∑
Pi∈FP

Tc(Pi)+σ|D||L| ≥ 2σ|D||FP |+
∑

Pi∈FP
Tc(Pi), where FP is

the set of frequent patterns grown from P . Essentially, the time cost of the enumerate-
and-check approach is proportional to |FP |. To bound |FP |means to bound the number
of frequent patterns that would be generated from a pattern P . It is very hard to analyti-
cally give an accurate estimation of this heavily-data-dependent quantity. Our empirical
studies show that in general, |FP | is very large for small patterns. An upper-bound of
|FP | can also be proved to be Θ(2|G|), G ∈ DP . The proof is omitted due to space
constraint.

Now we show how we should choose between the enumerate-and-check approach
and our mining framework in both pattern pruning and data pruning cases.

1. Pruning Patterns: If we can prune a frequent pattern P after checking constraints
on it, then the entire subtree rooted at P in the pattern tree model will not be grown.
The time we would save is TP . The extra time spent for constraint checking is
Tc(P ). If it turns out that we can not prune it after the checking, we will grow it as
in the enumerate-and-check approach. The expected cost of using our mining model
is Tprune = Tc(P )+(1−p)·TP where p is the probability that P fails the constraint
checking. Tc(P ) depends on the algorithm used for the constraint checking, while
p will be estimated empirically. The cost of the enumerate-and-check approach is
TP . As such, pattern pruning should be performed when Tc(P ) ≤ p · TP .

2. Pruning Data: If we can prune a graph G from the data search space of P after
data pruning checking, G will be pruned from the data search spaces of all nodes
in the subtree rooted at P . Therefore the time we save is lower-bounded by TP . Let
Td(P, G) be the time cost to check data pruning for a pattern P and a graph G ∈
DP . Let q be the probability that G can be discarded after checking data pruning.
Then for a graph G ∈ DP , using data pruning by our model takes expected time
Tprune = Td(P,G) + (1− q)TP , while the enumerate-and-check approach would
cost time TP . The probability q can be obtained by applying sampling technique
on DP . We would perform data pruning checking for G if Td(P, G) < q · TP .
Otherwise, we shall just leave G in the search space.



6 Experimental Evaluation
In this section, we are going to demonstrate the pruning power provided by the the new
antimonotonicities introduced in our framework, i.e., weak pattern-antimonotonicity
and data-antimonotonicity. Among all of structural constraints described in Figure 1,
minimum density ratio and minimum degree are selected as representatives. All of our
experiments are performed on a 3.2GHZ, 1GB-memory, Intel PC running Windows XP.

We explored a series of synthetic datasets and two real datasets. The synthetic data
generator1 is provided by Yan et al.[23], which includes a set of parameters that allow
a user to test the performance under different conditions. There are a set of parameters
for users to specify: the number of target graphs(N ), the number of objects (O), the
number of seed graphs (S), the average size of seed graphs (I), the average number of
seed graphs in each target graph (T ), the average density of seed graphs (D), and the
average density of noise edges in target graphs.

The detailed description about this synthetic data generator is referred to [23].
For a dataset which has 60 relational graphs of 1,000 distinct objects, 20 seed graphs
(each seed graph has 10 vertices and an average density 0.5), 10 seed graphs per re-
lational graph, and 20 noise edges per object (0.01 × 1, 000 × 2), we represent it as
N60O1kS20T10I10 D0.5d0.01.
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Fig. 2. Weak P-Antimonotonicity
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Fig. 3. Weak P-Antimonotonicity

The first experiment is about the minimum density ratio constraint. As proved in
Section 4, minimum density ratio has weak pattern-antimonotonicity property. For each
graph whose density ratio is greater than δ (0 < δ ≤ 1.0), we can find a subgraph with
one vertex less whose density is greater than δ. That means we can stop growing any
frequent pattern with one more vertex if its density is less than δ.

Figure 2 shows the pruning performance with various minimum density ratios. The
data set used here is N60O1kS20T10I10 D0.5d0.01. The Y axis depicts the intermediate
frequent patterns that are accessed during the mining process. The fewer the intermedi-
ate patterns, the better the performance, given the cost of checking the pattern’s density
ratio is negligible. The two curves show the performance comparison between methods
with and without weak P-antimonotone pruning. As the figure shows, with the inte-
gration of the minimum density ratio constraint, we only need to examine much fewer
frequent patterns, which proves the effectiveness of weak pattern-antimonotonicity. In
the next experiment, we fix the density ratio threshold at 0.5 and change the average
density ratio of seed graphs (D) in the above synthetic dataset. The denser the seed
graphs, the more the dense subgraph patterns. It could take longer to find these patterns.
Figure 3 depicts the performance comparison between methods with or without weak

1 It will produce a distinctive label for each node in a graph



P-antimonotone pruning. We found that when D is greater than 0.6, the program with-
out P-antimonotone pruning cannot finish in hours, while the one with P-antimonotone
pruning can finish in 200 seconds.

Besides the weak P-antimonotone pruning, we also examined pattern inseparable
D-antimonotonicity to pruning the data search space for the density ratio constraint.
Given a frequent subgraph P and a graph G in the database (P ⊆ G), we need a mea-
sure to quickly check the maximum density ratio for each graph Q, where P ⊆ Q ⊆ G.
For this purpose, we developed an algorithm for fast maximum density ratio checking.
Let P ′ be the image of P in G. Our algorithm has three steps: (1) transform G to G′ by
merging all of the nodes in P ′. (2) apply Goldberg’s maximum density ratio subgraph
finding algorithm to find a maximum density ratio subgraph in G′ (time complexity
O(n3logn), where n = |V (G′)|) [24]. (3) for graph G, calculate a maximum density
ratio subgraph that contains P ′; if this density ratio is below the density ratio threshold,
we can safely drop G from the data search space of P (i.e., G does not contain any sub-
graph Q that contains P and whose density ratio is greater than the threshold). For each
discovered subgraph, we perform this checking to prune the data search space as much
as possible. Although this checking is much faster than enumerating all subgraphs in
G, we find it runs slower than a method without pruning, due to the high computa-
tional cost. That is, the cost model discussed in Section 5 does not favor this approach.
Through this exercise, it was learned that, in order to deploy D-antimonotone pruning,
the corresponding measure function in Defintion 5 has to be fast enough.
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We applied the above frequent dense subgraph mining algorithm to the real data that
consists of 32 microarray expression sets measuring yeast genome-wide expression pro-
files under different types of perturbations, e.g., cell cycle, amino acid starvation, heat
shock, and osmotic pressure. Each dataset includes the expression values of 6661 yeast
genes over multiple conditions. We model each dataset as a relational graph, where
nodes represent genes, and we connect two genes with an edge if they have high cor-
relation in their expression profiles. The patterns mined by our methods exhibit strong
biological meanings. The mining result was published in our previous work [23].

Although we did not find a good D-antimonotonicity for the density ratio con-
straint, D-antimonotonicity is still applicable for other constraints, e.g., the minimum
degree constraint. Neither pattern antimonotonicity nor weak pattern antimonotonicity
is available for the minimum degree constraint. Thus, we develop a pruning technique
using pattern-inseparable data antimonotonicity, which checks the minimum degree of
a pattern embedded in each graph. If the degree is below threshold δ, we drop the
corresponding graph from the data search space. The dropping will also decrease the
frequency of each pattern and its superpatterns, which may make them infrequent as a
result.



Figure 4 shows the comparison of pruning performance between data-antimonotonicity
and a one-scan pruning method that drops vertices with less than δ edges before run-
ning PatternGrowth. When the minimum degree constraint is weak, e.g., minimum
degree threshold is low, these two methods have similar performance. However, when
the constraint becomes strong, the pruning based on data-antimonotonicity performs
much better.

Figure 5 shows the number of subgraph isomorphisms performed for these two al-
gorithms. It is clear that, using data antimonotonicity, a lot of graphs are pruned in
the early stage so that the number of subgraph isomorphisms done in the later stage
can be significantly reduced. We now check one constraint with pattern separable D-
antimonotonicity — the minimum size constraint. The minimum size constraint on
frequent itemset mining and sequential pattern mining has been explored before, e.g.,
SLPMiner developed by Seno and Karypis [25]. Suppose our task is to find frequent
graph patterns with minimum length δ. One approach is to check the graphs in the
data search space of each discovered pattern P and prune the graphs that are not going
to generate patterns whose size is no less than δ. We developed several heuristics and
applied our algorithm to mine the AIDS antiviral screen compound dataset from Devel-
opmental Theroapeutics Program in NCI/NIH [30]. The dataset contains 423 chemical
compounds that are proved active to HIV virus.

Figure 6 shows the runtime of the two algorithms with and without pattern separa-
ble D-antimonotone pruning, with different support thresholds. The size constraint is
set in a way such that less than 10 largest patterns are output. It is a surprise that for this
dataset, pattern separable D-antimonotone pruning is not effective at all. Closer exami-
nation of this dataset reveals that most of the graphs can not be pruned because the sizes
of frequent patterns are relatively small in comparison with the graphs in the database.
This once again demonstrates, as also shown in the density ratio constraint, that the
effectiveness of the integration of a constraint with the mining process is affected by
many factors, e.g., the dataset and the pruning cost.

7 Conclusions
In this paper, we investigated the problem of incorporating sophisticated structural con-
straints in mining frequent graph patterns over a collection of graphs. We studied the
nature of search space pruning for both patterns and data, and discovered novel an-
timonotonicities that can significantly boost pruning power for graph mining in each
case: (1) weak pattern-antimonotonicity for patterns; (2) pattern-separable and pattern-
inseparable data-antimonotonicities for data. We showed how these properties can be
exploited to prune potentially enormous search space. An analysis of the trade-off
between the enumerating-and-checking approach and the antimonotonicity-based ap-
proach was also given in this study.
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